Advertisement

OpenFOAM® pp 157-171 | Cite as

Evaluation of Energy Maximising Control Systems for Wave Energy Converters Using OpenFOAM\(^{\textregistered }\)

  • Josh DavidsonEmail author
  • Christian Windt
  • Giuseppe Giorgi
  • Romain Genest
  • John V. Ringwood
Chapter

Abstract

Wave energy conversion is an active field of research, aiming to harness the vast amounts of energy present in ocean waves. An essential development trajectory towards an economically competitive wave energy converter (WEC) requires early device experimentation and refinement using numerical tools. OpenFOAM\(^{\textregistered }\) is proving to be a useful numerical tool for WEC development, having been increasingly employed in recent years to simulate and analyse the performance of WECs. This chapter reviews the latest works employing OpenFOAM\(^{\textregistered }\) in the field of wave energy conversion, and then presents the new application, of evaluating energy maximising control systems (EMCSs) for WECs, in an OpenFOAM\(^{\textregistered }\) numerical wave tank (NWT). The advantages of using OpenFOAM\(^{\textregistered }\) for this application are discussed, and implementation details for simulating a controlled WEC in an OpenFOAM\(^{\textregistered }\) NWT are outlined. An illustrative example is given, and results are presented, highlighting the value of evaluating EMCSs for WECs in an OpenFOAM\(^{\textregistered }\) NWT.

Notes

Acknowledgements

This chapter is based upon work supported by Science Foundation Ireland under Grant No. 13/IA/1886.

References

  1. 1.
    Akimoto, H., Kim, Y., Tanaka, K.: Configuration of the single-bucket wave turbine for the direct utilization of orbital fluid motion. In: Grand Renewable Energy (2014)Google Scholar
  2. 2.
    Asmuth, H., Schmitt, P., Elsaesser, B., Henry, A.: Determination of non-linear damping coefficients of bottom-hinged oscillating wave surge converters using numerical free decay tests. In: Proceedings of the 1st International Conference on Renewable Energies Offshore, Lisbon, Portugal, pp. 24–26 (2014)Google Scholar
  3. 3.
    Babarit, A., Delhommeau, G.: Theoretical and numerical aspects of the open source BEM solver NEMOH. In: 11th European Wave and Tidal Energy Conference (EWTEC2015) (2015)Google Scholar
  4. 4.
    Chen, L.: Modelling of marine renewable energy. Ph.D. thesis, University of Bath (2015)Google Scholar
  5. 5.
    Chen, L., Zang, J., Hillis, A.J., Plummer, A.R., et al.: Hydrodynamic performance of a flap-type wave energy converter in viscous flow. In: The Twenty-fifth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers (2015)Google Scholar
  6. 6.
    Davidson, J., Cathelain, M., Guillemet, L., Le Huec, T., Ringwood, J.: Implementation of an OpenFOAM\(^{\textregistered }\) numerical wave tank for wave energy experiments. In: Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC 2015), Nantes (2015)Google Scholar
  7. 7.
    Davidson, J., Genest, R., Ringwood, J.V.: Adaptive control of a wave energy converter simulated in a numerical wave tank. In: Proceedings of the 12th European Wave and Tidal Energy Conference (EWTEC 2017), Cork (2017)Google Scholar
  8. 8.
    Davidson, J., Giorgi, S., Ringwood, J.: Numerical wave tank identification of nonlinear discrete-time hydrodynamic models. In: 1st Int. Conf. on Renewable Energies Offshore (Renew 2014), Lisbon (2014)Google Scholar
  9. 9.
    Davidson, J., Giorgi, S., Ringwood, J.V.: Linear parametric models for ocean wave energy converters identified from numerical wave tank experiments. Ocean Engineering 103 (2015)CrossRefGoogle Scholar
  10. 10.
    Davidson, J., Giorgi, S., Ringwood, J.V.: Identification of wave energy device models from numerical wave tank datapart 1: Numerical wave tank identification tests. IEEE Transaction on Sustainable Energy (2016)Google Scholar
  11. 11.
    Devolder, B., Rauwoens, O., Troch, P.: Numerical simulation of a single floating point absorber wave energy converter using OpenFOAM\(^{\textregistered }\). In: Proceedings of the 2nd International Conference on Renewable Energies Offshore (2016)Google Scholar
  12. 12.
    Devolder, B., Schmitt, P., Rauwoens, P., Elsaesser, B., Troch, P.: A review of the implicit motion solver algorithm in OpenFOAM\(^{\textregistered }\) to simulate a heaving buoy. In: NUTTS conference 2015: 18th Numerical Towing Tank Symposium, pp. 1–6 (2015)Google Scholar
  13. 13.
    Di Fresco, L., Traverso, A., Barberis, S., Guglielmino, E., Garrone, M.: Off-shore wave energy harvesting: A wec-microturbine system: Harvesting and storing energy for off-shore applications. In: OCEANS 2015-Genova, pp. 1–6. IEEE (2015)Google Scholar
  14. 14.
    Eskilsson, C., Palm, J., Engsig-Karup, A., Bosi, U., Ricchiuto, M.: Wave induced motions of point-absorbers: a hierarchical investigation of hydrodynamic models. In: 11th European Wave and Tidal Energy Conference (EWTEC). Nantes, France (2015)Google Scholar
  15. 15.
    Falnes, J.: Ocean Waves and Oscillating Systems : linear interactions including wave-energy extraction. Cambridge University Press (2002)Google Scholar
  16. 16.
    Ferrer, P.M., Causon, D.M., Qian, L., Mingham, C.G., Ma, Z.H.: Numerical simulation of wave slamming on a flap type oscillating wave energy device. In: Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference (2016)Google Scholar
  17. 17.
    Giorgi, G., Retes, M., Ringwood, J.: Nonlinear hydrodynamic models for heaving buoy wave energy converters. In: 3rd Asian Wave and Tidal Energy Conference (2016)Google Scholar
  18. 18.
    Giorgi, G., Ringwood, J.: NWT Latching Control User Manual. Available at: http://www.eeng.nuim.ie/coer/doc/NWTLatchingControlUserManual.pdf
  19. 19.
    Giorgi, G., Ringwood, J.V.: Implementation of latching control in a numerical wave tank with regular waves. Journal of Ocean Engineering and Marine Energy 2(2), 211–226 (2016)CrossRefGoogle Scholar
  20. 20.
    Giorgi, G., Ringwood, J.V.: Consistency of viscous drag identification tests for wave energy applications. In: Proceedings of the 12th European Wave and Tidal Energy Conference (EWTEC 2017), Cork (2017)Google Scholar
  21. 21.
    Giorgi, S., Davidson, J., Ringwood, J.V.: Identification of nonlinear excitation force kernals using numerical wave tank experiments. In: EWTEC (2015)Google Scholar
  22. 22.
    Giorgi, S., Davidson, J., Ringwood, J.V.: Identification of wave energy device models from numerical wave tank data - part 2: Data-based model determination. IEEE Transaction on Sustainable Energy (2016)Google Scholar
  23. 23.
    Higuera, P., Lara, J.L., Losada, I.J.: Simulating coastal engineering processes with OpenFOAM\(^{\textregistered }\). Coastal Engineering 71, 119–134 (2013)CrossRefGoogle Scholar
  24. 24.
    Iturrioz, A., Guanche, R., Lara, J., Vidal, C., Losada, I.: Validation of OpenFOAM\(^{\textregistered }\) for oscillating water column three-dimensional modeling. Ocean Engineering 107, 222–236 (2015)CrossRefGoogle Scholar
  25. 25.
    Jacobsen, N.G., Fuhrman, D.R., Fredsøe, J.: A wave generation toolbox for the open-source CFD library: OpenFOAM\(^{\textregistered }\). International Journal for Numerical Methods in Fluids 70, 1073–1088 (2012)Google Scholar
  26. 26.
    King, A., Algie, C., Ryan, S., Ong, R.: Modelling of fluid structure interactions in submerged flexible membranes for the bombora wave energy converter. In: 20th Australasian Fluid Mechanics Conference, Perth, Australia (2016)Google Scholar
  27. 27.
    Li, L., Tan, M., Blake, J., et al.: Numerical simulation of multi-body wave energy converter. In: The Twenty-fifth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers (2015)Google Scholar
  28. 28.
    Loh, T.T., Greaves, D., Maeki, T., Vuorinen, M., Simmonds, D., Kyte, A.: Numerical modelling of the WaveRoller device using OpenFOAM\(^{\textregistered }\). In: Proceedings of the 3rd Asian Wave & Tidal Energy Conference (2016)Google Scholar
  29. 29.
    Medina-Lopez, E., Allsop, W., Dimakopoulos, A., Bruce, T.: Conjectures on the failure of the OWC breakwater at Mutriku. In: Coastal Structures (2015)Google Scholar
  30. 30.
    Mendoza, E., Chávez, X., Alcérreca-Huerta, J.C., Silva, R.: Hydrodynamic behavior of a new wave energy convertor: The blow-jet. Ocean Engineering 106, 252–260 (2015)CrossRefGoogle Scholar
  31. 31.
    Mishra, V., Beatty, S., Buckham, B., Oshkai, P., Crawford, C.: Application of an arbitrary mesh interface for CFD simulation of an oscillating wave energy converter. In: Proc. 11th Eur. Wave Tidal Energy Conf, pp. 07B141–07B1410 (2015)Google Scholar
  32. 32.
    Palm, J.: Connecting OpenFOAM\(^{\textregistered }\) with matlab. Online: http://www.tfd.chalmers.se/hani/kurser/OSCFD2012/ (2012)
  33. 33.
    Palm, J., Eskilsson, C., Paredes, G.M., Bergdahl, L.: Coupled mooring analysis for floating wave energy converters using CFD: Formulation and validation. International Journal of Marine Energy 16, 83–99 (2016)CrossRefGoogle Scholar
  34. 34.
    Rafiee, A., Fiévez, J.: Numerical prediction of extreme loads on the CETO wave energy converter. 11th European Wave and Tidal Energy Conference (EWTEC). Nantes, France (2015)Google Scholar
  35. 35.
    Rajagopalan, K., Nihous, G.: Study of the force coefficients on plates using an open source numerical wave tank. Ocean Engineering 118, 187–203 (2016)CrossRefGoogle Scholar
  36. 36.
    Ransley, E., Greaves, D., Raby, A., Simmonds, D., Hann, M.: Survivability of wave energy converters using CFD. Renewable Energy 109, 235–247 (2017).  https://doi.org/10.1016/j.renene.2017.03.003CrossRefGoogle Scholar
  37. 37.
    Ransley, E., Greaves, D., Raby, A., Simmonds, D., Jakobsen, M., Kramer, M.: RANS-VOF modelling of the wavestar point absorber. Renewable Energy 109, 49–65 (2017).  https://doi.org/10.1016/j.renene.2017.02.079CrossRefGoogle Scholar
  38. 38.
    Ransley, E.J.: Survivability of wave energy converter and mooring coupled system using CFD. Ph.D. thesis, Plymouth University, UK (2015)Google Scholar
  39. 39.
    Ringwood, J.V., Bacelli, G., Fusco, F.: Energy-maximizing control of wave-energy converters: the development of control system technology to optimize their operation. IEEE Control Systems 34(5), 30–55 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Ringwood, J.V., Davidson, J., Giorgi, S.: Numerical Modeling of Wave Energy Converter: State-of-the-art techniques for single WEC and converter arrays, chap. Identifying models using recorded data. Elsevier (2016)Google Scholar
  41. 41.
    Schmitt, P., Asmuth, H., Elsäßer, B.: Optimising power take-off of an oscillating wave surge converter using high fidelity numerical simulations. International Journal of Marine Energy 16, 196–208 (2016)CrossRefGoogle Scholar
  42. 42.
    Schmitt, P., Elsaesser, B.: On the use of OpenFOAM\(^{\textregistered }\) to model oscillating wave surge converters. Ocean Engineering 108, 98–104 (2015)CrossRefGoogle Scholar
  43. 43.
    Simonetti, I., Cappietti, L., El Safti, H., Oumeraci, H.: 3d numerical modelling of oscillating water column wave energy conversion devices: current knowledge and OpenFOAM\(^{\textregistered }\) implementation. In: 1st International Conference on Renewable Energies Offshore (2014)Google Scholar
  44. 44.
    Simonetti, I., Cappietti, L., El Safti, H., Oumeraci, H.: Numerical modelling of fixed oscillating water column wave energy conversion devices: Toward geometry hydraulic optimization. In: ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, pp. V009T09A031–V009T09A031. American Society of Mechanical Engineers (2015)Google Scholar
  45. 45.
    Simonetti, I., Crema, I., Cappietti, L., El Safti, H., Oumeraci, H.: Site-specific optimization of an OWC wave energy converter in a Mediterranean area. In: Progress in Renewable Energies Offshore, pp. 343–350. CRC Press (2016)Google Scholar
  46. 46.
    Vyzikas, T., Deshoulieres, S., Giroux, O., Barton, M., Greaves, D.: Numerical Study of fixed Oscillatin Water Column with RANS-type two-phase CFD model. Renewable Energy 102, 294–305 (2017)CrossRefGoogle Scholar
  47. 47.
    Windt, C., Davidson, J., Schmitt, P., Ringwood, J.V.: Assessment of numerical wave makers. In: Proceedings of the 12th European wave and tidal energy conference (EWTEC 2017), Cork (2017)Google Scholar
  48. 48.
    Yu, Y.H., Li, Y.: Reynolds-averaged navier–stokes simulation of the heave performance of a two-body floating-point absorber wave energy system. Computers & Fluids 73, 104–114 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Josh Davidson
    • 1
    Email author
  • Christian Windt
    • 1
  • Giuseppe Giorgi
    • 1
  • Romain Genest
    • 1
  • John V. Ringwood
    • 1
  1. 1.Centre for Ocean Energy ResearchMaynooth UniversityMaynoothIreland

Personalised recommendations