Advertisement

Cerebellar Developmental Disorders and Cerebellar Nuclei

  • Hong-Ting Prekop
  • Alessio Delogu
  • Richard J. T. WingateEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

While significant progress has been made in the last 10 years in understanding the development of cerebellar nuclei, they remain a relatively less well-studied cell group in the brain. In this chapter, we review the anatomical organisation of the cerebellar nuclei and their connections to highlight outstanding developmental questions. We then describe recent progress in dissecting the lineages of cerebellar neurons that may point to new understanding of their involvement in congenital clinical disorders.

Keywords

Dentate nucleus Interposed nucleus Fastigial nucleus Inferior olive Purkinje cell Rhombic lip Ventricular zone Ptf1a Atoh1 Pax2 Nuclear transitory zone 

References

  1. 1.
    Saccozzi A. Sul nucleo dentato del cervelletto. Riv Sper Fren Med Legale. 1887;13:93–9.Google Scholar
  2. 2.
    Lugaro E. Sulla struttura del nucleo dentato del cervelletto nell’uomo. Monit Zool Ital. 1895;6:5–12.Google Scholar
  3. 3.
    Chan-Palay V. Cerebellar dentate nucleus: organization, cytology and transmitters. Berlin: Springer; 1977. 548 p.CrossRefGoogle Scholar
  4. 4.
    Chan-Palay V. A light microscope study of the cytology and organization of neurons in the simple mammalian nucleus lateralis: columns and swirls. Z Anat Entwicklungsgeschichte. 1973;141(2):125–50. PubMed PMID: 4769549.CrossRefGoogle Scholar
  5. 5.
    Chan-Palay V. Cytology and organization in the nucleus lateralis of the cerebellum: the projections of neurons and their processes into afferent axon bundles. Z Anat Entwicklungsgeschichte. 1973;141(2):151–9. PubMed PMID: 4769550.CrossRefGoogle Scholar
  6. 6.
    De Zeeuw C, Van Alphen A, Hawkins R, Ruigrok T. Climbing fibre collaterals contact neurons in the cerebellar nuclei that provide a GABAergic feedback to the inferior olive. Neuroscience. 1997;80(4):981–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Fredette BJ, Mugnaini E. The GABAergic cerebello-olivary projection in the rat. Anat Embryol. 1991;184(3):225–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Teune TM, van der Burg J, de Zeeuw CI, Voogd J, Ruigrok TJH. Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol. 1998;392(2):164–78.PubMedCrossRefGoogle Scholar
  9. 9.
    Uusisaari MY, Knöpfel T. Diversity of neuronal elements and circuitry in the cerebellar nuclei. Cerebellum. 2012;11(2):420–1.PubMedCrossRefGoogle Scholar
  10. 10.
    Houck BD, Person AL. Cerebellar loops: a review of the nucleocortical pathway. Cerebellum. 2014;13(3):378–85.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Uusisaari M, Knöpfel T. GlyT2 neurons in the lateral cerebellar nucleus. Cerebellum. 2010;9(1):42–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Uusisaari M, Obata K, Knöpfel T. Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. J Neurophysiol. 2007;97(1):901–11.PubMedCrossRefGoogle Scholar
  13. 13.
    Uusisaari M, Knöpfel T. Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum. 2011;10(4):637–46.PubMedCrossRefGoogle Scholar
  14. 14.
    De Zeeuw CI, Berrebi AS. Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci. 1995;7(11):2322–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du Lac S. Glycinergic projection neurons of the cerebellum. J Neurosci. 2009;29(32):10104–10.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chen S, Hillman DE. Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol. 1993;22(2):81–91.PubMedCrossRefGoogle Scholar
  17. 17.
    Cerminara NL, Lang EJ, Sillitoe RV, Apps R. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci. 2015;16(2):79–93.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Giaquinta G, Casabona A, Smecca G, Bosco G, Perciavalle V. Cortical control of cerebellar dentato-rubral and dentato-olivary neurons. Neuroreport. 1999;10(14):3009–13.PubMedCrossRefGoogle Scholar
  19. 19.
    Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D. Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol. 2009;512(2):282–304.PubMedCrossRefGoogle Scholar
  20. 20.
    D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circ. 2013;6:116.Google Scholar
  21. 21.
    Ruigrok TJH. Ins and outs of cerebellar modules. Cerebellum. 2011;10(3):464–74.PubMedCrossRefGoogle Scholar
  22. 22.
    Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res. 2000;124:141–72.PubMedCrossRefGoogle Scholar
  23. 23.
    Uusisaari M, De Schutter E. The mysterious microcircuitry of the cerebellar nuclei. J Physiol. 2011;589(Pt 14):3441–57.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2011;481(7382):502–5. PubMed PMID: 22198670. Pubmed Central PMCID: 3268051.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Heck DH, De Zeeuw CI, Jaeger D, Khodakhah K, Person AL. The neuronal code(s) of the cerebellum. J Neurosci: Off J Soc Neurosci. 2013;33(45):17603–9. PubMed PMID: 24198351. Pubmed Central PMCID: 3818542.CrossRefGoogle Scholar
  26. 26.
    Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Cogn Sci. 1998;2(9):307–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Sugihara I, Shinoda Y. Molecular, topographic, and functional organization of the cerebellar nuclei: analysis by three-dimensional mapping of the olivonuclear projection and aldolase C labeling. J Neurosci: Off J Soc Neurosci. 2007;27(36):9696–710.CrossRefGoogle Scholar
  28. 28.
    Raman IM, Gustafson AE, Padgett D. Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci. 2000;20(24):9004–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Thach W. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968;31(5):785–97.PubMedCrossRefGoogle Scholar
  30. 30.
    Morishita W, Sastry BR. Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J Neurophysiol. 1996;76(1):59–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD. Learning-induced plasticity in deep cerebellar nucleus. J Neurosci. 2006;26(49):12656–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Zheng N, Raman IM. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum. 2010;9(1):56–66.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Armstrong D, Edgley S. Discharges of nucleus interpositus neurones during locomotion in the cat. J Physiol. 1984;351:411.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Armstrong D, Edgley S. Discharges of Purkinje cells in the paravermal part of the cerebellar anterior lobe during locomotion in the cat. J Physiol. 1984;352:403.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    McDevitt CJ, Ebner TJ, Bloedel JR. Changes in the responses of cerebellar nuclear neurons associated with the climbing fiber response of Purkinje cells. Brain Res. 1987;425(1):14–24.PubMedCrossRefGoogle Scholar
  36. 36.
    McDevitt CJ, Ebner TJ, Bloedel JR. Relationships between simultaneously recorded Purkinje cells and nuclear neurons. Brain Res. 1987;425(1):1–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2012;481(7382):502–5.CrossRefGoogle Scholar
  38. 38.
    Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10(9):670–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Shinoda Y, Sugihara I, Wu H, Sugiuchi Y. The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. Prog Brain Res. 1999;124:173–86.CrossRefGoogle Scholar
  40. 40.
    Wu H, Sugihara I, Shinoda Y. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol. 1999;411(1):97–118.PubMedCrossRefGoogle Scholar
  41. 41.
    Blenkinsop TA, Lang EJ. Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity. J Neurosci. 2011;31(41):14708–20.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sugihara I, Wu H, Shinoda Y. Morphology of single olivocerebellar axons labeled with biotinylated dextran amine in the rat. J Comp Neurol. 1999;414(2):131–48.PubMedCrossRefGoogle Scholar
  43. 43.
    Person AL, Raman IM. Synchrony and neural coding in cerebellar circuits. Front Neural Circ. 2012;6:97.Google Scholar
  44. 44.
    Sultan F, König T, Möck M, Thier P. Quantitative organization of neurotransmitters in the deep cerebellar nuclei of the Lurcher mutant. J Comp Neurol. 2002;452(4):311–23.PubMedCrossRefGoogle Scholar
  45. 45.
    Aizenman CD, Huang EJ, Linden DJ. Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei. J Neurophysiol. 2003;89(4):1738–47.PubMedCrossRefGoogle Scholar
  46. 46.
    Matsuno H, Kudoh M, Watakabe A, Yamamori T, Shigemoto R, Nagao S. Distribution and structure of synapses on medial vestibular nuclear neurons targeted by cerebellar Flocculus Purkinje cells and vestibular nerve in mice: light and electron microscopy studies. PLoS One. 2016;11(10):e0164037.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chan-Palay V. Afferent axons and their relations with neurons in the nucleus lateralis of the cerebellum: a light microscopic study. Z Anat Entwicklungsgeschichte. 1973;142(1):1–21. PubMed.CrossRefGoogle Scholar
  48. 48.
    Chan-Palay V. On the identification of the afferent axon terminals in the nucleus lateralis of the cerebellum. An electron microscope study. Z Anat Entwicklungsgeschichte. 1973;142(2):149–86. PubMed.CrossRefGoogle Scholar
  49. 49.
    Wingate RJ, Hatten ME. The role of the rhombic lip in avian cerebellum development. Development. 1999;126(20):4395–404. PubMed PMID: 10498676. Epub 1999/09/28. eng.PubMedGoogle Scholar
  50. 50.
    Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development. 1996;122(12):3785–97.PubMedGoogle Scholar
  51. 51.
    Zervas M, Millet S, Ahn S, Joyner AL. Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1. Neuron. 2004;43(3):345–57. PubMed.PubMedCrossRefGoogle Scholar
  52. 52.
    Wingate R. Math-Map(ic)s. Neuron. 2005;48(1):1–4. PubMed.PubMedCrossRefGoogle Scholar
  53. 53.
    Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, et al. Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47(2):201–13. PubMed.PubMedCrossRefGoogle Scholar
  54. 54.
    His W. Die entwickelung des menschlichen rautenhirns vom ende des ersten bis zum beginn des dritten monats. I. Verlängertes Mark. Abh Kön Sächs Ges d Wiss Mat Phys Kl. 1890;29:1–74.Google Scholar
  55. 55.
    Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, et al. Math1 is essential for genesis of cerebellar granule neurons. Nature. 1997;390(6656):169–72.PubMedCrossRefGoogle Scholar
  56. 56.
    Machold R, Fishell G. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron. 2005;48(1):17–24. PubMed.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang VY, Rose MF, Zoghbi HY. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron. 2005;48(1):31–43. PubMed.PubMedCrossRefGoogle Scholar
  58. 58.
    Altman J, Bayer SA. Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol. 1978;179(1):23–48.PubMedCrossRefGoogle Scholar
  59. 59.
    Hashimoto M, Mikoshiba K. Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci. 2003;23(36):11342–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Elsen G, Juric-Sekhar G, Daza R, Hevner RF. Development of cerebellar nuclei. In: Manto M, Gruol D, Schmahmann J, Koibuchi N, Rossi F, editors. Handbook of cerebellum and cerebellum disorders. Heidelberg: Springer; 2013. p. 179–205.CrossRefGoogle Scholar
  61. 61.
    Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T, et al. Specification of spatial identities of cerebellar neuron progenitors by ptf1a and atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci: Off J Soc Neurosci. 2014;34(14):4786–800. PubMed.CrossRefGoogle Scholar
  62. 62.
    Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, et al. Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A. 2007;104(12):5193–8. PubMed Pubmed Central PMCID: 1829285. Epub 2007/03/16. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Altman J, Bayer SA. Embryonic development of the rat cerebellum. II. Translocation and regional distribution of the deep neurons. J Comp Neurol. 1985;231(1):27–41. PubMed PMID: 3968227. Epub 1985/01/01. eng.PubMedCrossRefGoogle Scholar
  64. 64.
    Morales D, Hatten ME. Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J Neurosci: Off J Soc Neurosci. 2006;26(47):12226–36. PubMed PMID: 17122047.CrossRefGoogle Scholar
  65. 65.
    Yeung J, Ha TJ, Swanson DJ, Goldowitz D. A novel and multivalent role of Pax6 in cerebellar development. J Neurosci: Off J Soc Neurosci. 2016;36(35):9057–69. PubMed PMID: 27581449. Pubmed Central PMCID: 5005719.CrossRefGoogle Scholar
  66. 66.
    Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJ. Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development. 2014;141(2):389–98. PubMed PMID: 24381197. Epub 2014/01/02. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Green MJ, Wingate RJ. Developmental origins of diversity in cerebellar output nuclei. Neural Dev. 2014;9(1):1. PubMed PMID: 24405572. Pubmed Central PMCID: 3929244.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wilson LJ, Wingate RJ. Temporal identity transition in the avian cerebellar rhombic lip. Dev Biol. 2006;297(2):508–21. PubMed PMID: 16806151. Epub 2006/06/30. eng.PubMedCrossRefGoogle Scholar
  69. 69.
    Gilthorpe JD, Papantoniou EK, Chedotal A, Lumsden A, Wingate RJ. The migration of cerebellar rhombic lip derivatives. Development. 2002;129(20):4719–28. PubMed PMID: 12361964. Epub 2002/10/04. eng.PubMedGoogle Scholar
  70. 70.
    Alcantara S, Ruiz M, De Castro F, Soriano E, Sotelo C. Netrin 1 acts as an attractive or as a repulsive cue for distinct migrating neurons during the development of the cerebellar system. Development. 2000;127(7):1359–72. PubMed PMID: 10704383. Epub 2000/03/08. eng.PubMedGoogle Scholar
  71. 71.
    Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, et al. Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci: Off J Soc Neurosci. 2006;26(11):3066–76. PubMed PMID: 16540585. Epub 2006/03/17. eng.CrossRefGoogle Scholar
  72. 72.
    Sudarov A, Turnbull RK, Kim EJ, Lebel-Potter M, Guillemot F, Joyner AL. Ascl1 genetics reveals insights into cerebellum local circuit assembly. J Neurosci: Off J Soc Neurosci. 2011;31(30):11055–69.CrossRefGoogle Scholar
  73. 73.
    Florio M, Leto K, Muzio L, Tinterri A, Badaloni A, Croci L, et al. Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development. Development. 2012;139(13):2308–20.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zordan P, Croci L, Hawkes R, Consalez GG. Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn. 2008;237(6):1726–35.PubMedCrossRefGoogle Scholar
  75. 75.
    Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ. The roof plate regulates cerebellar cell-type specification and proliferation. Development. 2006;133(15):2793–804.PubMedCrossRefGoogle Scholar
  76. 76.
    Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, et al. Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol. 2010;338(2):202–14. PubMed PMID: 20004188. Epub 2009/12/17. eng.PubMedCrossRefGoogle Scholar
  77. 77.
    Leto K, Rolando C, Rossi F. The genesis of cerebellar GABAergic neurons: fate potential and specification mechanisms. Front Neuroanat. 2012;6:6.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lundell T, Zhou Q, Doughty M. Neurogenin1 expression in cell lineages of the cerebellar cortex in embryonic and postnatal mice. Dev Dyn. 2009;238(12):3310–25.PubMedCrossRefGoogle Scholar
  79. 79.
    Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol. 2007;23:549–77.PubMedCrossRefGoogle Scholar
  80. 80.
    Maricich SM, Herrup K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J Neurobiol. 1999;41(2):281–94.PubMedCrossRefGoogle Scholar
  81. 81.
    Leto K, Carletti B, Williams IM, Magrassi L, Rossi F. Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci: Off J Soc Neurosci. 2006;26(45):11682–94.CrossRefGoogle Scholar
  82. 82.
    Obana EA, Lundell TG, Kevin JY, Radomski KL, Zhou Q, Doughty ML. Neurog1 genetic inducible fate mapping (GIFM) reveals the existence of complex spatiotemporal cyto-architectures in the developing cerebellum. Cerebellum. 2015;14(3):247–63.PubMedCrossRefGoogle Scholar
  83. 83.
    Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, et al. Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun. 2014;5:3337. PubMed PMID: 24535035.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Butts T, Chaplin N, Wingate RJ. Can clues from evolution unlock the molecular development of the cerebellum? Mol Neurobiol. 2011;43(1):67–76. PubMed PMID: 21174175. Epub 2010/12/22. eng.PubMedCrossRefGoogle Scholar
  85. 85.
    Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci. 2015;8:450.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hashimoto M, Hibi M. Development and evolution of cerebellar neural circuits. Develop Growth Differ. 2012;54(3):373–89. PubMed PMID: 22524607. Epub 2012/04/25. eng.CrossRefGoogle Scholar
  87. 87.
    Murakami T, Morita Y. Morphology and distribution of the projection neurons in the cerebellum in a teleost, Sebastiscus marmoratus. J Comp Neurol. 1987;256(4):607–23.PubMedCrossRefGoogle Scholar
  88. 88.
    Ebbesson SO, Campbell CB. On the organization of cerebellar efferent pathways in the nurse shark (Ginglymostoma cirratum). J Comp Neurol. 1973;152(3):233–54. PubMed PMID: 4130103.PubMedCrossRefGoogle Scholar
  89. 89.
    Butler A, Hodos W. Comparative vertebrate neuroanatomy: evolution and adaptation. New York: Wiley-Liss; 1996. 514 p.Google Scholar
  90. 90.
    Arends JJ, Zeigler HP. Organization of the cerebellum in the pigeon (Columba livia): II. Projections of the cerebellar nuclei. J Comp Neurol. 1991;306(2):245–72. PubMed PMID: 1711054. Epub 1991/04/08. eng.PubMedCrossRefGoogle Scholar
  91. 91.
    Goodman DC, Hallett RE, Welch RB. Patterns of localization in the cerebellar corticonuclear projections of albino rat. J Comp Neurol. 1963;121:51–67. PubMed PMID: 14051845.PubMedCrossRefGoogle Scholar
  92. 92.
    Korneliussen HK. On the morphology and subdivision of the cerebellar nuclei of the rat. J Hirnforsch. 1968;10(2):109–22. PubMed PMID: 4181301.PubMedGoogle Scholar
  93. 93.
    Wingate RJT. The rhombic lip and early cerebellar development. Curr Opin Neurobiol. 2001;11(1):82–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Golden J, Harding B. Pathology and genetics. Developmental neuropathology. Basel: ISN Neuropath Press; 2004.Google Scholar
  95. 95.
    Lu H, Yang B, Jaeger D. Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies. Front Neural Circ. 2016;10:21.Google Scholar
  96. 96.
    Müller CC, Nguyen TH, Ahlemeyer B, Meshram M, Santrampurwala N, Cao S, et al. PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress. Dis Model Mech. 2011;4(1):104–19.PubMedCrossRefGoogle Scholar
  97. 97.
    Powers JM, Moser HW, Moser AB, Upshur JK, Bradford BF, Pai SG, et al. Fetal cerebrohepatorenal (Zellweger) syndrome: dysmorphic, radiologic, biochemical, and pathologic findings in four affected fetuses. Hum Pathol. 1985;16(6):610–20.PubMedCrossRefGoogle Scholar
  98. 98.
    Volpe JJ, Adams RD. Cerebro-hepato-renal syndrome of Zellweger: an inherited disorder of neuronal migration. Acta Neuropathol. 1972;20(3):175–98.PubMedCrossRefGoogle Scholar
  99. 99.
    Harding B, Boyd S. Intractable seizures from infancy can be associated with dentato-olivary dysplasia. J Neurol Sci. 1991;104(2):157–65.PubMedCrossRefGoogle Scholar
  100. 100.
    Martland T, Harding BN, Morton RE, Young I. Dentato-olivary dysplasia in sibs: an autosomal recessive disorder? J Med Genet. 1997;34(12):1021–3.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Joubert M, Eisenring J-J, Robb JP, Andermann F. Familial agenesis of the cerebellar vermis: a syndrome of episodic hyperpnea, abnormal eye movements, ataxia and retardation. American Academy of Neurology meeting, 1968, Chicago, US; Read in part at the aforementioned conference; 1968 1999: BC Decker.Google Scholar
  102. 102.
    Millen KJ, Gleeson JG. Cerebellar development and disease. Curr Opin Neurobiol. 2008;18(1):12–9. PubMed PMID: 18513948. Pubmed Central PMCID: 2474776. Epub 2008/06/03. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yachnis AT, Rorke LB. Cerebellar and brainstem development: an overview in relation to Joubert syndrome. J Child Neurol. 1999;14(9):570–3. PubMed PMID: 10488901. Epub 1999/09/17. eng.PubMedCrossRefGoogle Scholar
  104. 104.
    Pasquier L, Marcorelles P, Loget P, Pelluard F, Carles D, Perez M-J, et al. Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol. 2009;117(2):185–200.PubMedCrossRefGoogle Scholar
  105. 105.
    Utsunomiya H, Takano K, Ogasawara T, Hashimoto T, Fukushima T, Okazaki M. Rhombencephalosynapsis: cerebellar embryogenesis. Am J Neuroradiol. 1998;19(3):547–9.PubMedGoogle Scholar
  106. 106.
    Yachnis AT. Rhombencephalosynapsis with massive hydrocephalus: case report and pathogenetic considerations. Acta Neuropathol. 2002;103(3):301–4.PubMedCrossRefGoogle Scholar
  107. 107.
    Coulter CL, Leech RW, Brumback RA, Schaefer GB. Cerebral abnormalities in thanatophoric dysplasia. Childs Nerv Syst. 1991;7(1):21–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Hevner RF. The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol. 2005;110(3):208–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Miller E, Blaser S, Shannon P, Widjaja E. Brain and bone abnormalities of thanatophoric dwarfism. Am J Roentgenol. 2009;192(1):48–51.CrossRefGoogle Scholar
  110. 110.
    Namavar Y, Barth PG, Baas F. Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis. 2011;6(1):1.CrossRefGoogle Scholar
  111. 111.
    Rudnik-Schöneborn S, Barth PG, Zerres K. Pontocerebellar hypoplasia. Am J Med Genet C: Semin Med Genet. Wiley Online Library; 2014.Google Scholar
  112. 112.
    Jeong J-W, Chugani DC, Behen ME, Tiwari VN, Chugani HT. Altered white matter structure of the dentatorubrothalamic pathway in children with autistic spectrum disorders. Cerebellum. 2012;11(4):957–71.PubMedCrossRefGoogle Scholar
  113. 113.
    Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, et al. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017;16:283.CrossRefGoogle Scholar
  114. 114.
    Yip J, Soghomonian JJ, Blatt GJ. Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: an in situ hybridization study. Autism Res. 2009;2(1):50–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Pugh JR, Raman IM. Mechanisms of potentiation of mossy fiber EPSCs in the cerebellar nuclei by coincident synaptic excitation and inhibition. J Neurosci. 2008;28(42):10549–60.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hong-Ting Prekop
    • 1
  • Alessio Delogu
    • 2
  • Richard J. T. Wingate
    • 1
    Email author
  1. 1.Medical Research Council Centre for Neurodevelopmental DisordersKing’s College LondonLondonUK
  2. 2.Wohl InstituteKing’s College LondonLondonUK

Personalised recommendations