Advertisement

OpenFOAM® pp 401-417 | Cite as

Simulating Polyurethane Foams Using the MoDeNa Multi-scale Simulation Framework

  • Henrik RuscheEmail author
  • Mohsen Karimi
  • Pavel Ferkl
  • Sigve Karolius
Chapter

Abstract

The MoDeNa project [20] aims at developing, demonstrating, and assessing an easy-to-use multi-scale software framework application under an open-source licensing scheme that delivers models with feasible computational loads for process and product design of complex materials. The concept of MoDeNa is an interconnected multi-scale software framework. As an application case, we consider polyurethane (PU) foams, which are excellent examples of a large turnover product produced in a variety of qualities of which the properties are the result of designing and controlling the material structure on different scales, from the molecule to the final product. Hence, various models working at individual scales will be linked together by this framework such as meso- and macro-scale models. OpenFOAM\(^{\textregistered }\) is deployed on the macro-scale level. A new solver (MODENAFoam) is formulated and validated to demonstrate the interconnectivity of the scales using the MoDeNa framework. The efficiency of the multi-scale model is evaluated by comparing the numerical predictions of foam density and temperature evolutions with experimental measurements. Validation results showed the capability of the framework when it is assessed for simulation of a complex system such as polyurethane foam.

References

  1. 1.
    Baser, S. A. and Khakhar, D. V. (1994a). Modeling of the dynamics of r-11 blown polyurethane foam formation. Polymer Engineering & Science, 34(8):632–641.CrossRefGoogle Scholar
  2. 2.
    Baser, S. A. and Khakhar, D. V. (1994b). Modeling of the dynamics of r-11 blown polyurethane foam formation. Polymer Engineering & Science, 34(8):642–649.Google Scholar
  3. 3.
    Bikard, J., Bruchon, J., Coupez, T., and Vergnes, B. (2005). Numerical prediction of the foam structure of polymeric materials by direct 3D simulation of their expansion by chemical reaction based on a multidomain method. Journal of Materials Science, 40(22):5875–5881.CrossRefGoogle Scholar
  4. 4.
    Byron Bird, R. and Carreau, P. J. (1968). A nonlinear viscoelastic model for polymer solutions and melts—I. Chemical Engineering Science, 23(5):427–434.CrossRefGoogle Scholar
  5. 5.
    Castro, J. M. and Macosko, C. W. (1982). Studies of mold filling and curing in the reaction injection molding process. AIChE Journal, 28(2):250–260.CrossRefGoogle Scholar
  6. 6.
    Feng, J. J. and Bertelo, C. A. (2004). Prediction of bubble growth and size distribution in polymer foaming based on a new heterogeneous nucleation model. Journal of Rheology, 48(2):439.CrossRefGoogle Scholar
  7. 7.
    Ferkl, P., Karimi, M., Marchisio, D., and Kosek, J. (2016). Multi-scale modelling of expanding polyurethane foams: Coupling macro- and bubble-scales. Chemical Engineering Science, 148:55–64.CrossRefGoogle Scholar
  8. 8.
    Franceschini, G. and Macchietto, S. (2008). Model-based design of experiments for parameter precision: State of the art. Chemical Engineering Science, 63(19):4846 – 4872. Model-Based Experimental Analysis.Google Scholar
  9. 9.
    Gautier, L. (2016). Rpy2, an interface to r running embedded in a python process. http://rpy2.bitbucket.org [Online; accessed 29-November-2016].
  10. 10.
    Geier, S., Winkler, C., and Piesche, M. (2009). Numerical Simulation of Mold Filling Processes with Polyurethane Foams. Chemical Engineering & Technology, 32(9):1438–1447.CrossRefGoogle Scholar
  11. 11.
    Harikrishnan, G., Patro, T. U., and Khakhar, D. V. (2006). Polyurethane FoamClay Nanocomposites: Nanoclays as Cell Openers. Industrial & Engineering Chemistry Research, 45(21):7126–7134.CrossRefGoogle Scholar
  12. 12.
    Jain, A., Ong, S. P., Chen, W., Medasani, B., Qu, X., Kocher, M., Brafman, M., Petretto, G., Rignanese, G.-M., Hautier, G., Gunter, D., and Persson, K. A. (2015). Fireworks: a dynamic workflow system designed for high-throughput applications. Concurrency and Computation: Practice and Experience.Google Scholar
  13. 13.
    Jain, Anubhav (2016). Fireworks: An evirnoment for defining, managing, and executing workflows.Google Scholar
  14. 14.
    Karimi, M., Droghetti, H., and Marchisio, D. L. (2016). Multiscale Modeling of Expanding Polyurethane Foams via Computational Fluid Dynamics and Population Balance Equation. Macromolecular Symposia, 360(1):108–122.CrossRefGoogle Scholar
  15. 15.
    Kevrekidis, I. G., Gear, C. W., Hyman, J. M., Kevrekidid, P. G., Runborg, O., and Theodoropoulos, C. (2003). Equation-free, coarse-grained multiscale computation: Enabling mocroscopic simulators to perform system-level analysis. Commun. Math. Sci., 1(4):715–762.Google Scholar
  16. 16.
    Kim, C. and Youn, J. R. (2000). Environmentally Friendly Processing of Polyurethane Foam for Thermal Insulation. Polymer-Plastics Technology and Engineering, 39(1):163–185.CrossRefGoogle Scholar
  17. 17.
    Klempner, D. and Frisch, K. (1991). Handbook of Polymeric Foams and Foam Technology. Hanser Gardner Publications.Google Scholar
  18. 18.
    Marchisio, D. and Fox, R. (2013). Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge Series in Chemical Engineering. Cambridge University Press.Google Scholar
  19. 19.
    Marchisio, D. L. and Fox, R. O. (2005). Solution of population balance equations using the direct quadrature method of moments. Journal of Aerosol Science, 36(1):43–73.CrossRefGoogle Scholar
  20. 20.
    MoDeNa-EUProject (2016). Modelling of morphology development of micro- and nanostructures. https://github.com/MoDeNa-EUProject/MoDeNa [Online; accessed 29-November-2016].
  21. 21.
    MongoDB Inc. (2016). A document-oriented database program. https://mongodb.com [Online; accessed 29-November-2016].
  22. 22.
    MongoEngine (2016). A document-object mapper for working with mongodb from python. http://mongoengine.org [Online; accessed 29-November-2016].
  23. 23.
    Oertel, G. and Abele, L. (1994). Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties. Hanser.Google Scholar
  24. 24.
    R Core Team (2016). R: A language and environment for statistical computing. https://r-project.org [Online; accessed 29-November-2016].
  25. 25.
    Samkhaniani, N., Gharehbaghi, A., and Ahmadi, Z. (2013). Numerical simulation of reaction injection molding with polyurethane foam. Journal of Cellular Plastics, 49(5):405–421.CrossRefGoogle Scholar
  26. 26.
    Seo, D., Ryoun Youn, J., and Tucker, C. L. (2003). Numerical simulation of mold filling in foam reaction injection molding. International Journal for Numerical Methods in Fluids, 42(10):1105–1134.CrossRefGoogle Scholar
  27. 27.
    Seo, D. and Youn, J. R. (2005). Numerical analysis on reaction injection molding of polyurethane foam by using a finite volume method. Polymer, 46(17):6482–6493.CrossRefGoogle Scholar
  28. 28.
    Weinan, E., Engquist, B., and Huang, Z. (2003). Heterogeneous multiscale method: A general methodology for multiscale modeling. Phys. Rev. B, 67:092101.Google Scholar
  29. 29.
    Winkler, C.-A. (2009). Numerische und experimentelle Untersuchungen zu Formfüllvorgängen mit Polyurethanschäsumen unter komplexen Randbedingungen. PhD thesis, University of Stuttgart.Google Scholar
  30. 30.
    Woods, G. (1990). Polyurethane Handbook: Chemistry, Raw Materials, Processing, Application, Properties. ICI Polyurethanes and Wiley in Chichester, New York.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Henrik Rusche
    • 1
    Email author
  • Mohsen Karimi
    • 2
  • Pavel Ferkl
    • 3
  • Sigve Karolius
    • 4
  1. 1.Wikki Ltd.LondonUK
  2. 2.DISATPolitecnico di TorinoTorinoItaly
  3. 3.Department of Chemical EngineeringUniversity of Chemistry and TechnologyPragueCzech Republic
  4. 4.Department of Chemical Engineering, Faculty of Natural Sciences and TechnologyNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations