Advertisement

OpenFOAM® pp 465-479 | Cite as

Study of OpenFOAM\(^{\textregistered }\) Efficiency for Solving Fluid–Structure Interaction Problems

  • Matvey Kraposhin
  • Ksenia Kuzmina
  • Ilia MarchevskyEmail author
  • Valeria Puzikova
Chapter

Abstract

In the present research, the well-known test FSI problem of wind resonance phenomenon simulation for a circular cylinder is considered. It is well-investigated, both experimentally and numerically (Chen et al. in Phys Fluids 2011, [3]), for a wide range of parameters: Reynolds number, airfoil surface roughness, incident flow turbulence, etc. In this research, the simplest case is considered, in which the roughness influence is neglected and the incident flow is assumed to be laminar. Several numerical codes, both commercial and open source, can be used for simulating airfoil oscillations in the flow. Four numerical methods and the corresponding open-source codes are considered: the finite volume method with deformable mesh in OpenFOAM\(^{\textregistered }\); the particle finite element method with deformable mesh in the Kratos software; the meshfree Lagrangian vortex element method; and the LS-STAG immersed boundary method. The last two methods are implemented as in-house numerical codes. A comparison is carried out for the efficiency analysis of these methods and their implementations. It is shown that using OpenFOAM\(^{\textregistered }\) is preferable for numerical simulations with FSI problems similar to the ones presented here, in which the investigation of system behavior within a wide range of parameters is required.

References

  1. 1.
    Becker, P., Idelsohn, S.R., Onate, E.: A unified monolithic approach for multi-fluid flows and fluid-structure interaction using the Particle Finite Element Method with fixed mesh. Computat. Mech. (2015)  https://doi.org/10.1007/s00466-014-1107-0MathSciNetCrossRefGoogle Scholar
  2. 2.
    Blevins, R.D., Coughran, C.S.: Experimental investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and reynolds number. J. of Fluids Eng. (2009)  https://doi.org/10.1115/1.3222904Google Scholar
  3. 3.
    Chen, S.-S., Yen, R.-H., Wang, A.-B.: Investigation of the resonant phenomenon of flow around a vibrating cylinder in a subcritical regime. Physics of Fluids (2011)  https://doi.org/10.1063/1.3540673Google Scholar
  4. 4.
    Cheny, Y., Botella, O.: The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties. J. of Comput. Phys. (2010)  https://doi.org/10.1016/j.jcp.2009.10.007MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cottet, G.-H., Koumoutsakos, P.D.: Vortex methods. Theory and practice. Cambridge University Press (2008)Google Scholar
  6. 6.
    Dynnikova, G.Ya.: Vortex motion in two-dimensional viscous fluid flows. Fluid Dynamics (2003)  https://doi.org/10.1023/B:FLUI.0000007829.78673.01MathSciNetGoogle Scholar
  7. 7.
    Dynnikova, G.Ya.: The Lagrangian approach to solving the time-dependent Navier-Stokes equations. Dokl. Phys. (2004)  https://doi.org/10.1134/1.1831530MathSciNetGoogle Scholar
  8. 8.
    Dynnikova, G.Ya.: Fast technique for solving the N-body problem in flow simulation by vortex methods. Comput. Math. and Math. Phys. (2009)  https://doi.org/10.1134/S0965542509080090MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ferziger, J., Peric, M.: Computational methods for fluid dynamics. Springer (2002)Google Scholar
  10. 10.
    Idelsohn, S., Nigro, N., Gimenez, J., Rossi, R., Marti, J.: A fast and accurate method to solve the incompressible Navier-Stokes equations. Engineering Computations. (2013)  https://doi.org/10.1108/02644401311304854CrossRefGoogle Scholar
  11. 11.
    Idelsohn, S., Nigro, N., Limache, A., Onate, E.: Large time-step explicit integration method for solving problems with dominant convection. Comput. Methods. Appl. Mech. Eng. (2012)  https://doi.org/10.1016/j.cma.2011.12.008MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kempka, S.N., Glass, M.W., Peery, J.S., Strickland, J.H.: Accuracy considerations for implementing velocity boundary conditions in vorticity formulations. SANDIA Report SAND96-0583 (1996)Google Scholar
  13. 13.
    Klamo, J.T., Leonard, A., Roshko, A.: On the maximum amplitude for a freely vibrating cylinder in cross flow. J. Fluids. Struct. (2005)  https://doi.org/10.1016/j.jfluidstructs.2005.07.010CrossRefGoogle Scholar
  14. 14.
    Klamo, J.T., Leonard, A., Roshko, A.: The effects of damping on the amplitude and frequency response of a freely vibrating cylinder in cross-flow. J. Fluids. Struct. (2006)  https://doi.org/10.1016/j.jfluidstructs.2006.04.009CrossRefGoogle Scholar
  15. 15.
    Kraposhin, M.V., Marchevsky, I.K.: Implementation of simple FSI model with functionObject (2016)  https://doi.org/10.13140/RG.2.1.1526.6809/1https://github.com/unicfdlab/TrainingTracks/tree/master/OpenFOAM/simpleFsi-OF3.0.0. Cited 1 Oct 2016
  16. 16.
    Kratos multi-physics. http://www.cimne.com/kratos. Cited 1 Oct 2016
  17. 17.
    Kuzmina, K.S., Marchevskii, I.K., Moreva, V.S.: Vortex Sheet Intensity Computation in Incompressible Flow Simulation Around an Airfoil by Using Vortex Methods. Math. Model. and Comput. Simul. (2018)  https://doi.org/10.1134/S2070048218030092.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kuz’mina, K.S., Marchevskii, I.K., Moreva, V.S., Ryatina, E.P.: Numerical scheme of the second order of accuracy for vortex methods for incompressible flow simulation around airfoils. Russian Aeronautics (2017)  https://doi.org/10.3103/S1068799816030114CrossRefGoogle Scholar
  19. 19.
    Kuzmina, K.S., Marchevsky, I.K., Moreva, V.S.: Parallel Implementation of Vortex Element Method on CPUs and GPUs. Procedia Computer Science (2015)  https://doi.org/10.1016/j.procs.2015.11.010CrossRefGoogle Scholar
  20. 20.
    Kuzmina, K., Marchevsky, I., Ryatina, E.: VM2D: Open source code for 2D incompressible flow simulation by using vortex methods. Commun. Comput. and Inf. Sci. (2018)  https://doi.org/10.1007/978-3-319-99673-8_18Google Scholar
  21. 21.
    Lifanov, I.K., Belotserkovskii, S.M.: Methods of Discrete Vortices. CRC Press (1993)Google Scholar
  22. 22.
    Marchevsky, I.K., Moreva, V.S., Puzikova V.V.: The efficiency comparison of the vortex element method and the immersed boundary method for numerical simulation of airfoils hydroelastic oscillations COUPLED PROBLEMS 2015: Proc. of VI Int. Conf. on Computational Methods for Coupled Problems in Sci. and Eng., 800-811 (2015). http://congress.cimne.com/coupled2015/frontal/doc/Ebook COUPLED 15.pdf. Cited 1 Oct 2016
  23. 23.
    Marchevskii, I.K., Puzikova V.V.: Numerical simulation of the flow around two fixed circular airfoils positioned in tandem using the LS-STAG method. J. Mach. Manuf. Reliab. (2016)  https://doi.org/10.3103/S1052618816020084CrossRefGoogle Scholar
  24. 24.
    Marchevskii, I.K., Puzikova V.V.: Numerical simulation of the flow around two circular airfoils positioned across the stream using the LS-STAG method. J. Mach. Manuf. Reliab. (2017)  https://doi.org/10.3103/S105261881702011XCrossRefGoogle Scholar
  25. 25.
    Marchevsky, I.K., Puzikova, V.V.: OpenFOAM\(^{\textregistered }\) iterative methods efficiency analysis for linear systems solving. Proceedings of the Institute for System Programming of RAS (2013)  https://doi.org/10.15514/ISPRAS-2013-24-4 [in Russian]CrossRefGoogle Scholar
  26. 26.
    OpenFOAM\(^{\textregistered }\) —the open source computational fluid dynamics (cfd) toolbox. http://www.openfoam.com. Cited 1 Oct 2016
  27. 27.
    Osher, S., Fedkiw, R.P.: Level set methods and dynamic implicit surfaces. Springer (2003)Google Scholar
  28. 28.
    Pereira, L.A.A., Hirata, M.H., Silveira Neto A.: Vortex method with turbulence sub-grid scale modelling. J. Braz. Soc. Mech. Sci. & Eng. (2003)  https://doi.org/10.1590/S1678-58782003000200005
  29. 29.
    Puzikova, V.V.: Development of the LS-STAG immersed boundary method modification or mathematical modelling in coupled hydroelastic problems. Ph.D. dissertation, Bauman Moscow State Technical University, Russia (2016) [in Russian] http://mechmath.ipmnet.ru/lib/?s=thesis_mech. Cited 1 Oct 2016
  30. 30.
    Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics (1998)  https://doi.org/10.1063/1.168744CrossRefGoogle Scholar
  31. 31.
    Wesseling, P.: An introduction to multigrid methods. John Willey & Sons Ltd. (1991)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matvey Kraposhin
    • 1
  • Ksenia Kuzmina
    • 2
  • Ilia Marchevsky
    • 2
    Email author
  • Valeria Puzikova
    • 2
  1. 1.Institute for System Programming of the Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations