OpenFOAM® pp 183-196 | Cite as

Fluid Dynamic and Thermal Modeling of the Injection Molding Process in OpenFOAM\(^{\textregistered }\)

  • Jozsef NagyEmail author
  • Georg Steinbichler


For the description of the filling, packing, and cooling phases of the injection molding process, a simulation framework of a compressible two-phase fluid model with polymer-specific material models is established and validated with experimental results. With this approach, it is possible to describe the fluid dynamic, the rheological, and the thermal behavior of the material during the production process. The main focus of this work is on the description of the standard injection molding process of common thermoplastic materials for industrial application, with special focus on process relevant quantities, e.g., pressure, temperature, as these values are of utmost importance for understanding the underlying phenomena and comparing the results to experimentally measured values.



The founding of the Österreichische Forschungsförderungsgesellschaft FFG within the project “Neuentwicklung von Spritzaggregaten und neue Ansätze für den Spritzgieprozess der Zukunft” is acknowledged here. The authors also give thank for the kind support of the ENGEL Austria GmbH.


  1. 1.
    Zhubrin, S.: Discrete reaction model for composition of sooting flames. Int. J. Heat Mass Transf. 52 (17–18), pp. 4125–4133 (2009)CrossRefGoogle Scholar
  2. 2.
    Li, Y., Kong, S.-C.: Coupling conjugate heat transfer with in-cylinder combustion modeling for engine simulation. Int. J. Heat Mass Transf. 54 (11–12), pp. 24672478 (2011)CrossRefGoogle Scholar
  3. 3.
    Nagy, J., Jordan, C., Harasek, M.: Optimization of an industrial high temperature furnace. In: Proceedings of the Third Open Source CFD International Conference Paris-Chantilly, France (2011)Google Scholar
  4. 4.
    Theofanous, T., Mitkin, V., Ng, C., Chang, C., Deng, X., Sushchikh, S.: The physics of aerobreakup. Part II: viscous liquids. Phys. Fluids. 24 (2), pp. 022104 (2012)Google Scholar
  5. 5.
    Nagy, J., Jordan, C., Harasek, M.: Numerical and experimental investigation of the role of asymmetric gas flow in the breakup of liquid droplets. In: Proceedings of the Fourth Open Source CFD International Conference London The Tower Hotel, ondon,Great-Britain (2012)Google Scholar
  6. 6.
    Nagy, J., Jordan, C., Harasek, M.: Turbulent phenomena in the aerobreakup of liquid droplets. CFD Letters. 3, pp. 112–126 (2012)Google Scholar
  7. 7.
    Nagy, J., Reith, L., Fischlschweiger, M., Steinbichler, G.: Modeling the influence of flow phenomena on the polymerization of \(\varepsilon \)-Caprolactam. Chemical Engineering Science. 111, pp. 85–93 (2014)CrossRefGoogle Scholar
  8. 8.
    Nagy, J., Reith, L., Fischlschweiger, M., Steinbichler, G.: Influence of fiber orientation and geometry variation on flow phenomena and reactive polymerization of \(\varepsilon \)-caprolactam. Chemical Engineering Science. 128, pp. 1–10 (2015)CrossRefGoogle Scholar
  9. 9.
    Nagy, J., Kobler, E., Steinbichler G.: Influence of complex material behavior of polymer materials on the roduction process. In: Proceedings of the Tenth OpenFOAM\(^{\textregistered }\) Workshop, Ann Arbor, USA (2015)Google Scholar
  10. 10.
    Nagy, J., Kobler, E., Wuschko, S., Steinbichler G.: Modeling and optimization of the injection molding process in OpenFOAM\(^{\textregistered }\). In: Proceedings of the Eleventh OpenFOAM\(^{\textregistered }\) Workshop, Guimaraes, Portugal (2016)Google Scholar
  11. 11.
    Miller, S.T., Jasak, H., Boger, D.A., Paterson, E.G., Nedungadi, A.: A pressure-based, compressible, two-phase flow finite volume method for underwater explosions. Computers & Fluids. 87, pp. 132–143 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jasak, H.: Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. PhD thesis. Imperial College of Science, Technology and Medicine (1996)Google Scholar
  13. 13.
    OpenFOAM\(^{\textregistered }\) source code, OpenCFD Ltd. (ESI Group). and visited on 10.11.2016
  14. 14.
    Winter, H.H.: Viscous dissipation term in energy equations. AIChEMI Modular Instructions. Series C: Transport, Volume 7: Calculation and Measurement Techniques for Momentum, Energy and Mass Transfer. pp. 27–34 (1987)Google Scholar
  15. 15.
    Brunotte, R.: Die thermodynamischen und verfahrenstechnischen Abläufe der in-situ-Oberflächenmodifizierung beim Spritzgiessen. PhD thesis. Technische Universit Chemnitz (2006)Google Scholar
  16. 16.
    Prandl, L.: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Zeitschr. Für Angewandte Math. Und Mech.pp. 136–147 (1925)Google Scholar
  17. 17.
    von Karman, T., L.: Mechanische Ähnlichkeit und Turbulenz. In: Proceedings of the Third International Congress on Applied Mechanics, Stockholm, Sweden, (1930)Google Scholar
  18. 18.
    Gnielinski, V.: Wrmebertragung im konzentrischen Ringspalt und im ebenen Spalt. In VDI-Wrmeatlas. Springer Verlag Heidelberg Berlin (2013)Google Scholar
  19. 19.
    Rusche, H.: Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions. PhD thesis. Imperial College of Science, Technology and Medicine (2002)Google Scholar
  20. 20.
    Raessi, M., Mostaghimi, J., Bussmann, M.: A volume-of-fluid interfacial flow solver with advected normals. Computers & Fluids. 39 (8), pp. 1401–1410 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nagy, J.: Untersuchung von mehrphasigen, kompressiblen Strömungen durch Simulation und Experiment. PhD thesis. Technische Universitt Wien (2012)Google Scholar
  22. 22.
    Cross, M.M.: Rheology of non-newtonian fluids a new flow equation for pseudoplastic systems. J. colloid Sci. 20, pp. 417–437 (1965)CrossRefGoogle Scholar
  23. 23.
    Williams, M.L., Landel, R.F., Ferry, J.D.: Mechanical properties of substances of high molecular weight. 19. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, pp. 3701-3707 (1955)CrossRefGoogle Scholar
  24. 24.
    Zoller, P., Fakhreddine, Y.A.: Pressure-volume-temperature studies of semicrystalline polymers. Thermochimica Acta 238, pp. 397–415 (1994)CrossRefGoogle Scholar
  25. 25.
    Wang, J.: PVT Properties of Polymers for Injection Molding, Some Critical Issues for Injection Molding. InTech. 2012 cited 07 Nov 2016CrossRefGoogle Scholar
  26. 26.
    Bonten, C.: Kunststofftechnik: Einführung und Grundlagen. Hanser (2014)Google Scholar
  27. 27.
    Zheng, R., Tanner, R. I., Fan, X.-J.: Injection Molding. In VDI-Wrmeatlas. Springer Verlag Heidelberg Berlin (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Polymer Injection Moulding and Process AutomationJohannes Kepler UniversityLinzAustria

Personalised recommendations