Advertisement

Cerebellar Transplantation: A Potential Model to Study Repair and Development of Neurons and Circuits in the Cerebellum

  • Constantino SoteloEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Neuronal transplantation offers the advantages of a unique experimental situation that allows the in vivo study of cell-to-cell interactions between embryonic and adult neural partners. This approach was developed to study the possibility to replace missing neurons in pathological situations. In our model, the cerebellum with spontaneous mutations, Purkinje cell degeneration, nervous, Lurcher (pcd, nr, Lc) affecting Purkinje cells (PCs), this substitution occurs. Embryonic PCs can trigger in adult Bergmann fibers molecular changes required for migration and ultimate synaptic integration of the former, although this integration is not complete because the full contingent of efferent projections failed to establish. The grafting approach evolved as a suitable tool that, through heterotopic and heterochronic transplants, allowed the investigation of the role of cellular and molecular microenvironment on the acquisition of neuronal phenotypes and on the differential ability to regenerate amputated axons of specific populations of central neurons. Finally, new approaches developed in the twenty-first century, with the advent of stem cells and cell reprogramming, are mentioned and some of the earliest cerebellar trials with these pluripotent cells discussed.

Keywords

Transplants Embryonic and adult cell interactions Neuronal replacement Axon regeneration Stem cells Lineage reprogramming 

References

  1. 1.
    His W. Unsere Körperform und das physiologische Problem ihrer Entstehung. Briefe an einen befreundeten Naturforscher. Leipzig: F.C.W. Vogel; 1874.CrossRefGoogle Scholar
  2. 2.
    His W. Die Entwicklung des menschlichen Gehirns während der ersten Monate. Leipzig: Hirzel; 1904.Google Scholar
  3. 3.
    Ramón y Cajal S. Estudios sobre la degeneración y regeneración del sistema nervioso. Tomo I: Degeneración y regeneración de los nervios. Madrid: Imprenta Hijos de Nicolas Moya; 1913.Google Scholar
  4. 4.
    Bizzozero G. Accrescimento e rigenerazione nell’organismo. Archivio per le Scienze Mediche. 1894;18:245–87.Google Scholar
  5. 5.
    Brody H. Organization of the cerebral cortex. III, a study of aging in the human cerebral cortex. J Comp Neurol. 1955;102:511–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Eccles JC. The plasticity of the mammalian central nervous system with special reference to new growth in response to lesions. Naturwissenschaften. 1976;63:8–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Haug H, Knebel G, Mecke E, Orün C, Sass NL. The aging of cortical cytoarchitectonics in the light of stereological investigations. Prog Clin Biol Res. 1981;59B:193–7.PubMedGoogle Scholar
  8. 8.
    Haug H. History of neuromorphometry. J Neurosci Methods. 1986;18:1–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997;278:412–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Salthouse TA. When does age-related cognitive decline begin? Neurobiol Aging. 2009;30:507–14.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Morrison JH, Baxter MG. The aging cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci. 2012;13:240–50.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Ramón y Cajal S. Textura del Sistema Nervioso del Hombre y de los Vertebrados, vol. 2. Madrid: Nicolas Moya; 1904. p. 1150.Google Scholar
  13. 13.
    Bain A. Mind and body. The theories of their relation. New York: D Appleton & Comp; 1873.Google Scholar
  14. 14.
    Tanzi E. I fatti e le induzioni dell’odierna istologia del sistema nervoso. Rivista Sperimentale di Freniatria e Medicina Legale delle Aliennazioni Mentali. 1893;19:419–72.Google Scholar
  15. 15.
    Lugaro E. Modern problems in psychiatry (English translation of the book published in 1906 with the title: I Problemi Odierni della Psichiatria, Milan, Sandron). Manchester: The University Press; 1913.Google Scholar
  16. 16.
    Berlucchi G, Buchtel HA. Neuronal plasticity: historical roots and evolution of meaning. Exp Brain Res. 2009;192:307–19.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sotelo C, Dusart I. Structural plasticity in adult nervous system: an historic perspective. In: Junnier MP, Kernie SG, editors. Endogenous stem cell-based brain remodeling in mammals. New York: Springer; 2014. p. 5–41.CrossRefGoogle Scholar
  18. 18.
    Messier B, Leblond CP, Smart IH. Presence of DNA synthesis and mitosis in the brain of young adult mice. Exp Cell Res. 1958;14:224–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Allen E. The cessation of mitosis in the central nervous system of the albino rat (after birth). J Comp Neurol. 1912;22:547–68.Google Scholar
  20. 20.
    Altman J. Are new neurons formed in the brains of adult mammals? Science. 1962;135:1127–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Altman J. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec. 1963;145:573–91.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kaplan MS. Neurogenesis in the 3-month-old rat visual cortex. J Comp Neurol. 1981;195:323–38.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–10.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    van Praag H, Kempermann G, Gage FH. Running increases cell proliferation in the adult mouse dentate gyrus. Nat Neurosci. 1999;2:266–70.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703–16.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM. Becoming a new neuron in the adult olfactory bulb. Nat Neurosci. 2003;6:507–18.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberg S, Saksida LM, Barker RA, Gage FH, Bussey TJ. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325:210–3.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lepousez G, Nissant A, Lledo PM. Adult neurogenesis and the future of the rejuvenating brain circuits. Neuron. 2015;86:387–401.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sotelo C, Alvarado-Mallart RM. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegenerative ataxia. Proc Natl Acad Sci USA. 1986;83:1135–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mobley P, Greengard P. Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex. Proc Natl Acad Sci USA. 1985;82:945–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Björklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD. Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 1980;199:307–33.PubMedCrossRefGoogle Scholar
  32. 32.
    Sotelo C. Molecular layer interneurons of the cerebellum: development and morphological aspects. Cerebellum. 2015;14:534–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Ramón y Cajal S. The Croonian lecture: la fine structure des centres nerveux. Proc Roy Soc (Lond). 1894;55:444–68.CrossRefGoogle Scholar
  34. 34.
    Mullen RJ, Eicher EM, Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA. 1976;73:208–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science. 2002;295:1904–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Harris A, Morgan JI, Pecot M, Soumare A, Osborne A, Soares HD. Regenerating motor neurons express Nna1, a novel ATP/GTP-binding protein related to zinc carbopeptidases. Mol Cell Neurosci. 2000;16:578–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Sotelo C, Alvarado-Mallart RM. Cerebellar grafting as a tool to analyze new aspects of cerebellar development and plasticity. In: Llinás R, Sotelo C, editors. The cerebellum revisited. New York: Springer; 1991. p. 84–115.Google Scholar
  38. 38.
    Dumesnil-Bousez N, Sotelo C. Partial reconstruction of the adult Lurcher cerebellar circuitry by neural grafting. Neuroscience. 1993;55:1–21.PubMedCrossRefGoogle Scholar
  39. 39.
    Wassef M, Simons J, Tappaz ML, Sotelo C. Non-Purkinje cell GABAergic innervation of the deep cerebellar nuclei: a quantitative immunocytochemical study in C57BL and in Purkinje cell degeneration mutant mice. Brain Res. 1986;399:125–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Dusart I, Guenet JL, Sotelo C. Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum. 2006;5:163–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Ghetti B, Norton J, Triarhou LC. Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice. J Comp Neurol. 1987;260:409–22.PubMedCrossRefGoogle Scholar
  42. 42.
    Armengol JA, Sotelo C, Angaut P, Alvarado-Mallart RM. Organization of host afferents to cerebellar grafts implanted into kainate lesioned cerebellum in adult rats. Hodological evidence for the specificity of host-graft interactions. Eur J Neurosci. 1989;1:75–93.PubMedCrossRefGoogle Scholar
  43. 43.
    Rossi F, Strata P. Reciprocal trophic interactions in the adult climbing fibre-Purkinje cell system. Prog Neurobiol. 1995;47:341–69.PubMedGoogle Scholar
  44. 44.
    Triarhou LC, Norton J, Alyea C, Ghetti B. A quantitative study of the granule cells in the Purkinje cell degeneration (pcd) mutant. Ann Neurol. 1985;18:146. abstractGoogle Scholar
  45. 45.
    Triarhou LC, Ghetti B. Monoaminergic nerve terminals in the cerebellar cortex of Purkinje cell degeneration mutant mice: fine structural integrity and modification of cellular environs following loss of Purkinje and granule cells. Neuroscience. 1986;18:795–807.PubMedCrossRefGoogle Scholar
  46. 46.
    Sotelo C, Alvarado-Mallart RM. Reconstruction of the defective cerebellar circuit in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience. 1987;20:1–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Gardette R, Alvarado-Mallart RM, Crepel F, Sotelo C. Electrophysiological demonstration of a synaptic integration of transplanted Purkinje cells in the cerebellum of the adult Purkinje cell degeneration mutant mouse. Neuroscience. 1988;24:777–89.PubMedCrossRefGoogle Scholar
  48. 48.
    Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res. 1975;94:19–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse. Philosophical transactions of the Royal Society of London B. Biol Sci. 1977;281:1–28.CrossRefGoogle Scholar
  50. 50.
    Friedel RH, Kerjan G, Rayburn H, Schüller U, Sotelo C, Tessier-Lavigne M, Chédotal A. Plexin-B2 controls the development of cerebellar granule cells. J Neurosci. 2007;27:3921–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Hawkes R, Gravel C. The modular cerebellum. Prog Neurobiol. 1991;36:309–27.PubMedCrossRefGoogle Scholar
  52. 52.
    Wassef M, Zanetta JP, Brehier A, Sotelo C. Transient biochemical compartmentalization of Purkinje cells during early cerebellar development. Dev Biol. 1985;111:129–37.PubMedCrossRefGoogle Scholar
  53. 53.
    Marzban H, Chung S, Watanabe M, Hawkes R. Phospholipase Cβ4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol. 2007;502:857–71.PubMedCrossRefGoogle Scholar
  54. 54.
    Sotelo C, Wassef M. Cerebellar development: afferent organization and Purkinje cell heterogeneity. Philosophical transactions of the Royal Society London B. Biol Sci. 1991;331:307–13.CrossRefGoogle Scholar
  55. 55.
    Rouse RV, Sotelo C. Grafts of dissociated cerebellar cells containing Purkinje cell precursors organize into zebrin I defined compartment. Exp Brain Res. 1990;82:401–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Wassef M, Sotelo C, Thomasset M, Granholm A-C, Leclerc N, Rafrafi J, Hawkes R. Expression of compartmentation antigen zebrin-I in cerebellar transplants. J Comp Neurol. 1990;294:223–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Mason CA, Gregory E. Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons. J Neurosci. 1984;4:1715–35.PubMedCrossRefGoogle Scholar
  58. 58.
    Keep M, Alvarado-Mallart RM, Sotelo C. New insight on the factors orienting the axonal outgrowth of grafted Purkinje cells in the pcd cerebellum. Dev Neurosci. 1992;14:153–65.PubMedCrossRefGoogle Scholar
  59. 59.
    Carletti B, Williams IM, Leto K, Nakajima K, Magrassi L, Rossi F. Time constraints and positional cues in the developing cerebellum regulate Purkinje cell placement in the cortical architecture. Dev Biol. 2008;317:147–60.PubMedCrossRefGoogle Scholar
  60. 60.
    Sotelo C, Alvarado-Mallart RM. Embryonic and adult neurons interact to allow Purkinje cell replacement in mutant cerebellum. Nature. 1987;227:421–3.CrossRefGoogle Scholar
  61. 61.
    Gardette R, Crepel F, Alvarado-Mallart RM, Sotelo C. Fate of grafted embryonic Purkinje cells in the cerebellum of the adult “Purkinje cell degeneration” mutant mouse. II. Development of synaptic responses: an in vitro study. J Comp Neurol. 1990. 1990;295:188–96.PubMedCrossRefGoogle Scholar
  62. 62.
    Sotelo C, Alvarado-Mallart RM, Gardette R, Crepel F. Fate of grafted Purkinje cells in the cerebellum of the adult “Purkinje cell degeneration” mutant mouse. I. Development of reciprocal graft-host interactions. J Comp Neurol. 1990. 1990;295:165–87.PubMedCrossRefGoogle Scholar
  63. 63.
    Sotelo C, Rossi F. Purkinje cell migration and differentiation. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer Science+Business Media; 2013. p. 147–78.CrossRefGoogle Scholar
  64. 64.
    Sotelo C, Alvarado-Mallart RM, Frain M, Vernet M. Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci. 1994;14:124–33.PubMedCrossRefGoogle Scholar
  65. 65.
    Hockfield S, McKay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci. 1985;5:3310–28.PubMedCrossRefGoogle Scholar
  66. 66.
    Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60:585–95.PubMedCrossRefGoogle Scholar
  67. 67.
    Caporaso L. Sulla rigenerazione del midollo spinale della coda dei tritoni. Ernst Ziegler’s Beiträge. 1887;5:67–98.Google Scholar
  68. 68.
    Lorente de Nó R. La regeneración de la médula espinal en las larvas de batracio. Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid. 1921;19:147–83.Google Scholar
  69. 69.
    Hooker D. Spinal cord regeneration in the young rainbow fish, lebistes reticulatus. J Comp Neurol. 1932;56:277–97.CrossRefGoogle Scholar
  70. 70.
    Tello F. La influencia de1 neurotropismo en la regeneración de los centros nerviosos. Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid. 1911;9:123–59.Google Scholar
  71. 71.
    McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci. 1991;11:3398–411.PubMedCrossRefGoogle Scholar
  72. 72.
    Caroni P, Schwab ME. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite outgrowth and fibroblast spreading. J Cell Biol. 1988;106:1281–8.PubMedCrossRefGoogle Scholar
  73. 73.
    Dusart I, Sotelo C. Lack of Purkinje cell loss in adult rat cerebellum following protracted axotomy: degenerative changes and regenerative attempts of the severed axons. J Comp Neurol. 1994;347:211–32.PubMedCrossRefGoogle Scholar
  74. 74.
    Dusart I, Ghoumari A, Wehrlé R, Morel MP, Bouslama-Oueghlani L, Camand E, Sotelo C. Cell death and axon regeneration of Purkinje cells after axotomy: challenges of classical hypotheses of axon regeneration. Brain Res Rev. 2005;49:300–16.PubMedCrossRefGoogle Scholar
  75. 75.
    Rossi F, Gianola S, Corvetti L. The strange case of Purkinje cell axon regeneration and plasticity. Cerebellum. 2006;5:174–82.PubMedCrossRefGoogle Scholar
  76. 76.
    Dusart I, Morel MP, Wehrlé R, Sotelo C. Late axonal sprouting of injured Purkinje cells and its temporal correlation with permissive changes in the glial scar. J Comp Neurol. 1999;408:399–418.PubMedCrossRefGoogle Scholar
  77. 77.
    Rossi F, Jankovski A, Sotelo C. Differential regenerative response of Purkinje cell and inferior olivary axons confronted with embryonic grafts: environmental cues versus intrinsic neuronal determinants. J Comp Neurol. 1995;359:663–77.PubMedCrossRefGoogle Scholar
  78. 78.
    Wehrlé R, Caroni P, Sotelo C, Dusart I. Role of GAP-43 in mediating the responsiveness of cerebellar and precerebellar neurons to axotomy. Eur J Neurosci. 2001;13:857–70.PubMedCrossRefGoogle Scholar
  79. 79.
    Buffo A, Fronte M, Oestreicher AB, Rossi F. Degenerative phenomena and reactive modifications of the adult rat inferior olivary neurons following axotomy and disconnection from their targets. Neuroscience. 1998;85:587–604.PubMedCrossRefGoogle Scholar
  80. 80.
    Sugar O, Gerard RW. Spinal cord regeneration in the rat. J Neurophysiol. 1940;3:1–19.CrossRefGoogle Scholar
  81. 81.
    Puchala E, Windle WF. The possibility of structural and functional restitution after spinal cord injury. A review. Exp Neurol. 1977;55:1–42.PubMedCrossRefGoogle Scholar
  82. 82.
    Dusart I, Airaksinen MD, Sotelo C. Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci. 1997;17:3710–26.PubMedCrossRefGoogle Scholar
  83. 83.
    Bravin M, Savio T, Strata P, Rossi F. Olivocerebellar axon regeneration and target reinnervation following dissociated Schwann cell grafts in surgically injured cerebella of adult rats. Eur J Neurosci. 1997;9:2634–49.PubMedCrossRefGoogle Scholar
  84. 84.
    Gianola S, Rossi F. Long-term injured Purkinje cells are competent for terminal arbor growth, but remain unable to sustain stem axon regeneration. Exp Neurol. 2002;176:25–40.PubMedCrossRefGoogle Scholar
  85. 85.
    Morel MP, Dusart I, Sotelo C. Sprouting of adult Purkinje cell axons in lesioned mouse cerebellum: “non-permissive” versus “permissive” environment. J Neurocytol. 2002;31:633–47.PubMedCrossRefGoogle Scholar
  86. 86.
    Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 2004;7:269–77.PubMedCrossRefGoogle Scholar
  87. 87.
    Filli L, Schwab ME. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury. Neural Regen Res. 2015;10:509–13.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Gage FH, Ray I, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci. 1995;18:159–92.PubMedCrossRefGoogle Scholar
  89. 89.
    Bae J-S, Han HS, Youn D-H, Carter JE, Modo M, Schuchman EH, Jin HK. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells. 2007;25:1307–16.PubMedCrossRefGoogle Scholar
  90. 90.
    Li J, Imitola J, Snyder EY, Sidman RL. Neural stem cells rescue nervous Purkinje neurons by restoring molecular homeostasis of tissue plasminogen activator and downstream targets. J Neurosci. 2006;26:7839–48.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ahmad I, Hunter RE, Flax JD, Evan Y, Snyder EY, Erickson RP. Neural stem cell implantation extends life in Niemann-Pick C1 mice. J Appl Genet. 2007;48:269–72.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Cao Q-1Y, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Whittemore SR. Pluripotent stem cells engrafted in the normal or lesioned adult rat spinal cord are restricted to a glial cell lineage. Exp Neurol. 2001;167:48–58.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005;8:723–9.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Klein C, Butt SJ, Machold RP, Johnson JE, Fishell G. Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development. 2005;132:4497–508.PubMedCrossRefGoogle Scholar
  95. 95.
    Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol. 1962;4:256–73.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Lujan E, Wernig M. The many roads to Rome: induction of neural precursor cells from fibroblasts. Curr Opin Genet Dev. 2012;22:517–22.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, Walker D, Zhang WR, Kreitzer AC, Huang Y. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell. 2012;11:100–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons be defined factors. Nature. 2010;463:1035–41.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Declercq J, Sheshadri P, Verfaillie CM, Kumar A. Zic3 enhances the generation of mouse induced pluripotent stem cells. Stem Cells Dev. 2013;22:2017–25.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Aruga J, Yokota N, Hashimoto M, Furuichi T, Fukuda M, Mikoshiba K. A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J Neurochem. 1994;63:1880–90.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Das GD, Altman J. Transplanted precursors of nerve cells: their fate in the cerebellums of young rats. Science. 1971;173:637–8.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Rosario CM, Yandava BD, Kosaras B, Zurakowski D, Sidman RL, Snyder EY. Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development. 1997;124:4213–24.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Su H-L, Muguruma K, Matsuo-Takasaki M, Kengaku M, Watanabe K, Sasai Y. Generation of cerebellar neuron precursors from embryonic stem cells. Dev Biol. 2006;290:287–96.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ross ME, Fletcher C, Mason CA, Hatten ME, Heintz N. Meander tail reveals a discrete developmental unit in the mouse cerebellum. Proc Natl Acad Sci USA. 1990;87:4189–92.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CJ. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell. 1992;68:33–51.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Chen KA, Lanuto D, Zheng T, Steindler DA. Transplantation of embryonic and adult neural stem cells in the granuloprival cerebellum of the weaver mutant mouse. Stem Cells. 2009;27:1625–34.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Tailor J, Kittapa R, Leto K, Gates M, Borel M, Paulsen O, Spitzer S, Karadottir RT, Rossi F, Falk A, Smith A. Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency. J Neurosci. 2013;33:12407–22.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Zhu T, Tang H, Shen Y, Tang Q, Chen L, Wang Z, Zhou P, Xu F, Zhu J. Transplantation of human induced cerebellar granular-like cells improves motor functions in a novel mouse model of cerebellar ataxia. Am J Transl Res. 2016;8:705–18.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Sun R, Zhao K, Shen R, Cai L, Yang X, Kuang Y, Mao J, Huang F, Wang Z, Fei J. Inducible and reversible regulation of endogenous gene in mouse. Nucleic Acids Res. 2012;40(21):e166.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Verbeek DS, van Warrenburg BPC. Genetics of the dominant ataxias. Semin Neurol. 2011;31:461–9.PubMedCrossRefGoogle Scholar
  112. 112.
    Tao O, Shimazaki T, Okada Y, Naka H, Kohda K, Yuzaki M, Mizusawa H, Okano H. Efficient generation of mature cerebellar Purkinje cells from mouse embryonic stem cells. J Neurosci Res. 2010;88:234–47.PubMedCrossRefGoogle Scholar
  113. 113.
    Muguruma K, Nishiyama A, Ono Y, Miyawaki H, Mizuhara E, Hori S, Kakizuka A, Obata K, Yanagawa Y, Hirano T, Sasai Y. Ontogeny-recapitulating generation and tissue integration of ES cell-derived Purkinje cells. Nat Neurosci. 2010;13:1171–80.PubMedCrossRefGoogle Scholar
  114. 114.
    Muguruma K, Sasai Y. In vitro recapitulation of neural development using embryonic stem cells: from neurogenesis to histogenesis. Develop Growth Differ. 2012;54:349–57.CrossRefGoogle Scholar
  115. 115.
    Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y. Ptf1a, a HLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron. 2005;47:201–13.PubMedCrossRefGoogle Scholar
  116. 116.
    Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY. Math1 is essential for genesis of cerebellar granule neurons. Nature. 1997;390:169–72.PubMedCrossRefGoogle Scholar
  117. 117.
    Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, Sasai Y, Ono Y. Purkinje cell originate from cerebellar ventricular zone progenitors positive for Neph3 and E-caherin. Dev Biol. 2010;338:202–14.PubMedCrossRefGoogle Scholar
  118. 118.
    Minaki Y, Nakatani T, Mizuhara E, Inoue T, Ono Y. Identification of a novel transcriptional co-repressor, Corl2, as a cerebellar Purkinje cell–selective marker. Gene Expr Patterns. 2008;8:418–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.INSERM UMR S968Institut de la VisionParisFrance
  2. 2.Université Pierre et Marie Curie, Sorbonne UniversitésParisFrance
  3. 3.UMR 7210, CNRSParisFrance
  4. 4.Instituto de Neurociencias de la Universidad Miguel Hernández–Consejo Superior de Investigaciones CientíficasSan Juan de AlicanteSpain

Personalised recommendations