Can Cerebellar Neurodevelopmental Disorders Affect Behavioral Disorders or Vice Versa?

  • Seyed Soheil Saeedi Saravi
  • Ahmad Reza DehpourEmail author
Part of the Contemporary Clinical Neuroscience book series (CCNE)


Recent investigations have been focused on understanding the role of the cerebellum in non-motor behaviors and of the cerebellar dysfunction in neurodevelopmental, neurobehavioral, and schizo-affective disorders. Non-motor behaviors, including emotion, cognition, and social behavior, seem to be modified by impairment of the cerebellar structure-function relationship. Clinically, these behavioral defects have been observed in patients with autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and schizophrenia. These behavioral outcomes have been demonstrated to be associated with prenatal and/or early postnatal damages of cerebro-cerebellar circuits. Concerning to the essential role of the cerebellum in early neurodevelopment, understanding the association between cerebellar injury and long-term alteration in behavior is highly crucial. This chapter’s attempts are to summarize the recent evidence of involvement of the cerebellum in neurodevelopment and behavior and that both these views remain to be revised for declaration of the paradoxical relationship between cerebellar function and behavioral despair, as well as neurodevelopmental disorders including ASD and ADHD.


Cerebellum Neurodevelopment Behavioral despair Schizo-affective disorders 


  1. 1.
    Aarsen F, Dongen HV, Paquier P, Mourik MV, Catsman-Berrevoets C. Long term sequelae in children after cerebellar astrocytoma surgery. Neurology. 2004;62:1311–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Allen G, Buxton R, Wong E, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275:1940–3.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Allin MPG. Novel insights from quantitative imaging of the developing cerebellum. Semin Fetal Neonatal Med. 2016;21(5):333–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–45.PubMedCrossRefGoogle Scholar
  5. 5.
    Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, Watkins GL, Hichwa RD. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci U S A. 1996;93:9985–90.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Andreasen NC, Paradiso S, O’Leary DS. Cognitive “dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr Bull. 1998;24:203–18.PubMedCrossRefGoogle Scholar
  7. 7.
    Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64:81–8.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Becker EB, Stoodley CJ. Autism spectrum disorder and the cerebellum. Int Rev Neurobiol. 2013;113:1–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Beebe DW, Ris MD, Armstrong FD, Fontanesi J, Mulhern R, Holmes E, et al. Cognitive and adaptive outcome in low-grade pediatric cerebellar astrocytomas: evidence of diminished cognitive and adaptive function. National Collaborative Research Studies (CCG9891/POG9130). J Clin Oncol. 2005;23:5198–204.PubMedCrossRefGoogle Scholar
  10. 10.
    Biotteau M, Chaix Y, Albaret J-M. Procedural learning and automatization process in children with developmental coordination disorder and/or developmental dyslexia. Hum Mov Sci. 2015;43:78–89.PubMedCrossRefGoogle Scholar
  11. 11.
    Blatt GJ. GABAergic cerebellar system in autism: a neuropathological and developmental perspective. Int Rev Neurobiol. 2005;71:167–78.PubMedCrossRefGoogle Scholar
  12. 12.
    Bora E, Fornito A, Pantelis C, Yucel M. Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord. 2012;138:9–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Brossard-Racine M, du Plessis AJ, Limperopoulos C. Developmental cerebellar cognitive affective syndrome in ex-preterm survivors following cerebellar injury. Cerebellum. 2015;14:151–64.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Burnet PW, Eastwood SL, Bristow GC, Godlewska BR, Sikka P, Walker M, Harrison PJ. D-amino acid oxidase activity and expression are increased in schizophrenia. Mol Psychiatry. 2008;13:658–60.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Clouchoux C, Guizard N, Evans AC, du Plessis AJ, Limperopoulos C. Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am J Obstet Gynecol. 2012;206:173–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Clower DM, Dum RP, Strick PL. Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex. 2005;7:913–20.CrossRefGoogle Scholar
  17. 17.
    Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21:6283–91.PubMedCrossRefGoogle Scholar
  18. 18.
    D’Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9:1–18.Google Scholar
  19. 19.
    Danek A, Walker RH. Neuroacanthocytosis. Curr Opin Neurol. 2005;18:386–92.PubMedCrossRefGoogle Scholar
  20. 20.
    de Zeeuw P, van Belle J, van Dijk S, Weusten J, Koeleman B, Janson E, van Engeland H, Durston S. Imaging gene and environmental effects on cerebellum in attention deficit/hyperactivity disorder and typical development. NeuroImage Clin. 2013;2:103–10.CrossRefGoogle Scholar
  21. 21.
    DeLorey TM, Sahbaie P, Hashemi E, Homanics GE, Clark JD. Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: a potential model of autism spectrum disorder. Behav Brain Res. 2008;5:207–20.CrossRefGoogle Scholar
  22. 22.
    Depping MS, Wolf ND, Vasic N, Sambataro F, Hirjak D, Thomann PA, Wolf RC. Abnormal cerebellar volume in acute and remitted major depression. Prog Neuropsychopharmacol Biol Psych. 2016;71:97–102.CrossRefGoogle Scholar
  23. 23.
    Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A. 2002;99:1017–22.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Du MY, Wu QZ, Yue Q, Li J, Liao Y, Kuang WH, Huang XQ, Chan RC, Mechelli A, Gong QY. Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Prog Neuropsychopharmacol Biol Psych. 2012;36(1):11–6.CrossRefGoogle Scholar
  25. 25.
    Durston S, de Zeeuw P, Staal WG. Imaging genetics in ADHD: a focus on cognitive control. Neurosci Biobehav Rev. 2009;33:674–89.PubMedCrossRefGoogle Scholar
  26. 26.
    Durston S, Hulshoff Pol HE, Schnack HG, Buitelaar JK, Steenhuis MP, Minderaa RB, Kahn RS, van Engeland H. Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psych. 2004;43:332–40.CrossRefGoogle Scholar
  27. 27.
    Durston S, Van Belle J, De Zeeuw P. Differentiating fronto-striatal and frontocerebellar circuits in ADHD. Biol Psychiatry. 2011;69:1178–84.PubMedCrossRefGoogle Scholar
  28. 28.
    Eastwood SL, Cotter D, Harrison PJ. Cerebellar synaptic protein expression in schizophrenia. Neuroscience. 2001;105:219–29.PubMedCrossRefGoogle Scholar
  29. 29.
    Eastwood SL, Law AJ, Everall IP, Harrison PJ. The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry. 2003;8:148–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Evarts EV, Thach WT. Motor mechanism of the CNS: cerebrocerebellar interrelations. Annu Rev Physiol. 1969;31:451–98.PubMedCrossRefGoogle Scholar
  31. 31.
    Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, et al. Consensus paper: pathological role of the cerebellum in autism. Cerebellum. 2012;11:777–807.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fatemi SH, Folsom TD. GABA receptor subunit distribution and FMRP–mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophr Res. 2015;167:42–56.PubMedCrossRefGoogle Scholar
  33. 33.
    Fatemi SH, Folsom TD, Rooney RJ, Thuras PD. mRNA and protein expression for novel GABAA receptors θ and ρ2 are altered in schizophrenia and mood disorders; relevance to FMRP–mGluR5 signaling pathway. Transl Psychiatry. 2013;3:e271.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Fatemi SH, Kneeland RE, Liesch SB, Folsom TD. Fragile X mental retardation protein levels are decreased in major psychiatric disorders. Schizophr Res. 2010;124(1–3):246–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Fijal BA, Stauffer VL, Kinon BJ, Conley RR, Hoffmann VP, Witte MM, Zhao F, Houston JP. Analysis of gene variants previously associated with iloperidone response in patients with schizophrenia who are treated with risperidone. J Clin Psychol. 2012;73:367–71.Google Scholar
  36. 36.
    Fujita E, Tanabe Y, Imhof BA, Momoi MY, Momoi T. A complex of synaptic adhesion molecule CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. J Neurochem. 2012;123:886–94.PubMedCrossRefGoogle Scholar
  37. 37.
    Galea JM, Vazquez A, Pasricha N, de Xivry J-JO, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21:1761–70.PubMedCrossRefGoogle Scholar
  38. 38.
    George SM, Wassermann EM, Williams WA, Callahan A, Ketter DA, Basser P, Hallett M, Post RM. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport. 1995;6:1853–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Gilmore JH, Schmitt JE, Knickmeyer RC, Smith JK, Lin W, Styner M, Gerig G, Neale MC. Genetic and environmental contributions to neonatal brain structure: a twin study. Hum Brain Mapp. 2010;31:1174–82.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Greenough WT, Black JE, Klintsova A, Bates KE, Weiler IJ. Experience and plasticity in brain structure: possible implications of basic research findings for developmental disorders. In: Broman SH, Fletcher JM, editors. The changing nervous system. New York: Oxford University Press; 1999. p. 51–70.Google Scholar
  41. 41.
    Greenstein D, Lenroot R, Clausen L, Gogtay N, Rapoport J. Cerebellar development in childhood onset schizophrenia and non-psychotic siblings. Psychiatry Res. 2011;193:131–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Holmes G. A form of familial degeneration of the cerebellum. Brain. 1907;30:466–89.CrossRefGoogle Scholar
  43. 43.
    Holmes G. The cerebellum of man. Brain. 1939;62:1–31.CrossRefGoogle Scholar
  44. 44.
    Hu X, Liu Q, Li B, Tang W, Sun H, Li F, Yang Y, Gong Q, Huang X. Multivariate pattern analysis of obsessive-compulsive disorder using structural neuroanatomy. Eur Neuropsychopharmacol. 2016;26(2):246–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Ito M. The cerebellum and neural control. New York: Raven Press; 1984.Google Scholar
  46. 46.
    Ito M. Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann N Y Acad Sci. 2002;978:273–88.PubMedCrossRefGoogle Scholar
  47. 47.
    Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.PubMedCrossRefGoogle Scholar
  48. 48.
    Ivanov I, Murrough JW, Bansal R, Hao X, Peterson BS. Cerebellar morphology and the effects of stimulant medications in youths with attention deficit hyperactivity disorder. Neuropsychopharmacology. 2014;39:718–26.PubMedCrossRefGoogle Scholar
  49. 49.
    Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psych. 2015;72(6):603–11.CrossRefGoogle Scholar
  50. 50.
    Keller A, Castellanos FX, Vaituzis AC, Jeffries NO, Giedd JN, Rapoport JL. Progressive loss of cerebellar volume in childhood-onset schizophrenia. Am J Psychiatry. 2003;160:128–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Kemper TL, Bauman M. Neuropathology of infantile autism. J Neuropathol Exp Neurol. 1998;57:645–52.PubMedCrossRefGoogle Scholar
  52. 52.
    Kern JK. Purkinje cell vulnerability and autism: a possible etiological connection. Brain Dev. 2003;25:377–82.PubMedCrossRefGoogle Scholar
  53. 53.
    Kinney DK, Yurgelun-Todd DA, Woods BT. Neurologic signs of cerebellar and cortical sensory dysfunction in schizophrenics and their relatives. Schizophr Res. 1999;35:99–104.PubMedCrossRefGoogle Scholar
  54. 54.
    Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH. Is the cerebellum relevant in the circuitry of neuropsychiatric disorder? J Psychiatry Neurosci. 2006;30:178–86.Google Scholar
  55. 55.
    Lai CH. Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Res. 2013;211(1):37–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Lai CH, Wu YT. The gray matter alterations in major depressive disorder and panic disorder: putative differences in the pathogenesis. J Affect Disord. 2015;186:1–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Lantieri F, Glessner JT, Hakonarson H, Elia J, Devoto M. Analysis of GWAS top hits in ADHD suggests association to two polymorphisms located in genes expressed in the cerebellum. Am J Med Gen Part B Neuropsychol Gen. 2010;153B:1127–33.Google Scholar
  58. 58.
    Lavedan C, Licamele L, Volpi S, Hamilton J, Heaton C, Mack K, Lannan R, Thompson A, Wolfgang CD, Polymeropoulos MH. Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol Psychiatry. 2009;14:804–19.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee S, Russo D, Redman C. Functional and structural aspects of the Kell blood group system. Transfus Med Rev. 2000;14:93–103.PubMedCrossRefGoogle Scholar
  60. 60.
    Lee S, Sha Q, Wu X, Calenda G, Peng J. Expression profiles of mouse Kell, XK, and XPLAC mRNA. J Histochem Cytochem. 2007;55:365–74.PubMedCrossRefGoogle Scholar
  61. 61.
    Leiner HC. Solving the mystery of the human cerebellum. Neuropsychol Rev. 2010;20:229–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100:443–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123(5):1041–50.PubMedCrossRefGoogle Scholar
  64. 64.
    Limperopoulos C, Bassan H, Gauvreau K, Robertson RL, Sullivan NR, Benson CB, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics. 2007;120:584–93.PubMedCrossRefGoogle Scholar
  65. 65.
    Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115:688–95.PubMedCrossRefGoogle Scholar
  66. 66.
    Lungu O, Barakat M, Laventure S, Debas K, Proulx S, Luck D, Stip E. The incidence and nature of cerebellar findings in schizophrenia: a quantitative review of fMRI literature. Schizophr Bull. 2013;39:797–806.PubMedCrossRefGoogle Scholar
  67. 67.
    Martin P, Albers M. Cerebellum and schizophrenia: a selective review. Schizophr Bull. 1995;21:241–50.PubMedCrossRefGoogle Scholar
  68. 68.
    Mukaetova-Ladinska E, Hurt J, Honer WG, Harrington CR, Wischik CM. Loss of synaptic but not cytoskeletal proteins in the cerebellum of chronic schizophrenics. Neurosci Lett. 2002;317:161–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Neale BM, Lasky-Su J, Anney R, Franke B, Zhou K, Maller JB, Vasquez AA, Asherson P, Chen W, Banaschewski T, Buitelaar J, Ebstein R, Gill M, Miranda A, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Steinhausen HC, Sonuga-Barke E, Mulas F, Taylor E, Laird N, Lange C, Daly M, Faraone SV. Genome-wide association scan of attention deficit hyperactivity disorder. Am J Med Genet B. 2008;147B:1337–44.CrossRefGoogle Scholar
  70. 70.
    Palmen SJ, van Engeland H, Hof PR, Schmitz C. Neuropathological findings in autism. Brain. 2004;127(12):2572–83.PubMedCrossRefGoogle Scholar
  71. 71.
    Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, Li K. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel based morphometry study. Eur J Radiol. 2011;80(2):395–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE. Genetic influences on human brain structure: a review of brain imaging studies in twins. Hum Brain Mapp. 2007;28:464–73.PubMedCrossRefGoogle Scholar
  73. 73.
    Peper JS, Schnack HG, Brouwer RM, Van Baal GC, Pjetri E, Szekely E, van Leeuwen M, van den Berg SM, Collins DL, Evans AC, Boomsma DI, Kahn RS, Hulshoff Pol HE. Heritability of regional and global brain structure at the onset of puberty: a magnetic resonance imaging study in 9-year-old twin pairs. Hum Brain Mapp. 2009;30:2184–96.PubMedCrossRefGoogle Scholar
  74. 74.
    Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci. 1989;1:153–70.PubMedCrossRefGoogle Scholar
  75. 75.
    Pollack I. Posterior fossa syndrome. Int Rev Neurobiol. 1997;41:411–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Portugal LC, Rosa MJ, Rao A, Bebko G, Bertocci MA, Hinze AK, et al. Can emotional and behavioral dysregulation in youth be decoded from functional neuroimaging? PLoS One. 2016;11:e0117603.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Richter S, Schoch B, Kaiser O, Groetschel H, Dimitrova A, Hein-Kropp C, et al. Behavioral and affective changes in children and adolescents with chronic cerebellar lesions. Neurosci Lett. 2005;381:102–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123(5):1051–61.PubMedCrossRefGoogle Scholar
  79. 79.
    Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48:1178–87.PubMedCrossRefGoogle Scholar
  80. 80.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum-insights from the clinic. Cerebellum. 2007;6:254–67.PubMedCrossRefGoogle Scholar
  82. 82.
    Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43:685–91.PubMedCrossRefGoogle Scholar
  83. 83.
    Shevelkin AV, Ihenatu C, Pletnikov MV. Pre-clinical models of neurodevelopmental disorders: focus on the cerebellum. Rev Neurosci. 2014;25(2):177–94.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Snider SR. Cerebellar pathology in schizophrenia – cause or consequence? Neurosci Biobehav Rev. 1982;6:47–53.PubMedCrossRefGoogle Scholar
  85. 85.
    Stein JF, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.PubMedCrossRefGoogle Scholar
  86. 86.
    Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014;8:92.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Stoodley CJ, Limperopoulos C. Structure-function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin Fetal Neonatal Med. 2016;21:356–64. in pressPubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.PubMedCrossRefGoogle Scholar
  89. 89.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Stoodley CJ, Schmahmann JD. Functional linguistic topography of the cerebellum. In: Marien P, Manto M, editors. The linguistic cerebellum. Waltham: Academic; 2015. p. 315–35.Google Scholar
  91. 91.
    Supprian T, Ulmar G, Bauer M, Schüler M, Püschel K, Retz-Junginger P, Schmitt HP, Heinsen H. Cerebellar vermis area in schizophrenic patients – a postmortem study. Schizophr Res. 2000;16:19–28.CrossRefGoogle Scholar
  92. 92.
    Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Ten Donkelaar HJ, Lammens M, Wesseling P, Thijssen HO, Renier WO. Development and developmental disorders of the human cerebellum. J Neurol. 2003;250:1025–36.PubMedCrossRefGoogle Scholar
  94. 94.
    Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. NeuroImage. 2010;49:63–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Uhl GR, Drgon T, Johnson C, Fatusin OO, Liu QR, Contoreggi C, Li CY, Buck K, Crabbe J. Higher order addiction molecular genetics: convergent data from genome-wide association in humans and mice. Biochem Pharmacol. 2008;75:98–111.PubMedCrossRefGoogle Scholar
  96. 96.
    Ullman MT, Pullman MY. A compensatory role for declarative memory in neurodevelopmental disorders. Neurosci Biobehav Rev. 2015;51:205–22.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;61:1361–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Van Soelen IL, Brouwer RM, van Baal GC, Schnack HG, Peper JS, Chen L, Kahn RS, Boomsma DI, Pol HE. Heritability of volumetric brain changes and height in children entering puberty. Hum Brain Mapp 2013. 2011;34(3):713–25.Google Scholar
  99. 99.
    Vasic N, Walter H, Hose A, Wolf RC. Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. J Affect Disord. 2008;109(1–2):107–16.PubMedCrossRefGoogle Scholar
  100. 100.
    Verhoeven JS, De Cock P, Lagae L, Sunaert S. Neuroimaging of autism. Neuroradiology. 2010;52:3–14.PubMedCrossRefGoogle Scholar
  101. 101.
    Villanueva R. The cerebellum and neuropsychiatric disorders. Psychiatry Res. 2012;198:527–32.PubMedCrossRefGoogle Scholar
  102. 102.
    Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24:1085–104.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wang SS-H, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83:518–32.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Weber AM, Egelhoff JC, McKellop JM, Franz DN. Autism and the cerebellum: evidence from tuberous sclerosis. J Autism Dev Disord. 2000;30:511–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Wiser AK, Andreasen NC, O’Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD. Dysfunctional cortico-cerebellar circuits cause ‘cognitive dysmetria’ in schizophrenia. Neuroreport. 1998;9(8):1895–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Yeganeh-Doost P, Gruber O, Falkai P, Schmitt A. The role of the cerebellum in schizophrenia: from cognition to molecular pathways. Clinics (Sao Paulo). 2011;66(Suppl 1):71–7.CrossRefGoogle Scholar
  107. 107.
    Yucel K, Nazarov A, Taylor VH, Macdonald K, Hall GB, Macqueen GM. Cerebellar vermis volume in major depressive disorder. Brain Struct Funct. 2013;218(4):851–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhao YJ, Du MY, Huang XQ, Lui S, Chen ZQ, Liu J, Luo Y, Wang XL, Kemp GJ, Gong QY. Brain grey matter abnormalities in medication-free patients with major depressive disorder: a meta-analysis. Psychol Med. 2014;44(14):2927–37.PubMedCrossRefGoogle Scholar
  109. 109.
    Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation associated with motor skill practice in children with developmental coordination disorder: an fMRI study. Int J Dev Neurosci. 2011;29:145–52.PubMedCrossRefGoogle Scholar
  110. 110.
    Saeedi Saravi SS, Dehpour AR. Potential role of organochlorine pesticides in the pathogenesis of neurodevelopmental, neurodegenerative, and neurobehavioral disorders: a review. Life Sci. 2016;145:255–64.PubMedCrossRefGoogle Scholar
  111. 111.
    Courchesne E. Neuroanatomic imaging in autism. Pediatrics. 1991;87(5 Pt 2):781–90.Google Scholar
  112. 112.
    Stoodley CJ. The cerebellum and neurodevelopmental disorders. Cerebellum. 2015;8:92.Google Scholar
  113. 113.
    Claperon A, Hattab C, Armand V, Trottier S, Bertrand O, Ouimet T. The Kell and XK proteins of the Kell blood group are not co-expressed in the central nervous system. Brain Res. 2007;1147:12–24.PubMedCrossRefGoogle Scholar
  114. 114.
    Claperon A, Rose C, Gane P, Collec E, Bertrand O, Ouimet T. The kell protein of the common K2 phenotype is a catalytically active metalloprotease while the rare kell K1 antigen is inactive. Identification of novel substrates for the kell protein. J Biol Chem. 2005;280:21272–83.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Seyed Soheil Saeedi Saravi
    • 1
    • 2
    • 3
  • Ahmad Reza Dehpour
    • 2
    • 3
    Email author
  1. 1.Department of Toxicology-Pharmacology, Faculty of PharmacyGuilan University of Medical SciencesRashtIran
  2. 2.Department of Pharmacology, School of MedicineTehran University of Medical SciencesTehranIran
  3. 3.Experimental Medicine Research CenterTehran University of Medical SciencesTehranIran

Personalised recommendations