Advertisement

OpenFOAM® pp 297-308 | Cite as

Liquid Atomization Modeling in OpenFOAM\(^{\textregistered }\)

  • J. Anez
  • S. Puggelli
  • N. Hecht
  • A. Andreini
  • J. ReveillonEmail author
  • F. X. Demoulin
Chapter

Abstract

Several approaches have been developed to simulate liquid-jet atomization phenomena. Despite recent developments in numerical methods and computer performance, direct numerical simulation of the atomization process remains inaccessible for practical applications. Therefore, to carry out numerical simulations of the injected liquid from the internal flow within flow as far as the final dispersed spray, a modeling strategy has been developed. It is composed of a set of models implemented within the open-source software \(\texttt {OpenFOAM}^{\textregistered }\). First, the so-called Euler–Lagrange Spray Atomization (ELSA) approach is introduced. This is Eulerian formulation dedicated to jet atomization that is based on the analogy of turbulent mixing in a flow with variable density in the limit of infinite Reynolds and Weber numbers. Second, ELSA’s extension to a Quasi-Multiphase Eulerian (QME) approach is proposed. This method solves the problem of a second-order closure in modeling the turbulent liquid flux, hence solving the slip velocity between the phases. Third, an enhanced version of ELSA coupling with an Interface Capturing Method (ICM) and a Lagrangian approach for the final spray are introduced.

Notes

Acknowledgements

We acknowledge the CINECA award under the ISCRA initiative, for the availability of high-performance computing resources and support. A large part of the results reported here have been also obtained using TGCC-Curie, CRIHAN, and GENCI (IDRIS) supercomputers. They are gratefully acknowledged.

References

  1. 1.
    R. Lebas, T. Menard, P.A. Beau, A. Berlemont, and F.X. Demoulin. Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3):247–260, 2009.CrossRefGoogle Scholar
  2. 2.
    T. Menard, S. Tanguy, and A. Berlemont. Coupling level set/vof/ghost fluid methods: Validation and application to 3d simulation of the primary break-up of a liquid jet. International Journal of Multiphase Flow, 33(5):510–524, 2007.CrossRefGoogle Scholar
  3. 3.
    J. Shinjo and A. Umemura. Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 36(7):513–532, 2010.CrossRefGoogle Scholar
  4. 4.
    J. Shinjo and A. Umemura. Surface instability and primary atomization characteristics of straight liquid jet sprays. International Journal of Multiphase Flow, 37(10):1294–1304, 2011.CrossRefGoogle Scholar
  5. 5.
    F. A. Williams. Spray combustion and atomization. Physics of Fluids, 1(6):541–545, 1958.CrossRefGoogle Scholar
  6. 6.
    G.A. Bird. Molecular gas dynamics and the direct simulation of gas flows. Oxford University Press, 1994.Google Scholar
  7. 7.
    Frédérique Laurent and Marc Massot. Multi-fluid modelling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods. Combustion Theory and Modelling, 5(4):537–572, 2001.CrossRefGoogle Scholar
  8. 8.
    Frédérique Laurent, Alaric Sibra, and François Doisneau. Two-size moment Eulerian multi-fluid model: a flexible and realizable high-fidelity description of polydisperse moderately dense evaporating sprays. June 2015.Google Scholar
  9. 9.
    C. Yuan, F. Laurent, and R.O. Fox. An extended quadrature method of moments for population balance equations. Journal of Aerosol Science, 51:1–23, 2012.CrossRefGoogle Scholar
  10. 10.
    D. Kah, F. Laurent, M. Massot, and S. Jay. A high order moment method simulating evaporation and advection of a polydisperse liquid spray. Journal of Computational Physics, 231(2):394–422, 2012.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Michael Frenklach. Method of moments with interpolative closure. Chemical Engineering Science, 57(12):2229–2239, 2002. Population balance modelling of particulate systems.CrossRefGoogle Scholar
  12. 12.
    Stephen L. Passman Donald A. Drew. Theory of Multicomponent Fluids. Springer-Verlag New York, 1999.Google Scholar
  13. 13.
    Ariane Vallet and Roland Borghi. Modélisation eulerienne de l’atomisation d’un jet liquide. Comptes Rendus de l’AcadÃl’mie des Sciences - Series IIB - Mechanics-Physics-Astronomy, 327(10):1015–1020, 1999.zbMATHGoogle Scholar
  14. 14.
    F.X. Demoulin, P.A. Beau, G. Blokkeel, A. Mura, and R. Borghi. A new model for turbulent flows with large large density fluctuations: application to liquid atomization. Atomization and Sprays, 17(4):315–345, 2007.CrossRefGoogle Scholar
  15. 15.
    B Duret, J Reveillon, T Menard, and FX Demoulin. Improving primary atomization modeling through dns of two-phase flows. International Journal of Multiphase Flow, 55:130–137, 2013.CrossRefGoogle Scholar
  16. 16.
    E. Deutsch and O. Simonin. Large eddy simulation applied to the motion of particles in stationary homogeneous fluid turbulence. Turbulence Modification in Multiphase Flows-ASME FED, 110(35), 1991.Google Scholar
  17. 17.
    O. Simonin. Statistical and continuum modelling of turbulent reactive particulate flows. Lecture Series 1996–02, Von Karman Institute for Fluid Dynamics, 2000.Google Scholar
  18. 18.
    Antonio Andreini, Cosimo Bianchini, Stefano Puggelli, and F.X. Demoulin. Development of a turbulent liquid flux model for eulerian eulerian multiphase flow simulations. International Journal of Multiphase Flow, 81:88–103, 2016.MathSciNetCrossRefGoogle Scholar
  19. 19.
    F Raees, DR Van der Heul, and Cornelis Vuik. Evaluation of the interface-capturing algorithm of OpenFOAM\({^{\textregistered }}\) for the simulation of incompressible immiscible two-phase flow. Technical report, Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Institute of Applied Mathematics, 2011.Google Scholar
  20. 20.
    Nicolas Hecht. Simulation aux grandes échelles des écoulements liquide-gaz : application á l’atomisation. PhD thesis, University of Rouen, 2014.Google Scholar
  21. 21.
    Romain Lebas, Pierre-Arnaud Beau, Gregory Blokkeel, and Francois-Xavier Demoulin. Elsa model for atomization: To benefit of the eulerian and lagrangian descriptions of the liquid phase. In Proceedings of ASME Fluids Engineering Division Summer Meeting, volume 2006, 2006.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. Anez
    • 1
  • S. Puggelli
    • 2
  • N. Hecht
    • 3
  • A. Andreini
    • 2
  • J. Reveillon
    • 1
    Email author
  • F. X. Demoulin
    • 1
  1. 1.CORIA-UMR CNRS 6614, Normandy UniversityRouenFrance
  2. 2.Department of Industrial Engineering (DIEF)University of FlorenceFlorenceItaly
  3. 3.LOMC UMR CNRS 6294, Normandy UniversityLe HavreFrance

Personalised recommendations