Advertisement

Primary Pediatric Brain Tumors of the Posterior Fossa: Part I

  • Kathleen Felton
  • Amanda Hogg
  • Lisa Liang
  • Christopher Aiken
  • Thomas Klonisch
  • Frank van Landeghem
  • Tamra E. Werbowetski-Ogilvie
  • David D. EisenstatEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

In pediatric neuro-oncology practice, cerebellar tumors are often referred to as infratentorial tumors or tumors of the posterior fossa (a differential diagnosis is provided in Table 1). This anatomic region also contains the pons and medulla, which along with the midbrain comprise the brainstem. In Part I of this comprehensive review, three important pediatric brain tumors usually localized to the cerebellum are discussed (and summarized in Table 2): atypical teratoid/rhabdoid tumors (ATRTs), pilocytic astrocytomas, and ependymomas. In the companion chapter (Part II), an integrated clinical and molecular overview of medulloblastoma follows. These tumors have been selected, in part, due to their clinical significance as well as recent advances in their molecular genetics and pathological classification. For these entities and others, the histopathologic, cytogenetic, and molecular factors have been integrated into the updated fourth edition of the World Health Organization (WHO) Classification of Tumors of the Central Nervous System (Louis et al., WHO classification of tumours of the central nervous system, Revised 4th edn. IARC, Lyon, 2016a; Louis et al., Acta Neuropathol 131:803–820, 2016b).

Keywords

Childhood brain tumors Medulloblastoma Atypical teratoid/rhabdoid tumor ATRT Pilocytic astrocytoma Ependymoma Posterior fossa Cerebellum 

Notes

Acknowledgments

KF and AH are subspecialty residents training in the Pediatric Hematology/Oncology Fellowship Program, Department of Pediatrics, University of Alberta. TWO holds a Canada Research Chair in Neuro-oncology and Human Stem Cells. DDE holds the Muriel & Ada Hole Kids with Cancer Society Chair in Pediatric Oncology, supported by the Kids with Cancer Society (Edmonton, Canada) and the University of Alberta (Edmonton, Canada).

References

  1. 1.
    Ait Khelifa-Gallois N, Laroussinie F, Puget S, Sainte-Rose C, Dellatolas G. Long-term functional outcome of patients with cerebellar pilocytic astrocytoma surgically treated in childhood. Brain Inj. 2015;29(3):366–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Alkonyi B, Nowak J, Gnekow AK, Pietsch T, Warmuth-Metz M. Differential imaging characteristics and dissemination potential of pilomyxoid astrocytomas versus pilocytic astrocytomas. Neuroradiology. 2015;57(6):625–38.PubMedCrossRefGoogle Scholar
  3. 3.
    Ammerlaan AC, Ararou A, Houben MP, et al. Long-term survival and transmission of INI-1 mutation via nonpenetrant males in a family with rhabdoid tumor predisposition syndrome. Br J Cancer. 2008;98(2):474–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Athale U, Duckworth J, Odame I, et al. Childhood atypical teratoid rhabdoid tumor of the central nervous system: a meta-analysis of observational studies. J Pediatr Hematol Oncol. 2009;31:651–63.PubMedCrossRefGoogle Scholar
  5. 5.
    Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990;63(4):851–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Bar EE, Lin A, Tihan T, Burger PC, Eberhart CG. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol Exp Neurol. 2008;67(9):878–87.PubMedCrossRefGoogle Scholar
  7. 7.
    Bergthold G, Bandopadhayay P, Bi WL, Ramkissoon L, Stiles C, Segal RA, et al. Pediatric low-grade gliomas: how modern biology reshapes the clinical field. Biochim Biophys Acta. 2014;1845(2):294–307.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bourdeaut F, Lequin D, Brugieres L, et al. Frequent hSNF5/INI1 germline mutations in patients with rhabdoid tumor. Clin Cancer Res. 2011;17:31–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Bruggers CS, Bleyl SB, Pysher T, et al. Clinicopathologic comparison of familial versus sporadic atypical teratoid/rhabdoid tumors (AT/RT) of the central nervous system. Pediatr Blood Cancer. 2011;56(7):1026–31.PubMedCrossRefGoogle Scholar
  10. 10.
    Burkhard C, Di Patre PL, Schuler D, Schuler G, Yasargil MG, Yonekawa Y, et al. A population-based study of the incidence and survival rates in patients with pilocytic astrocytoma. J Neurosurg. 2003;98(6):1170–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Chalil A, Ramaswamy V. Low grade gliomas in children. J Child Neurol. 2016;31(4):517–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen CJ, Tseng YC, Hsu HL, Jung SM. Imaging predictors of intracranial ependymomas. J Comput Assist Tomogr. 2004;28(3):407–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Chi SN, Zimmerman MA, Yao X, et al. Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol. 2009;27:385–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Chillakuri CR, Sheppard D, Lea SM, et al. Notch receptor-ligand binding and activation: insights from molecular studies. Semin Cell Dev Biol. 2012;23:421–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Cin H, Meyer C, Herr R, Janzarik WG, Lambert S, Jones DT, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 2011;121(6):763–74.PubMedCrossRefGoogle Scholar
  16. 16.
    Collins VP, Jones DT, Giannini C. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129(6):775–88.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Eaton KW, Tooke LS, Wainwright LM, et al. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer. 2011;56(1):7–15.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Eisenhardt AE, Olbrich H, Roring M, Janzarik W, Anh TN, Cin H, et al. Functional characterization of a BRAF insertion mutant associated with pilocytic astrocytoma. Int J Cancer. 2011;129(9):2297–303.PubMedCrossRefGoogle Scholar
  19. 19.
    Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell. 2014;53(1):49–62.PubMedCrossRefGoogle Scholar
  20. 20.
    Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, Kudchadkar R, Burris HA 3rd, Falchook G, Algazi A, Lewis K, Long GV, Puzanov I, Lebowitz P, Singh A, Little S, Sun P, Allred A, Ouellet D, Kim KB, Patel K, Weber J. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367(18):1694–703.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Forshew T, Tatevossian RG, Lawson AR, Ma J, Neale G, Ogunkolade BW, et al. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol. 2009;218(2):172–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Fruhwald MC, Biegel JA, Bourdeaut F, Roberts CWM, Chi SN. Atypical teratoid/rhabdoid tumors-current concepts, advances in biology, and potential future therapies. Neuro-Oncology. 2016;18(6):764–78.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fruhwald MC, Hasselblatt M, Wirth S, et al. Non-linkage of familial rhabdoid tumors to SMARCB1 implies a second locus for the rhabdoid tumor predisposition syndrome. Pediatr Blood Cancer. 2006;47(3):273–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Gajjar A, Bowers DC, Karajannis MA, Leary S, Witt H, Gottardo NG. Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape. J Clin Oncol. 2015;33(27):2986–98.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gajjar A, Pfister SM, Taylor MD, Gilbertson RJ. Molecular insights into pediatric brain tumors have the potential to transform therapy. Clin Cancer Res. 2014;20(22):5630–40.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gardner SL, Asgharzadeh S, Green A, et al. Intensive induction chemotherapy followed by high dose chemotherapy with autologous hematopoietic progenitor cell rescue in young children newly diagnosed with central nervous system atypical teratoid rhabdoid tumors. Pediatr Blood Cancer. 2008;51:235–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Geyer JR, Sposto R, Jennings M, et al. Multi-agent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: a report from the Children’s Cancer Group. J Clin Oncol. 2005;23:7621–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Ginn KF, Gajjar A. Atypical teratoid rhabdoid tumor: current therapy and future directions. Front Oncol. 2012;2:114.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Grundy RG, Wilne SH, Robinson KJ, et al. Primary postoperative chemotherapy without radiotherapy for treatment of brain tumors other than ependymoma in children under 3 years: results of the first UKCCSG/SIOP CNS 9204 trial. Eur J Cancer. 2010;46:120–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Hasselblatt M, Gesk S, Oyen F, Rossi S, Viscardi E, Giangaspero F, et al. Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am J Surg Pathol. 2011;35(6):933–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Hasselblatt M, Isken S, Linge A, et al. High resolution genomic analysis suggests the absence of recurrent genomic alterations other than SMARCB1 aberrations in atypical teratoid/rhabdoid tumors. Genes Chromosom Cancer. 2013;52(2):185–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Hasselblatt M1, Oyen F, Gesk S, Kordes U, Wrede B, Bergmann M, Schmid H, Frühwald MC, Schneppenheim R, Siebert R, Paulus W. Cribriform neuroepithelial tumor (CRINET): a nonrhabdoid ventricular tumor with INI1 loss and relatively favorable prognosis. J Neuropathol Exp Neurol. 2009;68:1249–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Hayostek CJ, Shaw EG, Scheithauer B, O'Fallon JR, Weiland TL, Schomberg PJ, Kelly PJ, Hu TC. Astrocytomas of the cerebellum. A comparative clinicopathologic study of pilocytic and diffuse astrocytomas. Cancer. 1993;72:856–69.PubMedCrossRefGoogle Scholar
  34. 34.
    Hilden JM, Meerbaum S, Burger P, Finlay J, Janss A, Scheithauer BW, Walter AW, Rorke LB, Biegel JA. Central nervous system atypical teratoid/rhabdoid tumor: results of therapy in children enrolled in a registry. J Clin Oncol. 2004 Jul 15;22(14):2877-84. PMID: 15254056.PubMedCrossRefGoogle Scholar
  35. 35.
    Ida CM, Lambert SR, Rodriguez FJ, Voss JS, Mc Cann BE, Seys AR, Halling KC, Collins VP, Giannini C. BRAF alterations are frequent in cerebellar low-grade astrocytomas with diffuse growth pattern. J Neuropathol Exp Neurol. 2012;71(7):631–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Jacob K, Albrecht S, Sollier C, Faury D, Sader E, Montpetit A, et al. Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. Br J Cancer. 2009;101(4):722–33.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jeyapalan JN, Doctor GT, Jones TA, Alberman SN, Tep A, Haria CM, et al. DNA methylation analysis of paediatric low-grade astrocytomas identifies a tumour-specific hypomethylation signature in pilocytic astrocytomas. Acta Neuropathol Commun. 2016;4(1):54.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Johann P, Erkek S, Zapatka M, Kerl K, Buchhalter I, Hovestadt V, et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell. 2016;29(3):379–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Johann PD, Hovestadt V, Thomas C, Jeibmann A, Heß K, Bens S, Oyen F, Hawkins C, Pierson CR, Aldape K, Kim SP, Widing E, Sumerauer D, Hauser P, van Landeghem F, Ryzhova M, Korshunov A, Capper D, Jones DT, Pfister SM, Schneppenheim R, Siebert R, Paulus W, Frühwald MC, Kool M, Hasselblatt M. Cribriform neuroepithelial tumor: molecular characterization of a SMARCB1-deficient nonrhabdoid tumor with favorable long-term outcome. Brain Pathol. 2016. doi: 10.1111/bpa.12413. [Epub ahead of print] PMID: 27380723.PubMedCrossRefGoogle Scholar
  40. 40.
    Jones DT, Gronych J, Lichter P, Witt O, Pfister SM. MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci. 2012;69(11):1799–811.PubMedCrossRefGoogle Scholar
  41. 41.
    Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45(8):927–32.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene. 2009;28(20):2119–23.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Judkins A. Immunohistochemistry of INI1 expression: a new tool for old challenges in CNS and soft tissue pathology. Adv Anat Pathol. 2007;14(5):335–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Judkins AR, Mauger J, Ht A, Rorke LB, Biegel JA. Immunohistochemical analysis of hSNF5/INI1 in pediatric CNS neoplasms. Am J Surg Pathol. 2004;28:644–50.PubMedCrossRefGoogle Scholar
  46. 46.
    Khatua S, Ramaswamy V, Bouffet E. Current therapy and the evolving molecular landscape of paediatric ependymoma. Eur J Cancer. 2017;70:34–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Kieran MW, Roberts CW, Chi SN, et al. Absence of oncogenic canonical pathway mutations in aggressive pediatric rhabdoid tumors. Pediatr Blood Cancer. 2012;59(7):1155–7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumors. Brain Pathol. 1993;3:255–68.PubMedCrossRefGoogle Scholar
  49. 49.
    Kleihues P, Cavenee WK, editors. Pathology and genetics of tumours of the nervous system. Lyon: International Agency for Research on Cancer (IARC); 2000.Google Scholar
  50. 50.
    Korshunov A, Witt H, Hielscher T, Benner A, Remke M, Ryzhova M, et al. Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol. 2010;28(19):3182–90.PubMedCrossRefGoogle Scholar
  51. 51.
    Lafay-Cousin L, Hawkins C, Carret AS, Johnston D, Zelcer S, Wilson B, et al. Central nervous system atypical teratoid rhabdoid tumours: the Canadian paediatric brain tumour consortium experience. Eur J Cancer. 2012;48(3):353–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Lambert SR, Witt H, Hovestadt V, Zucknick M, Kool M, Pearson DM, et al. Differential expression and methylation of brain developmental genes define location-specific subsets of pilocytic astrocytoma. Acta Neuropathol. 2013;126(2):291–301.PubMedCrossRefGoogle Scholar
  53. 53.
    Lau CS, Mahendraraj K, Chamberlain RS. Atypical teratoid rhabdoid tumors: a population-based clinical outcomes study involving 174 patients from the surveillance, epidemiology, and end results database (1973–2010). Cancer Manag Res. 2015;7:301–9.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Lee DY, Gianino SM, Gutmann DH. Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell. 2012;22(1):131–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lee RS, Stewart C, Carter SL, et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest. 2012;122(8):2983–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lin FY, Chintagumpala M. Advances in management of pediatric ependymomas. Curr Oncol Rep. 2015;17(10):47.PubMedCrossRefGoogle Scholar
  57. 57.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee W. WHO classification of tumours of the central nervous system. Revised 4th ed. Lyon: IARC; 2016.Google Scholar
  58. 58.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.PubMedCrossRefGoogle Scholar
  60. 60.
    Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, Stutz AM, et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature. 2014;506(7489):445–50.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    McGuire CS, Sainani KL, Fisher PG. Incidence patterns for ependymoma: a surveillance, epidemiology, and end results study. J Neurosurg. 2009;110(4):725–9.PubMedCrossRefGoogle Scholar
  62. 62.
    McLaughlin MP, Marcus RB Jr, Buatti JM, McCollough WM, Mickle JP, Kedar A, et al. Ependymoma: results, prognostic factors and treatment recommendations. Int J Radiat Oncol Biol Phys. 1998;40(4):845–50.PubMedCrossRefGoogle Scholar
  63. 63.
    McLendon RE, Adekunle A, Rajaram V, Kocak M, Blaney SM. Embryonal central nervous system neoplasms arising in infants: a pediatric brain tumor consortium study. Arch Pathol Lab Med. 2011;135(8):984–93.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Merchant TE, Boop FA, Kun LE, Sanford RA. A retrospective study of surgery and reirradiation for recurrent ependymoma. Int J Radiat Oncol Biol Phys. 2008;71(1):87–97.PubMedCrossRefGoogle Scholar
  65. 65.
    Nelson BR, Hartman BH, Ray CA, et al. Acheate-shute like 1 (Ascl1) is required for normal delta-like (Dll) gene expression and notch signaling during retinal development. Dev Dyn. 2009;238:2163–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ogiwara H, Bowman RM, Tomita T. Long-term follow-up of pediatric benign cerebellar astrocytomas. Neurosurgery. 2012;70(1):40–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet. 2007;39(2):237–42.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Cromer C, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro-Oncology. 2015;17(4):iv1–iv62.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Packer RJ, Biegel JA, Blaney S, Finlay J, Geyer JR, Heideman R, et al. Atypical teratoid/rhabdoid tumor of the central nervous system: report on workshop. J Pediatr Hematol Oncol. 2002;24(5):337–42.PubMedCrossRefGoogle Scholar
  70. 70.
    Packer RJ, Pfister S, Bouffet E, Avery R, Bandopadhayay P, Bornhorst M, Bowers DC, Ellison D, Fangusaro J, Foreman N, Fouladi M, Gajjar A, Haas-Kogan D, Hawkins C, Ho CY, Hwang E, Jabado N, Kilburn LB, Lassaletta A, Ligon KL, Massimino M, Meeteren SV, Mueller S, Nicolaides T, Perilongo G, Tabori U, Vezina G, Warren K, Witt O, Zhu Y, Jones DT, Kieran M. Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol. 2017;19(6):750–61.Google Scholar
  71. 71.
    Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27(5):728–43.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, Li Y, et al. C11orf95-RELA fusions drive oncogenic NF-kappaB signalling in ependymoma. Nature. 2014;506(7489):451–5.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Parmar H, Hawkins C, Bouffet E, et al. Imaging findings in primary intracranial atypical teratoid/rhabdoid tumors. Pediatr Radiol. 2006;36:126.PubMedCrossRefGoogle Scholar
  74. 74.
    Paulino AC, Wen BC, Buatti JM, Hussey DH, Zhen WK, Mayr NA, et al. Intracranial ependymomas: an analysis of prognostic factors and patterns of failure. Am J Clin Oncol. 2002;25(2):117–22.PubMedCrossRefGoogle Scholar
  75. 75.
    Penman CL, Faulkner C, Lowis SP, Kurian KM. Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Front Oncol. 2015;5:54.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Perilongo G. Considerations on the role of chemotherapy and modern radiotherapy in the treatment of childhood low grade glioma. J Neuro-Oncol. 2005;75(3):301–7.CrossRefGoogle Scholar
  77. 77.
    Poretti A, Meoded A, Huisman TAGM. Neuroimaging of pediatric posterior fossa tumors including review of the literature. J Magn Reson Imaging. 2012;35(1):32–47.PubMedCrossRefGoogle Scholar
  78. 78.
    Reddy AT. Atypical teratoid/rhabdoid tumors of the central nervous system. J Neuro-Oncol. 2005;75(3):309–13.CrossRefGoogle Scholar
  79. 79.
    Reinhard H, Reinert J, Beier R, et al. Rhabdoid tumors in children: prognostic factors in 70 patients diagnosed in Germany. Oncol Rep. 2008;19:819–23.PubMedGoogle Scholar
  80. 80.
    Rodriguez FJ, Scheithauer BW, Burger PC, Jenkins S, Giannini C. Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol. 2010;34:147–60.PubMedCrossRefGoogle Scholar
  81. 81.
    Rorke LB, Packer R, Biegel J. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood. J Neuro-Oncol. 1995;24:21–8.CrossRefGoogle Scholar
  82. 82.
    Rorke LB, Packer RJ, Biegel JA. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J Neurosurg. 1996;85(1):56–65.PubMedCrossRefGoogle Scholar
  83. 83.
    Rousseau E, Palm T, Scaravilli F, Ruchoux MM, Figarella-Branger D, Salmon I, et al. Trisomy 19 ependymoma, a newly recognized genetico-histological association, including clear cell ependymoma. Mol Cancer. 2007;6:47.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121(3):397–405.PubMedCrossRefGoogle Scholar
  85. 85.
    Sevenet N, Sheridan E, Amran D, Schneider P, et al. Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet. 1999;65:1342–8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sharif S, Upadhyaya M, Ferner R, Majounie E, Shenton A, Baser M, et al. A molecular analysis of individuals with neurofibromatosis type 1 (NF1) and optic pathway gliomas (OPGs), and an assessment of genotype-phenotype correlations. J Med Genet. 2011;48(4):256–60.PubMedCrossRefGoogle Scholar
  87. 87.
    Sharifi K, Morihiro Y, Maekawa M, et al. FABP7 expression in normal and stab-injured brain cortex and its role in astrocyte proliferation. Histochem Cell Biol. 2011;136:501–13.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Sharma MK, Mansur DB, Reifenberger G, Perry A, Leonard JR, Aldape KD, et al. Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res. 2007;67(3):890–900.PubMedCrossRefGoogle Scholar
  89. 89.
    Sievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, Resnick AC, et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. 2009;19(3):449–58.PubMedCrossRefGoogle Scholar
  90. 90.
    Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 2012;337(6099):1231–5.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Squire SE, Chan MD, Marcus KJ. Atypical teratoid/rhabdoid tumor: the controversy behind radiation therapy. J Neuro-Oncol. 2007;81(1):97–111.CrossRefGoogle Scholar
  92. 92.
    Strother D. Atypical teratoid rhabdoid tumors of childhood: diagnosis, treatment and challenges. Expert Rev Anticancer Ther. 2005. 10/01;5(5):907–15.PubMedCrossRefGoogle Scholar
  93. 93.
    Tatevossian RG, Lawson AR, Forshew T, Hindley GF, Ellison DW, Sheer D. MAPK pathway activation and the origins of pediatric low-grade astrocytomas. J Cell Physiol. 2010;222(3):509–14.PubMedGoogle Scholar
  94. 94.
    Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 2005;8(4):323–35.PubMedCrossRefGoogle Scholar
  95. 95.
    Tchoghandjian A, Fernandez C, Colin C, El Ayachi I, Voutsinos-Porche B, Fina F, et al. Pilocytic astrocytoma of the optic pathway: a tumour deriving from radial glia cells with a specific gene signature. Brain. 2009;132(Pt 6):1523–35.PubMedCrossRefGoogle Scholar
  96. 96.
    Tekautz TM, Fuller CE, Blaney S, Fouladi M, Broniscer A, Merchant TE, et al. Atypical teratoid/rhabdoid tumors (ATRT): improved survival in children 3 years of age and older with radiation therapy and high-dose alkylator-based chemotherapy. J Clin Oncol. 2005;23(7):1491–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Tihan T, Fisher PG, Kepner JL, Godfraind C, McComb RD, Goldthwaite PT, Burger PC. Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropathol Exp Neurol. 1999;58:1061–8.PubMedCrossRefGoogle Scholar
  98. 98.
    Timmermann B, Kortmann RD, Kuhl J, Meisner C, Slavc I, Pietsch T, et al. Combined postoperative irradiation and chemotherapy for anaplastic ependymomas in childhood: results of the German prospective trials HIT 88/89 and HIT 91. Int J Radiat Oncol Biol Phys. 2000;46(2):287–95.PubMedCrossRefGoogle Scholar
  99. 99.
    Torchia J, Picard D, Lafay-Cousin L, Hawkins CE, Kim S-K, Letourneau L, et al. Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncol. 2015;16:569–82.PubMedCrossRefGoogle Scholar
  100. 100.
    Versteege I, Sevenet N, Lange J, et al. Truncating mutations of hSNF5/INI1 in aggressive pediatric cancer. Nature. 1998;394:203–6.PubMedCrossRefGoogle Scholar
  101. 101.
    von Hoff K, Hinkes B, Dannenmann-Stern E, von Bueren AO, Warmuth-Metz M, Soerensen N, et al. Frequency, risk-factors and survival of children with atypical teratoid rhabdoid tumors (AT/RT) of the CNS diagnosed between 1988 and 2004, and registered to the German HIT database. Pediatr Blood Cancer. 2011;57(6):978–85.CrossRefGoogle Scholar
  102. 102.
    Wani K, Armstrong TS, Vera-Bolanos E, Raghunathan A, Ellison D, Gilbertson R, et al. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol. 2012;123(5):727–38.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Warmuth-Metz M, Bison B, Dannemann-Stern E, Kortmann R, Rutkowski S, Pietsch T. CT and MR imaging in atypical teratoid/rhabdoid tumors of the central nervous system. Neuroradiology. 2008;50:447–52.PubMedCrossRefGoogle Scholar
  104. 104.
    Wilson BG, Roberts CW. SWI/SNF nucleosome remodelers and cancer. Nat Rev Cancer. 2011;11:481–92.PubMedCrossRefGoogle Scholar
  105. 105.
    Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. 2011;20(2):143–57.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Woehrer A, Slavc I, Waldhoer T, Heinzl H, Zielonke N, Czech T, et al. Incidence of atypical teratoid/rhabdoid tumors in children. Cancer. 2010;116(24):5725–32.PubMedCrossRefGoogle Scholar
  107. 107.
    Wu J, Armstrong TS, Gilbert MR. Biology and management of ependymomas. Neuro-Oncology. 2016;18(7):902–13.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Yoo AS, Crabtree GR. ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol. 2009;19:120–6.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Zacharoulis S, Ashley S, Moreno L, Gentet JC, Massimino M, Frappaz D. Treatment and outcome of children with relapsed ependymoma: a multi-institutional retrospective analysis. Childs Nerv Syst. 2010;26(7):905–11.PubMedCrossRefGoogle Scholar
  110. 110.
    Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45(6):602–12.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Zuzak TJ, Poretti A, Drexel B, Zehnder D, Boltshauser E, Grotzer MA. Outcome of children with low-grade cerebellar astrocytoma: long-term complications and quality of life. Childs Nerv Syst. 2008;24(12):1447–55.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kathleen Felton
    • 1
  • Amanda Hogg
    • 1
  • Lisa Liang
    • 2
  • Christopher Aiken
    • 2
    • 3
  • Thomas Klonisch
    • 4
  • Frank van Landeghem
    • 5
  • Tamra E. Werbowetski-Ogilvie
    • 2
    • 3
  • David D. Eisenstat
    • 1
    • 6
    • 7
    Email author
  1. 1.Division of Hematology/Oncology, Department of Pediatrics, Stollery Children’s HospitalUniversity of AlbertaEdmontonCanada
  2. 2.Regenerative Medicine Program, Department of Biochemistry & Medical GeneticsUniversity of ManitobaWinnipegCanada
  3. 3.Department of Physiology & PathophysiologyUniversity of ManitobaWinnipegCanada
  4. 4.Department of Human Anatomy & Cell ScienceUniversity of ManitobaWinnipegCanada
  5. 5.Section of Neuropathology, Division of Anatomical Pathology, Department of Laboratory Medicine and PathologyUniversity of Alberta HospitalEdmontonCanada
  6. 6.Department of Medical GeneticsUniversity of AlbertaEdmontonCanada
  7. 7.Department of OncologyUniversity of AlbertaEdmontonCanada

Personalised recommendations