Advertisement

Clinical Aspects of the Inherited Cerebellar Malformations

  • Asghar MarzbanEmail author
  • Mohammad Vafaee-shahi
  • Kamran Azarkhish
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Inherited cerebellar malformations cause lifelong disability and are not well studied in the newborns because there is a lack of appropriate clinical examination tools. Recently, inherited cerebellar malformations have been investigated using emerging advanced neuroimaging technology such as MRI, which revealed many cerebellar developmental disorders. These malformations cause impairments that involve motor and non-motor functions. Cerebellar hypoplasia, Dandy–Walker syndrome, Joubert syndrome, pontocerebellar hypoplasia, and rhombencephalosynapsis are examples of cerebellar malformations. In this chapter we will focus on cerebellar malformations that have been reported using characteristic symptoms and signs. The current approach for evaluation of the affected patients, differential diagnosis, and management will be discussed.

Keywords

Cerebellar imaging Cerebellar disorder Cerebellar hypoplasia Dandy–Walker syndrome Joubert syndrome Pontocerebellar hypoplasia Rhombencephalosynapsis 

References

  1. 1.
    Bolduc ME, Limperopoulos C. Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review. Dev Med Child Neurol. 2009;51(4):256–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Allen G, et al. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275(5308):1940–3.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.PubMedCrossRefGoogle Scholar
  4. 4.
    Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res. 1991;44(2):113–28.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hutchinson S, et al. Cerebellar volume of musicians. Cereb Cortex. 2003;13(9):943–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bhatia MS, Saha R, Gautam P. Cerebellar cognitive affective syndrome: a case report. Prim Care Companion CNS Disord. 2016;18(2). doi: 10.4088/PCC.15l01851
  7. 7.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.PubMedCrossRefGoogle Scholar
  8. 8.
    Chang C, Siao SW. Cerebellar cognitive affective syndrome: attention deficit-hyperactivity disorder episode of adolescent with cerebellar atrophy in a psychiatric ward. Kaohsiung J Med Sci. 2016;32(1):52–4.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Marien P, et al. Developmental coordination disorder: disruption of the cerebello-cerebral network evidenced by SPECT. Cerebellum. 2010;9(3):405–10.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Marko MK, et al. Behavioural and neural basis of anomalous motor learning in children with autism. Brain. 2015;138(Pt 3):784–97.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Salman MS, Tsai P. The role of the pediatric cerebellum in motor functions, cognition, and behavior: a clinical perspective. Neuroimaging Clin N Am. 2016;26(3):317–29.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Mothersill O, Knee-Zaska C, Donohoe G. Emotion and theory of mind in schizophrenia-investigating the role of the cerebellum. Cerebellum. 2016;15(3):357–68.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Minichino A, et al. The role of cerebellum in unipolar and bipolar depression: a review of the main neurobiological findings. Riv Psichiatr. 2014;49(3):124–31.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Schutter DJ. A cerebellar framework for predictive coding and homeostatic regulation in depressive disorder. Cerebellum. 2016;15(1):30–3.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Phillips JR, et al. The cerebellum and psychiatric disorders. Front Public Health. 2015;3:66.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Barkovich AJ, Millen KJ, Dobyns WB. A developmental and genetic classification for midbrain-hindbrain malformations. Brain. 2009;132(Pt 12):3199–230.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Abd-El-Barr MM, Strong CI, Groff MW. Chiari malformations: diagnosis, treatments and failures. J Neurosurg Sci. 2014;58(4):215–21.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Tubbs RS, et al. The pediatric Chiari I malformation: a review. Childs Nerv Syst. 2007;23(11):1239–50.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Marin-Padilla M, Marin-Padilla TM. Morphogenesis of experimentally induced Arnold-Chiari malformation. J Neurol Sci. 1981;50(1):29–55.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Wang J, et al. Acquired Chiari malformation and syringomyelia secondary to space-occupying lesions: a systematic review. World Neurosurg. 2016.Google Scholar
  21. 21.
    Fisahn C, et al. The Chiari 3.5 malformation: a review of the only reported case. Childs Nerv Syst. 2016;32(12):2317–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Boyles AL, et al. Phenotypic definition of Chiari type I malformation coupled with high-density SNP genome screen shows significant evidence for linkage to regions on chromosomes 9 and 15. Am J Med Genet A. 2006;140(24):2776–85.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Victorio MC, Khoury CK. Headache and Chiari I malformation in children and adolescents. Semin Pediatr Neurol. 2016;23(1):35–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ejarque I, et al. Arnold-Chiari malformation in Noonan syndrome and other syndromes of the RAS/MAPK pathway. Rev Neurol. 2015;60(9):408–12.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Yu F, et al. A new case of complete primary cerebellar agenesis: clinical and imaging findings in a living patient. Brain. 2015;138(Pt 6):e353.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Poretti A, Boltshauser E, Doherty D. Cerebellar hypoplasia: differential diagnosis and diagnostic approach. Am J Med Genet C: Semin Med Genet. 2014;166C(2):211–26.CrossRefGoogle Scholar
  27. 27.
    Wilkins RH. Natural history of intracranial vascular malformations: a review. Neurosurgery. 1985;16(3):421–30.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Raybaud CA, Strother CM, Hald JK. Aneurysms of the vein of Galen: embryonic considerations and anatomical features relating to the pathogenesis of the malformation. Neuroradiology. 1989;31(2):109–28.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Rao VR, Mathuriya SN. Pediatric aneurysms and vein of Galen malformations. J Pediatr Neurosci. 2011;6(Suppl 1):S109–17.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Jones BV, et al. Vein of Galen aneurysmal malformation: diagnosis and treatment of 13 children with extended clinical follow-up. AJNR Am J Neuroradiol. 2002;23(10):1717–24.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Marzban H, et al. Cellular commitment in the developing cerebellum. Front Cell Neurosci. 2014;8:450.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Millet S, et al. The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development. 1996;122(12):3785–97.PubMedGoogle Scholar
  33. 33.
    Millen KJ, et al. Neurogenetics of the cerebellar system. J Child Neurol. 1999;14(9):574–81; discussion 581–2.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Eddison M, et al. Segmental identity and cerebellar granule cell induction in rhombomere 1. BMC Biol. 2004;2:14.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Chizhikov VV, et al. The roof plate regulates cerebellar cell-type specification and proliferation. Development. 2006;133(15):2793–804.PubMedCrossRefGoogle Scholar
  36. 36.
    Basson MA, Wingate RJ. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences. Front Neuroanat. 2013;7:29.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Vermeer S, et al. Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG-Ia) with normal routine CDG screening. J Neurol. 2007;254(10):1356–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Turkmen S, et al. Cerebellar hypoplasia, with quadrupedal locomotion, caused by mutations in the very low-density lipoprotein receptor gene. Eur J Hum Genet. 2008;16(9):1070–4.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pearson T, et al. An intronic mutation in DKC1 in an infant with Hoyeraal-Hreidarsson syndrome. Am J Med Genet A. 2008;146A(16):2159–61.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    des Portes V, et al. Specific clinical and brain MRI features in mentally retarded patients with mutations in the Oligophrenin-1 gene. Am J Med Genet A. 2004;124A(4):364–71.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Sellick GS, et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet. 2004;36(12):1301–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Jaeken J, Matthijs G. Congenital disorders of glycosylation: a rapidly expanding disease family. Annu Rev Genomics Hum Genet. 2007;8:261–78.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Tentler D, et al. Deletion including the oligophrenin-1 gene associated with enlarged cerebral ventricles, cerebellar hypoplasia, seizures and ataxia. Eur J Hum Genet. 1999;7(5):541–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Patel S, Barkovich AJ. Analysis and classification of cerebellar malformations. AJNR Am J Neuroradiol. 2002;23(7):1074–87.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Massoud M, et al. Prenatal unilateral cerebellar hypoplasia in a series of 26 cases: significance and implications for prenatal diagnosis. Ultrasound Obstet Gynecol. 2014;44(4):447–54.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wichman A, Frank LM, Kelly TE. Autosomal recessive congenital cerebellar hypoplasia. Clin Genet. 1985;27(4):373–82.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Osenbach RK, Menezes AH. Diagnosis and management of the Dandy-Walker malformation: 30 years of experience. Pediatr Neurosurg. 1992;18(4):179–89.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Cueva-Nunez JE, et al. Dandy-Walker variant: case report. Rev Chil Pediatr. 2016;87(5):406–10.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Klein JL, et al. Clinical and neuroimaging features as diagnostic guides in neonatal neurology diseases with cerebellar involvement. Cerebellum Ataxias. 2016;3:1.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Grinberg I, et al. Heterozygous deletion of the linked genes ZIC1 and ZIC4 is involved in Dandy-Walker malformation. Nat Genet. 2004;36(10):1053–5.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Aldinger KA, et al. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet. 2009;41(9):1037–42.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Parisi MA, Dobyns WB. Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab. 2003;80(1–2):36–53.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kim JH, et al. Impulsive behavior and recurrent major depression associated with Dandy-Walker variant. Psychiatry Investig. 2013;10(3):303–5.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Abdel Razek AA, Castillo M. Magnetic resonance imaging of malformations of midbrain-hindbrain. J Comput Assist Tomogr. 2016;40(1):14–25.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Cotes C, et al. Congenital basis of posterior fossa anomalies. Neuroradiol J. 2015;28(3):238–53.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    D’Agostino AN, Kernohan JW, Brown JR. The Dandy-Walker syndrome. J Neuropathol Exp Neurol. 1963;22:450–70.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hart MN, Malamud N, Ellis WG. The Dandy-Walker syndrome. A clinicopathological study based on 28 cases. Neurology. 1972;22(8):771–80.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Spennato P, et al. Hydrocephalus in Dandy-Walker malformation. Childs Nerv Syst. 2011;27(10):1665–81.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Nelson MD Jr, Maher K, Gilles FH. A different approach to cysts of the posterior fossa. Pediatr Radiol. 2004;34(9):720–32.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Tonni G, et al. Complete trisomy 9 with unusual phenotypic associations: Dandy-Walker malformation, cleft lip and cleft palate, cardiovascular abnormalities. Taiwan J Obstet Gynecol. 2014;53(4):592–7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Zaki MS, et al. Dandy-Walker malformation, genitourinary abnormalities, and intellectual disability in two families. Am J Med Genet A. 2015;167A(11):2503–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Klein O, et al. Dandy-Walker malformation: prenatal diagnosis and prognosis. Childs Nerv Syst. 2003;19(7–8):484–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sasaki-Adams D, et al. The Dandy-Walker variant: a case series of 24 pediatric patients and evaluation of associated anomalies, incidence of hydrocephalus, and developmental outcomes. J Neurosurg Pediatr. 2008;2(3):194–9.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Guibaud L, et al. Prenatal diagnosis of 'isolated' Dandy-Walker malformation: imaging findings and prenatal counselling. Prenat Diagn. 2012;32(2):185–93.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Joubert M, et al. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology. 1969;19(9):813–25.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Valente EM, Dallapiccola B, Bertini E. Joubert syndrome and related disorders. Handb Clin Neurol. 2013;113:1879–88.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Usta M, et al. Joubert syndrome and related disorders: a rare cause of intrahepatic portal hypertension in childhood. Eur Rev Med Pharmacol Sci. 2015;19(12):2297–300.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Sattar S, Gleeson JG. The ciliopathies in neuronal development: a clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol. 2011;53(9):793–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Chizhikov VV, et al. Cilia proteins control cerebellar morphogenesis by promoting expansion of the granule progenitor pool. J Neurosci. 2007;27(36):9780–9.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Spassky N, et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol. 2008;317(1):246–59.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Bachmann-Gagescu R, et al. The ciliopathy protein CC2D2A associates with NINL and functions in RAB8-MICAL3-regulated vesicle trafficking. PLoS Genet. 2015;11(10):e1005575.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Brancati F, et al. MKS3/TMEM67 mutations are a major cause of COACH syndrome, a Joubert syndrome related disorder with liver involvement. Hum Mutat. 2009;30(2):E432–42.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kamdar BB, et al. Self-reported sleep and breathing disturbances in Joubert syndrome. Pediatr Neurol. 2011;45(6):395–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Brancati F, Dallapiccola B, Valente EM. Joubert syndrome and related disorders. Orphanet J Rare Dis. 2010;5:20.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Nag C, et al. Joubert syndrome: the molar tooth sign of the mid-brain. Ann Med Health Sci Res. 2013;3(2):291–4.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lopez Ruiz P, et al. Uncrossed epileptic seizures in Joubert syndrome. BMJ Case Rep. 2015; 2015.Google Scholar
  77. 77.
    Bierhals T, et al. Pontocerebellar hypoplasia type 2 and TSEN2: review of the literature and two novel mutations. Eur J Med Genet. 2013;56(6):325–30.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Sanchez-Albisua I, et al. Natural course of pontocerebellar hypoplasia type 2A. Orphanet J Rare Dis. 2014;9:70.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Millen KJ, Gleeson JG. Cerebellar development and disease. Curr Opin Neurobiol. 2008;18(1):12–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Eggens VR, et al. EXOSC3 mutations in pontocerebellar hypoplasia type 1: novel mutations and genotype-phenotype correlations. Orphanet J Rare Dis. 2014;9:23.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Rudnik-Schoneborn S, et al. Extended phenotype of pontocerebellar hypoplasia with infantile spinal muscular atrophy. Am J Med Genet A. 2003;117A(1):10–7.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Renbaum P, et al. Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am J Hum Genet. 2009;85(2):281–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wan J, et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet. 2012;44(6):704–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Budde BS, et al. tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia. Nat Genet. 2008;40(9):1113–8.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Samanta D, Willis E. Intractable epileptic spasms in a patient with pontocerebellar hypoplasia: severe phenotype of type 2 or another subtype? Ann Indian Acad Neurol. 2016;19(3):385–7.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Feinstein M, et al. VPS53 mutations cause progressive cerebello-cerebral atrophy type 2 (PCCA2). J Med Genet. 2014;51(5):303–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rajab A, et al. A novel form of pontocerebellar hypoplasia maps to chromosome 7q11-21. Neurology. 2003;60(10):1664–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Edvardson S, et al. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet. 2007;81(4):857–62.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Anderson C, et al. Early pontocerebellar hypoplasia with vanishing testes: a new syndrome? Am J Med Genet A. 2011;155A(4):667–72.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Namavar Y, et al. Classification, diagnosis and potential mechanisms in pontocerebellar hypoplasia. Orphanet J Rare Dis. 2011;6:50.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Mochida GH, et al. CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development. Nat Genet. 2012;44(11):1260–4.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Akizu N, et al. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder. Cell. 2013;154(3):505–17.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Karaca E, et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell. 2014;157(3):636–50.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Wan J, et al. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain. 2016;139:2877–90.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Christiansen S, Roos LK, Miranda MJ. Pontocerebellar hypoplasia is a rare cause of floppy infant syndrome. Ugeskr Laeger. 2015;177(40):V05150380.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Ishak GE, et al. Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain. 2012;135(Pt 5):1370–86.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Pasquier L, et al. Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol. 2009;117(2):185–200.PubMedCrossRefGoogle Scholar
  98. 98.
    Sukhudyan B, et al. Gomez-Lopez-Hernandez syndrome: reappraisal of the diagnostic criteria. Eur J Pediatr. 2010;169(12):1523–8.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Gomez MR. Cerebellotrigeminal and focal dermal dysplasia: a newly recognized neurocutaneous syndrome. Brain Dev. 1979;1(4):253–6.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Lopez-Hernandez A. Craniosynostosis, ataxia, trigeminal anaesthesia and parietal alopecia with pons-vermis fusion anomaly (atresia of the fourth ventricle). Report of two cases. Neuropediatrics. 1982;13(2):99–102.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kruer MC, et al. Truncal ataxia, hypotonia, and motor delay with isolated rhombencephalosynapsis. Pediatr Neurol. 2009;41(3):229–31.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Ross ME, Swanson K, Dobyns WB. Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformations. Neuropediatrics. 2001;32(5):256–63.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    al Shahwan SA, Bruyn GW, al Deeb SM. Non-progressive familial congenital cerebellar hypoplasia. J Neurol Sci. 1995;128(1):71–7.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Hong SE, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet. 2000;26(1):93–6.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kroon AA, et al. Lissencephaly with extreme cerebral and cerebellar hypoplasia. A magnetic resonance imaging study. Neuropediatrics. 1996;27(5):273–6.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    D’Arcangelo G, et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 1995;374(6524):719–23.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    D’Arcangelo G, et al. Reelin is a ligand for lipoprotein receptors. Neuron. 1999;24(2):471–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Hiesberger T, et al. Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron. 1999;24(2):481–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Trommsdorff M, et al. Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell. 1999;97(6):689–701.PubMedCrossRefGoogle Scholar
  110. 110.
    Senzaki K, Ogawa M, Yagi T. Proteins of the CNR family are multiple receptors for Reelin. Cell. 1999;99(6):635–47.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Caviness VS Jr, Rakic P. Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci. 1978;1:297–326.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Lambert de Rouvroit C, Goffinet AM. The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol. 1998;150:1–106.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Yis U. Lissencephaly with brainstem and cerebellar hypoplasia and congenital cataracts. J Child Neurol. 2015;30(5):625–6.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Klisch J, et al. Lhermitte-Duclos disease: assessment with MR imaging, positron emission tomography, single-photon emission CT, and MR spectroscopy. AJNR Am J Neuroradiol. 2001;22(5):824–30.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Shinagare AB, Patil NK, Sorte SZ. Case 144: dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease). Radiology. 2009;251(1):298–303.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Zhou XP, et al. Germline inactivation of PTEN and dysregulation of the phosphoinositol-3-kinase/Akt pathway cause human Lhermitte-Duclos disease in adults. Am J Hum Genet. 2003;73(5):1191–8.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Roessmann U, Wongmongkolrit T. Dysplastic gangliocytoma of cerebellum in a newborn. Case report. J Neurosurg. 1984;60(4):845–7.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Vieco PT, et al. Dysplastic gangliocytoma (Lhermitte-Duclos disease): CT and MR imaging. Pediatr Radiol. 1992;22(5):366–9.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Milbouw G, et al. Clinical and radiological aspects of dysplastic gangliocytoma (Lhermitte-Duclos disease): a report of two cases with review of the literature. Neurosurgery. 1988;22(1 Pt 1):124–8.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Ashley DG, et al. Lhermitte-Duclos disease: CT and MR findings. J Comput Assist Tomogr. 1990;14(6):984–7.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Nowak DA, Trost HA. Lhermitte-Duclos disease (dysplastic cerebellar gangliocytoma): a malformation, hamartoma or neoplasm? Acta Neurol Scand. 2002;105(3):137–45.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Padberg GW, et al. Lhermitte-Duclos disease and Cowden disease: a single phakomatosis. Ann Neurol. 1991;29(5):517–23.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Asghar Marzban
    • 1
    Email author
  • Mohammad Vafaee-shahi
    • 2
  • Kamran Azarkhish
    • 3
  1. 1.Department of Pediatrics, Ayatollah Mousavi HospitalZanjan University of Medical SciencesZanjanIran
  2. 2.Department of Pediatrics, Hazrat – E – Rasool HospitalIran University of Medical SciencesTehranIran
  3. 3.Department of Radiology, Valiasr HospitalZanjan University of Medical SciencesZanjanIran

Personalised recommendations