Developmental Disorders of the Cerebellum and Neurotrophic Factors

  • Leila Pirmoradi
  • Ali Akbar Owji
  • Shahla ShojaeiEmail author
Part of the Contemporary Clinical Neuroscience book series (CCNE)


The cerebellum plays a main role in motor control and also in cognition features such as attention. Thus, a disturbance in cerebellar development results in neurological disorders such as attention deficit hyperactivity disorder (ADHD), congenital ataxia, and autism. Because neurotrophic factors have established effects on the growth, proliferation, differentiation, and arborization of neurons, their role in the neurodevelopmental disorders has been investigated for decades. Results of numerous studies have shown changes in serum or tissue neurotrophic factor levels, as well as alterations in their receptors and components of their signaling pathways in these types of the neurodevelopmental diseases. In this chapter, we provide a brief overview of neurotrophic factors and their role in cerebellar development and then focus on the roles of the neurotrophin system in developmental disorders and diseases of the cerebellum.


Cerebellar disorders Attention deficit hyperactivity disorder Congenital ataxia Nerve growth factor Neurotrophins Transforming growth factor beta p75 neurotrophin receptor 



Dr. Shala Shojaei Salary was supported by “Health Sciences Centre Foundation General Operating Grant” and MITACS Accelerate award.


  1. 1.
    Glickstein M, Strata P, Voogd J. Cerebellum: history. Neuroscience. 2009;162(3):549–59.PubMedGoogle Scholar
  2. 2.
    Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain J Neurol. 2006;129(Pt 2):290–2.CrossRefGoogle Scholar
  3. 3.
    Edgin JO, Clark CAC, Massand E, Karmiloff-Smith A. Building an adaptive brain across development: targets for neurorehabilitation must begin in infancy. Front Behav Neurosci. 2015;9(1662–5153 (Electronic)).Google Scholar
  4. 4.
    Rahimi-Balaei M, Afsharinezhad P, Bailey K, Buchok M, Yeganeh B, Marzban H. Embryonic stages in cerebellar afferent development. Cerebellum Ataxias. 2015;2(2053–8871 (Electronic)):7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Stoodley CJ. The cerebellum and neurodevelopmental disorders. Cerebellum. 2016;15(1):34–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Louie CM, Gleeson JG. Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum Mol Genet. 2005;14(2):R235–42.PubMedCrossRefGoogle Scholar
  7. 7.
    Ivry RB. Cerebellar involvement in clumsiness and other developmental disorders. Neural Plast. 2003;10(1–2):141–53.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Xifro X, Rodriguez-Alvarez J. Delineating the factors and cellular mechanisms involved in the survival of cerebellar granule neurons. Cerebellum. 2015;14(3):354–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Kapfhammer JP. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem. 2004;39(3):131–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Sajdel-Sulkowska EM, Xu M, Koibuchi N. Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum. 2009;8(3):366–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Damarjian TG, Craner MJ, Black JA, Waxman SG. Upregulation and colocalization of p75 and Nav1.8 in Purkinje neurons in experimental autoimmune encephalomyelitis. Neurosci Lett. 2004;369(3):186–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Sadakata T, Furuichi T. Developmentally regulated Ca2+−dependent activator protein for secretion 2 (CAPS2) is involved in BDNF secretion and is associated with autism susceptibility. Cerebellum. 2009;8(3):312–22.PubMedCrossRefGoogle Scholar
  13. 13.
    Ebendal T. Function and evolution in the NGF family and its receptors. J Neurosci Res. 1992;32(4):461–70.PubMedCrossRefGoogle Scholar
  14. 14.
    Lindsay RM, Alderson RF, Friedman B, Hyman C, Ip NY, Furth ME, et al. The neurotrophin family of NGF-related neurotrophic factors. Restor Neurol Neurosci. 1991;2(4):211–20.PubMedGoogle Scholar
  15. 15.
    Lewin GR, Barde YA. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289–317.PubMedCrossRefGoogle Scholar
  16. 16.
    Lewin GR. Neurotrophins and the specification of neuronal phenotype. Philos Trans R Soc Lond Ser B Biol Sci. 1996;351(1338):405–11.CrossRefGoogle Scholar
  17. 17.
    Sariola H. The neurotrophic factors in non-neuronal tissues. Cell Mol Life Sci: CMLS. 2001;58(8):1061–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Schuhmann B, Dietrich A, Sel S, Hahn C, Klingenspor M, Lommatzsch M, et al. A role for brain-derived neurotrophic factor in B cell development. J Neuroimmunol. 2005;163(1–2):15–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Fauchais AL, Lalloue F, Lise MC, Boumediene A, Preud’homme JL, Vidal E, et al. Role of endogenous brain-derived neurotrophic factor and sortilin in B cell survival. J Immunol. 2008;181(5):3027–38.PubMedCrossRefGoogle Scholar
  20. 20.
    Kalinowska-Lyszczarz A, Losy J. The role of neurotrophins in multiple sclerosis-pathological and clinical implications. Int J Mol Sci. 2012;13(10):13713–25.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14(1):7–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Gomes FC, Sousa Vde O, Romao L. Emerging roles for TGF-beta1 in nervous system development. Int J Dev Neurosci: Off J Int Soc Dev Neurosci. 2005;23(5):413–24.CrossRefGoogle Scholar
  23. 23.
    Roussa E, von Bohlen und Halbach O, Krieglstein K. TGF-beta in dopamine neuron development, maintenance and neuroprotection. Adv Exp Med Biol. 2009;651:81–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Subramaniam S, Strelau J, Unsicker K. GDNF prevents TGF-beta-induced damage of the plasma membrane in cerebellar granule neurons by suppressing activation of p38-MAPK via the phosphatidylinositol 3-kinase pathway. Cell Tissue Res. 2008;331(2):373–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Unsicker K, Krieglstein K. TGF-betas and their roles in the regulation of neuron survival. Adv Exp Med Biol. 2002;513:353–74.PubMedCrossRefGoogle Scholar
  26. 26.
    Bilgic A, Toker A, Isik U, Kilinc I. Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention-deficit/hyperactivity disorder. Eur Child Adolesc Psychiatry. 2016;55:S215.CrossRefGoogle Scholar
  27. 27.
    Tolbert DL, Bradley MW, Tolod EG, Torres-Aleman I, Clark BR. Chronic intraventricular infusion of glial cell line-derived neurotrophic factor (GDNF) rescues some cerebellar Purkinje cells from heredodegeneration. Exp Neurol. 2001;170(2):375–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Bickford PC, Bowenkamp K, Taglialatela G, Hoertig G, Granholm AC. GDNF improves cerebellar Purkinje neuron function in aged F344 rats. Microsc Res Tech. 2001;54(5):309–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Pasquin S, Sharma M, Gauchat JF. Ciliary neurotrophic factor (CNTF): new facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev. 2015;26(5):507–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Quartu M, Serra MP, Manca A, Follesa P, Lai ML, Del Fiacco M. Neurotrophin-like immunoreactivity in the human pre-term newborn, infant, and adult cerebellum. Int J Dev Neurosci: Off J Int Soc Dev Neurosci. 2003;21(1):23–33.CrossRefGoogle Scholar
  31. 31.
    Schaevitz LR, Moriuchi JM, Nag N, Mellot TJ, Berger-Sweeney J. Cognitive and social functions and growth factors in a mouse model of Rett syndrome. Physiol Behav. 2010;100(3):255–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Cohen-Cory S, Dreyfus CF, Black IB. Expression of high- and low-affinity nerve growth factor receptors by Purkinje cells in the developing rat cerebellum. Exp Neurol. 1989;105(1):104–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Koh S, Oyler GA, Higgins GA. Localization of nerve growth factor receptor messenger RNA and protein in the adult rat brain. Exp Neurol. 1989;106(3):209–21.PubMedCrossRefGoogle Scholar
  34. 34.
    Kalus I, Rohn S, Puvirajesinghe TM, Guimond SE, Eyckerman-Kolln PJ, Ten Dam G, et al. Sulf1 and Sulf2 differentially modulate heparan sulfate proteoglycan sulfation during postnatal cerebellum development: evidence for neuroprotective and neurite outgrowth promoting functions. PLoS One. 2015;10(10):e0139853.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tojo H, Takami K, Kaisho Y, Nakata M, Abe T, Shiho O, et al. Neurotrophin-3 is expressed in the posterior lobe of mouse cerebellum, but does not affect the cerebellar development. Neurosci Lett. 1995;192(3):169–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Florez-McClure ML, Linseman DA, Chu CT, Barker PA, Bouchard RJ, Le SS, et al. The p75 neurotrophin receptor can induce autophagy and death of cerebellar Purkinje neurons. J Neurosci. 2004;24(19):4498–509.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Larkfors L, Lindsay RM, Alderson RF. Characterization of the responses of Purkinje cells to neurotrophin treatment. J Neurochem. 1996;66(4):1362–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Angelucci F, De Bartolo P, Gelfo F, Foti F, Cutuli D, Bossu P, et al. Increased concentrations of nerve growth factor and brain-derived neurotrophic factor in the rat cerebellum after exposure to environmental enrichment. Cerebellum. 2009;8(4):499–506.PubMedCrossRefGoogle Scholar
  39. 39.
    Gelfo F, Cutuli D, Foti F, Laricchiuta D, De Bartolo P, Caltagirone C, et al. Enriched environment improves motor function and increases neurotrophins in hemicerebellar lesioned rats. Neurorehabil Neural Repair. 2011;25(3):243–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Santucci D, Kawano F, Ohira T, Terada M, Nakai N, Francia N, et al. Evaluation of gene, protein and neurotrophin expression in the brain of mice exposed to space environment for 91 days. PLoS One. 2012;7(7):e40112.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Sajdel-Sulkowska EM, Xu M, Koibuchi N. Cerebellar brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 expression in male and female rats is differentially affected by hypergravity exposure during discrete developmental periods. Cerebellum. 2009;8(4):454–62.PubMedCrossRefGoogle Scholar
  42. 42.
    Aref D, Moffatt CJ, Agnihotri S, Ramaswamy V, Dubuc AM, Northcott PA, et al. Canonical TGF-beta pathway activity is a predictor of SHH-driven medulloblastoma survival and delineates putative precursors in cerebellar development. Brain Pathol (Zurich, Switzerland). 2013;23(2):178–91.CrossRefGoogle Scholar
  43. 43.
    Roussel MF, Hatten ME. Cerebellum development and medulloblastoma. Curr Top Dev Biol. 2011;94:235–82.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Banaschewski T, Becker K, Scherag S, Franke B, Coghill D. Molecular genetics of attention-deficit/hyperactivity disorder: an overview. Eur Child Adolesc Psychiatry. 2010;19(3):237–57.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Tsai SJ. Attention-deficit hyperactivity disorder and brain-derived neurotrophic factor: a speculative hypothesis. Med Hypotheses. 2003;60(6):849–51.PubMedCrossRefGoogle Scholar
  46. 46.
    Lanktree M, Squassina A, Krinsky M, Strauss J, Jain U, Macciardi F, et al. Association study of brain-derived neurotrophic factor (BDNF) and LIN-7 homolog (LIN-7) genes with adult attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet: Off Publ Int SocPsychiatr Genet. 2008;147b(6):945–51.CrossRefGoogle Scholar
  47. 47.
    Cho SC, Kim HW, Kim BN, Kim JW, Shin MS, Chung S, et al. Gender-specific association of the brain-derived neurotrophic factor gene with attention-deficit/hyperactivity disorder. Psychiatry Inv. 2010;7(4):285–90.CrossRefGoogle Scholar
  48. 48.
    Bergman O, Westberg L, Lichtenstein P, Eriksson E, Larsson H. Study on the possible association of brain-derived neurotrophic factor polymorphism with the developmental course of symptoms of attention deficit and hyperactivity. Int J Neuropsychopharmacol/Off Sci J Coll Int Neuropsychopharmacologicum (CINP). 2011;14(10):1367–76.Google Scholar
  49. 49.
    Aureli A, Del Beato T, Sebastiani P, Marimpietri A, Melillo CV, Sechi E, et al. Attention-deficit hyperactivity disorder and intellectual disability: a study of association with brain-derived neurotrophic factor gene polymorphisms. Int J Immunopathol Pharmacol. 2010;23(3):873–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Kwon HJ, Ha M, Jin HJ, Hyun JK, Shim SH, Paik KC, et al. Association between BDNF gene polymorphisms and attention deficit hyperactivity disorder in Korean children. Genet Test Mol Biomarkers. 2015;19(7):366–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Hawi Z, Cummins TD, Tong J, Arcos-Burgos M, Zhao Q, Matthews N, et al. Rare DNA variants in the brain-derived neurotrophic factor gene increase risk for attention-deficit hyperactivity disorder: a next-generation sequencing study. Mol Psychiatry. 2017;22(4):580–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Park S, Kim BN, Kim JW, Jung YK, Lee J, Shin MS, et al. The role of the brain-derived neurotrophic factor genotype and parenting in early life in predicting externalizing and internalizing symptoms in children with attention-deficit hyperactivity disorder. Behav Brain Funct: BBF. 2014;10:43.PubMedCrossRefGoogle Scholar
  53. 53.
    Sanchez-Mora C, Ribases M, Ramos-Quiroga JA, Casas M, Bosch R, Boreatti-Hummer A, et al. Meta-analysis of brain-derived neurotrophic factor p.Val66Met in adult ADHD in four European populations. Am J Med Genet B Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet. 2010;153B(2):512–23.CrossRefGoogle Scholar
  54. 54.
    Zeni CP, Tramontina S, Aguiar BW, Salatino-Oliveira A, Pheula GF, Sharma A, et al. BDNF Val66Met polymorphism and peripheral protein levels in pediatric bipolar disorder and attention-deficit/hyperactivity disorder. Acta Psychiatr Scand. 2016;134(3):268–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Lee HJ, et al. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(8):1824–8.CrossRefGoogle Scholar
  56. 56.
    Shim SH, Hwangbo Y, Yoon HJ, Kwon YJ, Lee HY, Hwang JA, et al. Increased levels of plasma glial-derived neurotrophic factor in children with attention deficit hyperactivity disorder. Nord J Psychiatry. 2015;69(7):546–51.PubMedCrossRefGoogle Scholar
  57. 57.
    Scassellati C, Zanardini R, Tiberti A, Pezzani M, Valenti V, Effedri P, et al. Serum brain-derived neurotrophic factor (BDNF) levels in attention deficit-hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry. 2014;23(3):173–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Corominas-Roso M, Ramos-Quiroga JA, Ribases M, Sanchez-Mora C, Palomar G, Valero S, et al. Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. Int J Neuropsychopharmacol/Off Sci J Coll Int Neuropsychopharmacologicum (CINP). 2013;16(6):1267–75.Google Scholar
  59. 59.
    Syed Z, Dudbridge F, Kent L. An investigation of the neurotrophic factor genes GDNF, NGF, and NT3 in susceptibility to ADHD. Am J Med Genet B Neuropsychiatr Genet: Off Publ Int Soc Psychiatr Genet. 2007;144B(3):375–8.CrossRefGoogle Scholar
  60. 60.
    Sarter M, Gehring WJ, Kozak R. More attention must be paid: the neurobiology of attentional effort. Brain Res Rev. 2006;51(2):145–60.PubMedCrossRefGoogle Scholar
  61. 61.
    Guney E, Ceylan MF, Kara M, Tekin N, Goker Z, Senses Dinc G, et al. Serum nerve growth factor (NGF) levels in children with attention deficit/hyperactivity disorder (ADHD). Neurosci Lett. 2014;560(1872–7972 (Electronic)):107–11.PubMedCrossRefGoogle Scholar
  62. 62.
    Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012;13(8):537–51.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Dolen G, Sahin M. Editorial: essential pathways and circuits of autism pathogenesis. Front Neurosci. 2016;10(1662–4548 (Print)):182.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci. 2012;14(3):281–92.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Hampson DR, Blatt GJ. Autism spectrum disorders and neuropathology of the cerebellum. Front Neurosci. 2015;9(1662–4548 (Print)):420.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Tsai PT. Autism and cerebellar dysfunction: evidence from animal models. Semin Fetal Neonatal Med. 2016;21(5):349–55.PubMedCrossRefGoogle Scholar
  67. 67.
    Shevelkin AV, Ihenatu C, Pletnikov MV. Pre-clinical models of neurodevelopmental disorders: focus on the cerebellum. Rev Neurosci. 2014;25(2):177–94.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zocher M, Czub S, Schulte-Monting J, de La Torre JC, Sauder C. Alterations in neurotrophin and neurotrophin receptor gene expression patterns in the rat central nervous system following perinatal Borna disease virus infection. J Neurovirol. 2000;6(6):462–77.PubMedCrossRefGoogle Scholar
  69. 69.
    Nelson PG, Kuddo T, Song EY, Dambrosia JM, Kohler S, Satyanarayana G, et al. Selected neurotrophins, neuropeptides, and cytokines: developmental trajectory and concentrations in neonatal blood of children with autism or Down syndrome. Int J Dev Neurosci: Off J Int Dev Neurosci. 2006;24(1):73–80.CrossRefGoogle Scholar
  70. 70.
    Xu M, Sajdel-Sulkowska EM, Iwasaki T, Koibuchi N. Aberrant cerebellar neurotrophin-3 expression induced by lipopolysaccharide exposure during brain development. Cerebellum. 2013;12(3):316–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Gepner B, Feron F. Autism: a world changing too fast for a mis-wired brain? Neurosci Biobehav Rev. 2009;33(8):1227–42.PubMedCrossRefGoogle Scholar
  72. 72.
    Battaglia A. Sensory impairment in mental retardation: a potential role for NGF. Arch Ital Biol. 2011;149(2):193–203.PubMedGoogle Scholar
  73. 73.
    Halepoto DM, Bashir S, ALA L. Possible role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorder: current status. J Coll Physicians Surg Pak: JCPSP. 2014;24(4):274–8.PubMedGoogle Scholar
  74. 74.
    Das UN. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids. Nutrition (Burbank, Los Angeles County, Calif). 2013;29(10):1175–85.CrossRefGoogle Scholar
  75. 75.
    Sadakata T, Kakegawa W, Mizoguchi A, Washida M, Katoh-Semba R, Shutoh F, et al. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci. 2007;27(10):2472–82.PubMedCrossRefGoogle Scholar
  76. 76.
    Nickl-Jockschat T, Michel TM. The role of neurotrophic factors in autism. Mol Psychiatry. 2011;16(5):478–90.PubMedCrossRefGoogle Scholar
  77. 77.
    Ghiretti AE, Paradis S. Molecular mechanisms of activity-dependent changes in dendritic morphology: role of RGK proteins. Trends Neurosci. 2014;37(7):399–407.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Copf T. Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments. Neurosci Biobehav Rev. 2016;68:946–78.PubMedCrossRefGoogle Scholar
  79. 79.
    Berger-Sweeney J. Cognitive deficits in Rett syndrome: what we know and what we need to know to treat them. Neurobiol Learn Mem. 2011;96(4):637–46.PubMedCrossRefGoogle Scholar
  80. 80.
    Abbeduto L, Ozonoff S, Thurman AJ, McDuffie A, Hales R, Schweitzer J, Yudofsky S, et al. Neurodevelopmental disorders. Psychiatry. 6th ed. Arlington: The American Psychiatric Publishing Textbook of Psychiatry; 2015.Google Scholar
  81. 81.
    Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science. 2008;320(5880):1224–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Peddada S, Yasui DH, LaSalle JM. Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome. Hum Mol Genet. 2006;15(12):2003–14.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ben-Shachar S, Chahrour M, Thaller C, Shaw CA, Zoghbi HY. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet. 2009;18(13):2431–42.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Calamandrei G, Aloe L, Hajek J, Zappella M. Developmental profile of serum nerve growth factor levels in Rett complex. Annali dell’Istituto superiore di sanita. 2001;37(4):601–5.Google Scholar
  85. 85.
    Marmolino D, Manto M. Past, present and future therapeutics for cerebellar ataxias. Curr Neuropharmacol. 2010;8(1):41–61.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Laco MN, Oliveira CR, Paulson HL, Rego AC. Compromised mitochondrial complex II in models of Machado-Joseph disease. Biochim Biophys Acta. 2012;1822(2):139–49.PubMedCrossRefGoogle Scholar
  87. 87.
    Rahimi Balaei M, Jiao X, Ashtari N, Afsharinezhad P, Ghavami S, Marzban H. Cerebellar expression of the neurotrophin receptor p75 in naked-ataxia mutant mouse. Int J Mol Sci. 2016;17(1):115.PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Tan S, Wang RH, Niu HX, Shi CH, Mao CY, Zhang R, et al. Nerve growth factor for the treatment of spinocerebellar ataxia type 3: an open-label study. Chin Med J. 2015;128(3):291–4.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Jones J, Jaramillo-Merchan J, Bueno C, Pastor D, Viso-Leon M, Martinez S. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia. Neurobiol Dis. 2010;40(2):415–23.PubMedCrossRefGoogle Scholar
  90. 90.
    Qiao X, Hefti F, Knusel B, Noebels JL. Selective failure of brain-derived neurotrophic factor mRNA expression in the cerebellum of stargazer, a mutant mouse with ataxia. J Neurosci. 1996;16(2):640–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Takahashi M, Ishikawa K, Sato N, Obayashi M, Niimi Y, Ishiguro T, et al. Reduced brain-derived neurotrophic factor (BDNF) mRNA expression and presence of BDNF-immunoreactive granules in the spinocerebellar ataxia type 6 (SCA6) cerebellum. Neuropathol: Off J Jpn Soc Neuropathol. 2012;32(6):595–603.CrossRefGoogle Scholar
  92. 92.
    Vetreno RP, Hall JM, Savage LM. Alcohol-related amnesia and dementia: animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiol Learn Mem. 2011;96(4):596–608.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Harper C. The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? J Neuropathol Exp Neurol. 1998;57(2):101–10.PubMedCrossRefGoogle Scholar
  94. 94.
    Le Duc D, Spataru A, Ceanga M, Zagrean L, Schoneberg T, Toescu EC, et al. Developmental exposure to ethanol increases the neuronal vulnerability to oxygen-glucose deprivation in cerebellar granule cell cultures. Brain Res. 1614;2015:1–13.Google Scholar
  95. 95.
    Gonzalez-Burgos I, Alejandre-Gomez M. Cerebellar granule cell and Bergmann glial cell maturation in the rat is disrupted by pre- and post-natal exposure to moderate levels of ethanol. Int J Dev Neurosci: Off J Int Soc Dev Neurosci. 2005;23(4):383–8.CrossRefGoogle Scholar
  96. 96.
    Heaton MB, Moore DB, Paiva M, Madorsky I, Mayer J, Shaw G. The role of neurotrophic factors, apoptosis-related proteins, and endogenous antioxidants in the differential temporal vulnerability of neonatal cerebellum to ethanol. Alcohol Clin Exp Res. 2003;27(4):657–69.PubMedCrossRefGoogle Scholar
  97. 97.
    Davis MI. Ethanol-BDNF interactions: still more questions than answers. Pharmacol Ther. 2008;118(1):36–57.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Hill SY, Wang S, Carter H, Tessner K, Holmes B, McDermott M, et al. Cerebellum volume in high-risk offspring from multiplex alcohol dependence families: association with allelic variation in GABRA2 and BDNF. Psychiatry Res. 2011;194(3):304–13.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Shojaei S, Ghavami S, Panjehshahin MR, Owji AA. Effects of ethanol on the expression level of various BDNF mRNA isoforms and their encoded protein in the hippocampus of adult and embryonic rats. Int J Mol Sci. 2015;16(12):30422–37.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Heaton MB, Madorsky I, Paiva M, Siler-Marsiglio KI. Ethanol-induced reduction of neurotrophin secretion in neonatal rat cerebellar granule cells is mitigated by vitamin E. Neurosci Lett. 2004;370(1):51–4.PubMedCrossRefGoogle Scholar
  101. 101.
    Moore DB, Madorsky I, Paiva M, Barrow HM. Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: effects of neonatal exposure. J Neurobiol. 2004;60(1):114–26.PubMedCrossRefGoogle Scholar
  102. 102.
    Ge Y, Belcher SM, Light KE. Alterations of cerebellar mRNA specific for BDNF, p75NTR, and TrkB receptor isoforms occur within hours of ethanol administration to 4-day-old rat pups. Brain Res Dev Brain Res. 2004;151(1–2):99–109.PubMedCrossRefGoogle Scholar
  103. 103.
    Borghesani PR, Peyrin JM, Klein R, Rubin J, Carter AR, Schwartz PM, et al. BDNF stimulates migration of cerebellar granule cells. Development. 2002;129(6):1435–42.PubMedGoogle Scholar
  104. 104.
    Ohrtman JD, Stancik EK, Lovinger DM, Davis MI. Ethanol inhibits brain-derived neurotrophic factor stimulation of extracellular signal-regulated/mitogen-activated protein kinase in cerebellar granule cells. Alcohol (Fayetteville, NY). 2006;39(1):29–37.CrossRefGoogle Scholar
  105. 105.
    Li Z, Ding M, Thiele CJ, Luo J. Ethanol inhibits brain-derived neurotrophic factor-mediated intracellular signaling and activator protein-1 activation in cerebellar granule neurons. Neuroscience. 2004;126(1):149–62.PubMedCrossRefGoogle Scholar
  106. 106.
    Crews FT, Nixon K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol. 2009;44(2):115–27.PubMedCrossRefGoogle Scholar
  107. 107.
    Light KE, Ge Y, Belcher SM. Early postnatal ethanol exposure selectively decreases BDNF and truncated TrkB-T2 receptor mRNA expression in the rat cerebellum. Brain Res Mol Brain Res. 2001;93(1):46–55.PubMedCrossRefGoogle Scholar
  108. 108.
    Light KE, Brown DP, Newton BW, Belcher SM, Kane CJ. Ethanol-induced alterations of neurotrophin receptor expression on Purkinje cells in the neonatal rat cerebellum. Brain Res. 2002;924(1):71–81.PubMedCrossRefGoogle Scholar
  109. 109.
    Heaton MB, Mitchell JJ, Paiva M. Ethanol-induced alterations in neurotrophin expression in developing cerebellum: relationship to periods of temporal susceptibility. Alcohol Clin Exp Res. 1999;23(10):1637–42.PubMedGoogle Scholar
  110. 110.
    Dohrman DP, West JR, Pantazis NJ. Ethanol reduces expression of the nerve growth factor receptor, but not nerve growth factor protein levels in the neonatal rat cerebellum. Alcohol Clin Exp Res. 1997;21(5):882–93.PubMedCrossRefGoogle Scholar
  111. 111.
    Moore DB, Walker DW, Heaton MB. Neonatal ethanol exposure alters bcl-2 family mRNA levels in the rat cerebellar vermis. Alcohol Clin Exp Res. 1999;23(7):1251–61.PubMedCrossRefGoogle Scholar
  112. 112.
    Light KE, Belcher SM, Pierce DR. Time course and manner of Purkinje neuron death following a single ethanol exposure on postnatal day 4 in the developing rat. Neuroscience. 2002;114(2):327–37.PubMedCrossRefGoogle Scholar
  113. 113.
    Chen S, Charness ME. Ethanol disrupts axon outgrowth stimulated by netrin-1, GDNF, and L1 by blocking their convergent activation of Src family kinase signaling. J Neurochem. 2012;123(4):602–12.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70(6):473–507.PubMedCrossRefGoogle Scholar
  115. 115.
    Gericke CA, Schulte-Herbruggen O, Arendt T, Hellweg R. Chronic alcohol intoxication in rats leads to a strong but transient increase in NGF levels in distinct brain regions. J Neural Transm (Vienna). 2006;113(7):813–20.CrossRefGoogle Scholar
  116. 116.
    Firozan B, Goudarzi I, Elahdadi Salmani M, Lashkarbolouki T, Rezaei A, Abrari K. Estradiol increases expression of the brain-derived neurotrophic factor after acute administration of ethanol in the neonatal rat cerebellum. Eur J Pharmacol. 2014;732:1–11.PubMedCrossRefGoogle Scholar
  117. 117.
    McAlhany RE Jr, Miranda RC, Finnell RH, West JR. Ethanol decreases Glial-Derived Neurotrophic Factor (GDNF) protein release but not mRNA expression and increases GDNF-stimulated Shc phosphorylation in the developing cerebellum. Alcohol Clin Exp Res. 1999;23(10):1691–7.PubMedCrossRefGoogle Scholar
  118. 118.
    McAlhany RE Jr, West JR, Miranda RC. Glial-derived neurotrophic factor (GDNF) prevents ethanol-induced apoptosis and JUN kinase phosphorylation. Brain Res Dev Brain Res. 2000;119(2):209–16.PubMedCrossRefGoogle Scholar
  119. 119.
    Wang J, Wechsler-Reya RJ. The role of stem cells and progenitors in the genesis of medulloblastoma. Exp Neurol. 2014;260(1090–2430 (Electronic)):69–73.PubMedCrossRefGoogle Scholar
  120. 120.
    Marchetti D, Mrak RE, Paulsen DD, Sinnappah-Kang ND. Neurotrophin receptors and heparanase: a functional axis in human medulloblastoma invasion. J Exp Clin Cancer Res: CR. 2007;26(1):5–23.PubMedGoogle Scholar
  121. 121.
    Antonelli A, Lenzi L, Nakagawara A, Osaki T, Chiaretti A, Aloe L. Tumor suppressor proteins are differentially affected in human ependymoblastoma and medulloblastoma cells exposed to nerve growth factor. Cancer Investig. 2007;25(2):94–101.CrossRefGoogle Scholar
  122. 122.
    Fumagalli F, Moro F, Caffino L, Orru A, Cassina C, Giannotti G, et al. Region-specific effects on BDNF expression after contingent or non-contingent cocaine i.v. self-administration in rats. Int J Neuropsychopharmacol/Off Sci J Coll Int Neuropsychopharmacologicum (CINP). 2013;16(4):913–8.Google Scholar
  123. 123.
    Ohta T, Watanabe T, Katayama Y, Kurihara J, Yoshino A, Nishimoto H, et al. TrkA expression is associated with an elevated level of apoptosis in classic medulloblastomas. Neuropathol: Off J Jpn Soc Neuropathol. 2006;26(3):170–7.CrossRefGoogle Scholar
  124. 124.
    Chou TT, Trojanowski JQ, Lee VM. A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma. J Biol Chem. 2000;275(1):565–70.PubMedCrossRefGoogle Scholar
  125. 125.
    Costa B, Kean MJ, Ast V, Knight JD, Mett A, Levy Z, et al. STK25 protein mediates TrkA and CCM2 protein-dependent death in pediatric tumor cells of neural origin. J Biol Chem. 2012;287(35):29285–9.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Li C, Macdonald JI, Hryciw T, Meakin SO. Nerve growth factor activation of the TrkA receptor induces cell death, by macropinocytosis, in medulloblastoma Daoy cells. J Neurochem. 2010;112(4):882–99.PubMedCrossRefGoogle Scholar
  127. 127.
    Valderrama X, Rapin N, Verge VM, Misra V. Zhangfei induces the expression of the nerve growth factor receptor, trkA, in medulloblastoma cells and causes their differentiation or apoptosis. J Neuro-Oncol. 2009;91(1):7–17.CrossRefGoogle Scholar
  128. 128.
    Gate D, Danielpour M, Rodriguez J Jr, Kim GB, Levy R, Bannykh S, et al. T-cell TGF-beta signaling abrogation restricts medulloblastoma progression. Proc Natl Acad Sci U S A. 2014;111(33):E3458–66.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Jockers-Scherubl MC, Rentzsch J, Danker-Hopfe H, Radzei N, Schurer F, Bahri S, et al. Adequate antipsychotic treatment normalizes serum nerve growth factor concentrations in schizophrenia with and without cannabis or additional substance abuse. Neurosci Lett. 2006;400(3):262–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Niitsu T, Iyo M, Hashimoto K. Sigma-1 receptor agonists as therapeutic drugs for cognitive impairment in Neuropsychiatric diseases. Curr Pharm Design. 2012;18(7):875–83.CrossRefGoogle Scholar
  131. 131.
    Desmond JE, Fiez JA. Neuroimaging studies of the cerebellum: language, learning and memory. Trends Cogn Sci. 1998;2(9):355–62.PubMedCrossRefGoogle Scholar
  132. 132.
    Fatemi SH, Folsom TD, Rooney RJ, Thuras PD. Expression of GABAA alpha2-, beta1- and epsilon-receptors are altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression and bipolar disorder. Transl Psychiatry. 2013;3:e303.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Picard H, Amado I, Mouchet-Mages S, Olie JP, Krebs MO. The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull. 2008;34(1):155–72.PubMedCrossRefGoogle Scholar
  134. 134.
    Shoval G, Weizman A. The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol. 2005;15(3):319–29.CrossRefGoogle Scholar
  135. 135.
    Aloe L, Iannitelli A, Angelucci F, Bersani G, Fiore M. Studies in animal models and humans suggesting a role of nerve growth factor in schizophrenia-like disorders. Behav Pharmacol. 2000;11(3–4):235–42.PubMedCrossRefGoogle Scholar
  136. 136.
    Xiong P, Zeng Y, Wu Q, Han Huang DX, Zainal H, Xu X, et al. Combining serum protein concentrations to diagnose schizophrenia: a preliminary exploration. J Clin Psychiatry. 2014;75(8):e794–801.PubMedCrossRefGoogle Scholar
  137. 137.
    Martinotti G, Di Iorio G, Marini S, Ricci V, De Berardis D, Di Giannantonio M. Nerve growth factor and brain-derived neurotrophic factor concentrations in schizophrenia: a review. J Biol Regul Homeost Agents. 2012;26(3):347–56.PubMedGoogle Scholar
  138. 138.
    Lee BH, Kim YK. Increased plasma brain-derived neurotropic factor, not nerve growth factor-Beta, in schizophrenia patients with better response to risperidone treatment. Neuropsychobiology. 2009;59(1):51–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Martinez-Cengotitabengoa M, MacDowell KS, Alberich S, Diaz FJ, Garcia-Bueno B, Rodriguez-Jimenez R, et al. BDNF and NGF signalling in early phases of psychosis: relationship with inflammation and response to antipsychotics after 1 year. Schizophr Bull. 2016;42(1):142–51.PubMedGoogle Scholar
  140. 140.
    Paz RD, Andreasen NC, Daoud SZ, Conley R, Roberts R, Bustillo J, et al. Increased expression of activity-dependent genes in cerebellar glutamatergic neurons of patients with schizophrenia. Am J Psychiatry. 2006;163(10):1829–31.PubMedCrossRefGoogle Scholar
  141. 141.
    Parikh V, Evans DR, Khan MM, Mahadik SP. Nerve growth factor in never-medicated first-episode psychotic and medicated chronic schizophrenic patients: possible implications for treatment outcome. Schizophr Res. 2003;60(2–3):117–23.PubMedCrossRefGoogle Scholar
  142. 142.
    Xiong P, Zeng Y, Zhu Z, Tan D, Xu F, Lu J, et al. Reduced NGF serum levels and abnormal P300 event-related potential in first episode schizophrenia. Schizophr Res. 2010;119(1–3):34–9.PubMedCrossRefGoogle Scholar
  143. 143.
    Xiong P, Zeng Y, Wan J, Xiaohan DH, Tan D, Lu J, et al. The role of NGF and IL-2 serum level in assisting the diagnosis in first episode schizophrenia. Psychiatry Res. 2011;189(1):72–6.PubMedCrossRefGoogle Scholar
  144. 144.
    Zakharyan R, Atshemyan S, Gevorgyan A, Boyajyan A. Nerve growth factor and its receptor in schizophrenia. BBA Clin. 2014;1(2214–6474 (Electronic)):24–9.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Becker A, Grecksch G, Schwegler H, Roskoden T. Expression of mRNA of neurotrophic factors and their receptors are significantly altered after subchronic ketamine treatment. Med Chem. 2008;4(3):256–63.PubMedCrossRefGoogle Scholar
  146. 146.
    Angelucci F, Ricci V, Pomponi M, Conte G, Mathe AA, Tonali PA, et al. Chronic heroin and cocaine abuse is associated with decreased serum concentrations of the nerve growth factor and brain-derived neurotrophic factor. J Psychopharmacol. 2007;21(8):820–5.PubMedCrossRefGoogle Scholar
  147. 147.
    Alleva E, Cirulli F, Calamandrei G, Rondinini C, Capirci O, Aloe L, et al. Williams syndrome. Ann Ist Super Sanita. 1999;35(2):211–9.PubMedGoogle Scholar
  148. 148.
    Calamandrei G, Alleva E, Cirulli F, Queyras A, Volterra V, Capirci O, Vicari S, et al. Serum NGF levels in children and adolescents with either Williams syndrome or Down syndrome. Dev Med Child Neurol. 2000;42(11):746–50. (0012–1622 (Print)).PubMedCrossRefGoogle Scholar
  149. 149.
    Millen KJ, Gleeson JG. Cerebellar development and disease. Curr Opin Neurobiol. 2008;18(1):12–9.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Stoodley CJ, Stein JF. Cerebellar function in developmental dyslexia. Cerebellum. 2013;12(2):267–76.PubMedCrossRefGoogle Scholar
  151. 151.
    Wang ZY, Miki T, Lee KY, Yokoyama T, Kusaka T, Sumitani K, et al. Short-term exposure to ethanol causes a differential response between nerve growth factor and brain-derived neurotrophic factor ligand/receptor systems in the mouse cerebellum. Neuroscience. 2010;165(2):485–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leila Pirmoradi
    • 1
  • Ali Akbar Owji
    • 2
  • Shahla Shojaei
    • 3
    • 4
    Email author
  1. 1.Department of Physiology and Pharmacology, Faculty of MedicineKurdistan University of Medical SciencesSanandajIran
  2. 2.Research Center for Psychiatry and Behavioral SciencesShiraz University of Medical SciencesShirazIran
  3. 3.Department of Human Anatomy and Cell Sciences, Faculty of Health Science, College of MedicineUniversity of ManitobaWinnipegCanada
  4. 4.Department of Biochemistry, School of Pharmacy and Pharmaceutical SciencesIsfahan University of Medical SciencesIsfahanIran

Personalised recommendations