Advertisement

Primary Pediatric Brain Tumors of the Posterior Fossa Part II: A Comprehensive Overview of Medulloblastoma

  • Lisa Liang
  • Christopher Aiken
  • Kathleen Felton
  • Amanda Hogg
  • Frank van Landeghem
  • T. Klonisch
  • David D. Eisenstat
  • Tamra E. Werbowetski-OgilvieEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Medulloblastoma (MB) is the most common malignant primary brain tumor in children and is currently classified into five distinct molecular subtypes (WNT, SHH-TP53 wild type, SHH-TP53 mutant, Group 3, and Group 4), based on genomic alterations, gene expression profiles, responses to treatment, and developmental cell of origin. The standard treatment for MB consists of surgical resection followed by radiation therapy and chemotherapy. However, current treatments do not take into account the extensive heterogeneity between and within MB subtypes. Cancer stem cells also play an important role in treatment failure and recurrence in MB, adding an additional layer of complexity in the form of cellular heterogeneity. This chapter will focus on the clinical presentation of MB, current treatment options, and histological classifications with a more detailed description of the current molecular subtypes, followed by exploration of cellular heterogeneity in the molecular era. Further dissection of tumor heterogeneity and identification of subtype-specific biomarkers will be crucial in the development of novel diagnostic markers and targeted therapies for these highly aggressive pediatric brain tumors.

Keywords

Posterior fossa tumors Medulloblastoma Pediatric Tumor heterogeneity Cancer stem cell 

References

  1. 1.
    Louis D, Ohgaki H, Wiestler OD, Cavenee WK. WHO classification of tumours of the central nervous system. 4th ed, revised. 2016. WHO Press, Geneva, Switzerland.Google Scholar
  2. 2.
    Packer RJ, Cogen P, Vezina G, Rorke LB. Medulloblastoma: clinical and biologic aspects. Neuro-Oncology. 1999;1(3):232–50.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Coluccia D, Figuereido C, Isik S, Smith C, Rutka JT. Medulloblastoma: tumor biology and relevance to treatment and prognosis paradigm. Curr Neurol Neurosci Rep. 2016;16(5):43.PubMedCrossRefGoogle Scholar
  4. 4.
    Park TS, Hoffman HJ, Hendrick EB, Humphreys RP, Becker LE. Medulloblastoma: clinical presentation and management. Experience at the hospital for sick children, Toronto, 1950–1980. J Neurosurg. 1983;58(4):543–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Packer RJ, Rood BR, MacDonald TJ. Medulloblastoma: present concepts of stratification into risk groups. Pediatr Neurosurg. 2003;39(2):60–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131(6):821–31.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lannering B, Rutkowski S, Doz F, Pizer B, Gustafsson G, Navajas A, et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: results from the randomized multicenter HIT-SIOP PNET 4 trial. J Clin Oncol. 2012;30(26):3187–93.PubMedCrossRefGoogle Scholar
  8. 8.
    Lafay-Cousin L, Smith A, Chi SN, Wells E, Madden J, Margol A, et al. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatr Blood Cancer. 2016;63(9):1527–34.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Crawford JR, MacDonald TJ, Packer RJ. Medulloblastoma in childhood: new biological advances. Lancet Neurol. 2007;6(12):1073–85.PubMedCrossRefGoogle Scholar
  11. 11.
    Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL, Taylor RE, et al. Beta-catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol. 2005;23(31):7951–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Ellison DW, Kocak M, Dalton J, Megahed H, Lusher ME, Ryan SL, et al. Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol. 2011;29(11):1400–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Brown HG, Kepner JL, Perlman EJ, Friedman HS, Strother DR, Duffner PK, et al. “Large cell/anaplastic” medulloblastomas: a Pediatric Oncology Group Study. J Neuropathol Exp Neurol. 2000;59(10):857–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Giangaspero F, Rigobello L, Badiali M, Loda M, Andreini L, Basso G, et al. Large-cell medulloblastomas. A distinct variant with highly aggressive behavior. Am J Surg Pathol. 1992;16(7):687–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Giangaspero F, Perilongo G, Fondelli MP, Brisigotti M, Carollo C, Burnelli R, et al. Medulloblastoma with extensive nodularity: a variant with favorable prognosis. J Neurosurg. 1999;91(6):971–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29(11):1408–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Northcott PA, Korshunov A, Pfister SM, Taylor MD. The clinical implications of medulloblastoma subgroups. Nat Rev Neurol. 2012;8(6):340–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473–84.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Gajjar AJ, Robinson GW. Medulloblastoma-translating discoveries from the bench to the bedside. Nat Rev Clin Oncol. 2014;11(12):714–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Gorovoy IR, de Alba Campomanes A. A potential life-saving diagnosis—recognizing Turcot syndrome. J Am Assoc Pediatr Opthalmol Strabismus. 2014;18(2):186–8.CrossRefGoogle Scholar
  21. 21.
    Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, Powell SM, et al. The molecular basis of Turcot’s syndrome. N Engl J Med. 1995;332(13):839–47.PubMedCrossRefGoogle Scholar
  22. 22.
    Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature. 1990;346(6287):847–50.PubMedCrossRefGoogle Scholar
  23. 23.
    McMahon AP, Joyner AL, Bradley A, McMahon JA. The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1-mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell. 1992;69:581–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature. 1997;389(6654):966–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437(7063):1370–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Yu J, Virshup DM. Updating the Wnt pathways. Biosci Rep. 2014;34(5):e00142.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–79.PubMedCrossRefGoogle Scholar
  28. 28.
    Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H, et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature. 1998;395(6702):604–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature. 1998;395(6702):608–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Bilić J, Huang Y-L, Davidson G, Zimmermann T, Cruciat C-M, Bienz M, et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007;316(5831):1619–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development. 2008;135(2):367–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96:5522–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398(6726):422–6.PubMedCrossRefGoogle Scholar
  34. 34.
    He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Chenn A. Wnt/beta-catenin signaling in cerebral cortical development. Organogenesis. 2008;4(2):76–80.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Baeza N, Masuoka J, Kleihues P, Ohgaki H. AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene. 2003;22(4):632.PubMedCrossRefGoogle Scholar
  37. 37.
    Eberhart CG, Tihan T, Burger PC. Nuclear localization and mutation of β-catenin in medulloblastomas. J Neuropathol Exp Neurol. 2000;59(4):333–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, et al. APC mutations in sporadic medulloblastomas. Am J Pathol. 2000;156(2):433–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Koch A, Waha A, Tonn JC, Sörensen N, Berthold F, Wolter M, et al. Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer. 2001;93(3):445–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Zurawel RH, Chiappa SA, Allen C, Raffel C. Sporadic Medulloblastomas contain oncogenic β-catenin mutations. Cancer Res. 1998;58(5):896–9.PubMedGoogle Scholar
  41. 41.
    Robinson G, Parker M, Kranenburg TA, Lu C, Chen X, Ding L, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012;488(7409):43–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Remke M, Hielscher T, Northcott PA, Witt H, Ryzhova M, Wittmann A, et al. Adult medulloblastoma comprises three major molecular variants. J Clin Oncol. 2011;29(19):2717–23.PubMedCrossRefGoogle Scholar
  43. 43.
    Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488(7409):100–5.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Northcott PA, Shih DJH, Peacock J, Garzia L, Sorana Morrissy A, Zichner T, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488(7409):49–56.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Orsulic S, Huber O, Aberle H, Arnold S, Kemler R. E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. J Cell Sci. 1999;112(8):1237–45.PubMedGoogle Scholar
  46. 46.
    Choi Y-J, Lee S-G. The DEAD-box RNA helicase DDX3 interacts with DDX5, co-localizes with it in the cytoplasm during the G2/M phase of the cycle, and affects its shuttling during mRNP export. J Cell Biochem. 2012;113(3):985–96.PubMedCrossRefGoogle Scholar
  47. 47.
    Lai M-C, Lee Y-HW, Tarn W-Y. The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol Biol Cell. 2008;19(9):3847–58.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Mosimann C, Hausmann G, Basler K. [beta]-Catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol. 2009;10(4):276–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. EMBO J. 2000;19(8):1839–50.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J. 2001;20(17):4935–43.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Carrera I, Janody F, Leeds N, Duveau F, Treisman JE. Pygopus activates Wingless target gene transcription through the mediator complex subunits Med12 and Med13. Proc Natl Acad Sci. 2008;105(18):6644–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS, Eden C, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;468(7327):1095–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12(8):445–64.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Baryawno N, Sveinbjornsson B, Eksborg S, Chen CS, Kogner P, Johnsen JI. Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth. Cancer Res. 2010;70(1):266–76.PubMedCrossRefGoogle Scholar
  55. 55.
    Cimmino F, Scoppettuolo MN, Carotenuto M, De Antonellis P, Dato VD, De Vita G, et al. Norcantharidin impairs medulloblastoma growth by inhibition of Wnt/beta-catenin signaling. J Neuro-Oncol. 2012;106(1):59–70.CrossRefGoogle Scholar
  56. 56.
    Rutkowski S, Bode U, Deinlein F, Ottensmeier H, Warmuth-Metz M, Soerensen N, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med. 2005;352(10):978–86.PubMedCrossRefGoogle Scholar
  57. 57.
    Dahmane N, Ruiz-i-Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126(14):3089–100.PubMedGoogle Scholar
  58. 58.
    Wallace VA. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol. 1999;9(8):445–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999;22(1):103–14.PubMedCrossRefGoogle Scholar
  60. 60.
    Briscoe J, Therond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013;14(7):416–29.PubMedCrossRefGoogle Scholar
  61. 61.
    Taipale J, Cooper MK, Maiti T, Beachy PA. Patched acts catalytically to suppress the activity of smoothened. Nature. 2002;418(6900):892–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Svärd J, Henricson KH, Persson-Lek M, Rozell B, Lauth M, Bergström Å, et al. Genetic elimination of suppressor of fused reveals an essential repressor function in the mammalian hedgehog signaling pathway. Dev Cell. 2006;10(2):187–97.PubMedCrossRefGoogle Scholar
  63. 63.
    John AM, Schwartz RA. Basal cell nevus syndrome: an update on genetics and treatment. Br J Dermatol. 2015;174(1):68–76.PubMedCrossRefGoogle Scholar
  64. 64.
    Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature. 2012;488(7409):106–10.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473–84.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Northcott PA, Hielscher T, Dubuc A, Mack S, Shih D, Remke M, et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 2011;122(2):231–40.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhukova N, Ramaswamy V, Remke M, Pfaff E, Shih DJ, Martin DC, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013. 174(1):68–76Google Scholar
  69. 69.
    Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell. 2008;14(2):123–34.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, et al. Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell. 2008;14(2):135–45.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA, et al. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res. 2004;64(21):7794–800.PubMedCrossRefGoogle Scholar
  72. 72.
    Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TT, et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development. 2005;132(10):2425–39.PubMedCrossRefGoogle Scholar
  73. 73.
    Hatton BA, Villavicencio EH, Tsuchiya KD, Pritchard JI, Ditzler S, Pullar B, et al. The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res. 2008;68(6):1768–76.PubMedCrossRefGoogle Scholar
  74. 74.
    Lin TL, Matsui W. Hedgehog pathway as a drug target: smoothened inhibitors in development. Onco Targets Ther. 2012;5:47–58.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Taipale J, Chen JK, Cooper MK, Wang B, Mann RK, Milenkovic L, et al. Effects of oncogenic mutations in smoothened and patched can be reversed by cyclopamine. Nature. 2000;406(6799):1005–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG, Watkins DN, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 2002;297(5586):1559–61.PubMedCrossRefGoogle Scholar
  77. 77.
    Robarge KD, Brunton SA, Castanedo GM, Cui Y, Dina MS, Goldsmith R, et al. GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett. 2009;19(19):5576–81.PubMedCrossRefGoogle Scholar
  78. 78.
    LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, et al. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011;17(8):2502–11.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Justilien V, Fields AP. Molecular pathways: novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells. Clin Cancer Res. 2015;21(3):505–13.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lee MJ, Hatton BA, Villavicencio EH, Khanna PC, Friedman SD, Ditzler S, et al. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc Natl Acad Sci U S A. 2012;109(20):7859–64.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kool M, Jones DT, Jager N, Northcott PA, Pugh TJ, Hovestadt V, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25(3):393–405.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Amakye D, Jagani Z, Dorsch M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat Med. 2013;19(11):1410–22.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhukova N, Ramaswamy V, Remke M, Pfaff E, Shih DJ, Martin DC, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(23):2927–35.CrossRefGoogle Scholar
  84. 84.
    Morrissy AS, Garzia L, Shih DJ, Zuyderduyn S, Huang X, Skowron P, et al. Divergent clonal selection dominates medulloblastoma at recurrence. Nature. 2016;529(7586):351–7.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Hatton BA, Villavicencio EH, Pritchard J, LeBlanc M, Hansen S, Ulrich M, et al. Notch signaling is not essential in sonic hedgehog-activated medulloblastoma. Oncogene. 2010;29(26):3865–72.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Dijkgraaf GJ, Alicke B, Weinmann L, Januario T, West K, Modrusan Z, et al. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res. 2011;71(2):435–44.PubMedCrossRefGoogle Scholar
  87. 87.
    Buonamici S, Williams J, Morrissey M, Wang A, Guo R, Vattay A, et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci Transl Med. 2010;2(51):51ra70.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Metcalfe C, Alicke B, Crow A, Lamoureux M, Dijkgraaf GJ, Peale F, et al. PTEN loss mitigates the response of medulloblastoma to Hedgehog pathway inhibition. Cancer Res. 2013;73(23):7034–42.PubMedCrossRefGoogle Scholar
  89. 89.
    Ehrhardt M, Craveiro RB, Holst MI, Pietsch T, Dilloo D. The PI3K inhibitor GDC-0941 displays promising in vitro and in vivo efficacy for targeted medulloblastoma therapy. Oncotarget. 2015;6(2):802–13.PubMedCrossRefGoogle Scholar
  90. 90.
    Kaur R, Aiken C, Morrison LC, Rao R, Del Bigio MR, Rampalli S, et al. OTX2 exhibits cell-context-dependent effects on cellular and molecular properties of human embryonic neural precursors and medulloblastoma cells. Dis Model Mech. 2015;8(10):1295–309.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Spatz A, Borg C, Feunteun J. X-chromosome genetics and human cancer. Nat Rev Cancer. 2004;4(8):617–29.PubMedCrossRefGoogle Scholar
  92. 92.
    Kawauchi D, Robinson G, Uziel T, Gibson P, Rehg J, Gao C, et al. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell. 2012;21(2):168–80.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pei Y, Moore CE, Wang J, Tewari AK, Eroshkin A, Cho YJ, et al. An animal model of MYC-driven medulloblastoma. Cancer Cell. 2012;21(2):155–67.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Eberhart CG. Three down and one to go: modeling medulloblastoma subgroups. Cancer Cell. 2012;21(2):137–8.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Lin CY, Erkek S, Tong Y, Yin L, Federation AJ, Zapatka M, et al. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature. 2016;530(7588):57–62.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Morfouace M, Shelat A, Jacus M, Freeman BB 3rd, Turner D, Robinson S, et al. Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. Cancer Cell. 2014;25(4):516–29.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bai R, Siu IM, Tyler BM, Staedtke V, Gallia GL, Riggins GJ. Evaluation of retinoic acid therapy for OTX2-positive medulloblastomas. Neuro-Oncology. 2010;12(7):655–63.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Freemantle SJ, Spinella MJ, Dmitrovsky E. Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene. 2003;22(47):7305–15.PubMedCrossRefGoogle Scholar
  99. 99.
    Fu YS, Wang Q, Ma JX, Yang XH, Wu ML, Zhang KL, et al. CRABP-II methylation: a critical determinant of retinoic acid resistance of medulloblastoma cells. Mol Oncol. 2012;6(1):48–61.PubMedCrossRefGoogle Scholar
  100. 100.
    Poretti A, Meoded A, Huisman TA. Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging: JMRI. 2012;35(1):32–47.PubMedCrossRefGoogle Scholar
  101. 101.
    Perreault S, Ramaswamy V, Achrol AS, Chao K, Liu TT, Shih D, et al. MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am J Neuroradiol. 2014;35(7):1263–9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Teo WY, Shen J, Su JM, Yu A, Wang J, Chow WY, et al. Implications of tumor location on subtypes of medulloblastoma. Pediatr Blood Cancer. 2013;60(9):1408–10.PubMedCrossRefGoogle Scholar
  103. 103.
    Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 2012;21(3):283–96.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.CrossRefGoogle Scholar
  105. 105.
    Read TA, Fogarty MP, Markant SL, McLendon RE, Wei Z, Ellison DW, et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell. 2009;15(2):135–47.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Ward RJ, Lee L, Graham K, Satkunendran T, Yoshikawa K, Ling E, et al. Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res. 2009;69(11):4682–90.PubMedCrossRefGoogle Scholar
  107. 107.
    Vanner RJ, Remke M, Gallo M, Selvadurai HJ, Coutinho F, Lee L, et al. Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell. 2014;26(1):33–47.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Ahlfeld J, Favaro R, Pagella P, Kretzschmar HA, Nicolis S, Schuller U. Sox2 requirement in sonic hedgehog-associated medulloblastoma. Cancer Res. 2013;73(12):3796–807.PubMedCrossRefGoogle Scholar
  109. 109.
    Liang L, Aiken C, McClelland R, Morrison LC, Tatari N, Remke M, et al. Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes. Oncotarget. 2015;6:38881–900.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lisa Liang
    • 1
  • Christopher Aiken
    • 1
    • 2
  • Kathleen Felton
    • 3
  • Amanda Hogg
    • 3
  • Frank van Landeghem
    • 4
  • T. Klonisch
    • 5
  • David D. Eisenstat
    • 3
    • 6
    • 7
  • Tamra E. Werbowetski-Ogilvie
    • 1
    • 2
    Email author
  1. 1.Regenerative Medicine Program, Department of Biochemistry & Medical GeneticsUniversity of ManitobaWinnipegCanada
  2. 2.Department of Physiology & PathophysiologyUniversity of ManitobaWinnipegCanada
  3. 3.Division of Hematology/Oncology, Department of Pediatrics, Stollery Children’s HospitalUniversity of AlbertaEdmontonCanada
  4. 4.Section of Neuropathology, Division of Anatomical Pathology, Department of Laboratory Medicine and PathologyUniversity of Alberta Hospital, University of AlbertaEdmontonCanada
  5. 5.Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
  6. 6.Department of Medical GeneticsUniversity of AlbertaEdmontonCanada
  7. 7.Department of OncologyUniversity of AlbertaEdmontonCanada

Personalised recommendations