Advertisement

Hormonal Regulation of Cerebellar Development and Its Disorders

  • Noriyuki KoibuchiEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Cerebellar development and plasticity involves in various epigenetic processes that activate specific genes at different time points. Such epigenetic influences include hormonal signals from endocrine cells. Various hormone receptors are expressed in the cerebellum, and cerebellar function is greatly influenced by hormonal status. The aim of this chapter is to introduce several key features of hormones and their receptors involved in the regulation of cerebellar development and plasticity. Furthermore, cerebellar developmental disorders caused by aberrant hormonal status are also discussed. This chapter also covers the effect of endocrine-disrupting chemicals that may alter hormone functions in the cerebellum.

Keywords

Steroid hormone Thyroid hormone Nuclear receptor Critical period Endocrine-disrupting chemicals 

References

  1. 1.
    Leto K, Arancillo M, Becker EB, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJ, Hawkes R. Consensus paper: cerebellar development. Cerebellum. 2016;15:789–828.PubMedCrossRefGoogle Scholar
  2. 2.
    Suzuki T, Abe T. Thyroid hormone transporters in the brain. Cerebellum. 2008;7:75–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tetel MJ, Auger AP, Charlier TD. Who’s in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Front Neuroendocrinol. 2009;30:328–42.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell. 2006;126:789–99.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Qin J, Suh JM, Kim BJ, Yu CT, Tanaka T, Kodama T, Tsai MJ, Tsai SY. The expression pattern of nuclear receptors during cerebellar development. Dev Dyn. 2007;236:810–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Koibuchi N, Chin WW. Thyroid hormone action and brain development. Trends Endocrinol Metab. 2000;11:123–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Koibuchi N, Jingu H, Iwasaki T, Chin WW. Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum. 2003;2:279–89.PubMedCrossRefGoogle Scholar
  9. 9.
    Koibuchi N. The role of thyroid hormone on functional organization in the cerebellum. Cerebellum. 2013;12:304–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Wassner AJ, Brown RS. Hypothyroidism in the newborn pariod. Curr Opin Endocrinol Diates Obes. 2013;20:449–54.CrossRefGoogle Scholar
  11. 11.
    Hedges VL, Ebner TJ, Meisel RL, Mermelstein PG. The cerebellum as a target for estrogen action. Front Neuroendocrinol. 2012;33:403–11.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Tsutsui K. Neurosteroid biosynthesis and action during cerebellar development. Cerebellum. 2012;11:414–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Constantinof A, Moisiadis VG, Matthews SG. Programming of stress pathways: a transgenerational perspective. J Steroid Biochem Mol Biol. 2016;160:175–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Schutter DJLG. The cerebello-hypothalamic-pituitary-adrenal axis dysregulation hypothesis in depressive disorder. Med Hypotheses. 2012;79:779–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Ibhazehiebo K, Koibuchi N. Impact of endocrine disrupting chemicals on thyroid function and brain development. Expert Rev Endocr Metab. 2014;9:579–91.CrossRefGoogle Scholar
  16. 16.
    Calvo R, Obregon MJ, de Ruiz OC, del Escobar RF, de Morreale Escobar G. Congenital hypothyroidism, as studied in rats. J Clin Invest. 1990;86:889–99.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Guadano-Ferraz A, Obregon MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A. 1997;94:10391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Heuer H, Maier MK, Iden S, Mittag J, Friesema ECH, Visser TJ, et al. The monocarboxylate transporter8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology. 2005;146:1701–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993;14:184–93.PubMedGoogle Scholar
  20. 20.
    Bradley DJ, Towle HC, Young WS III. Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci. 1992;12:2288–302.PubMedCrossRefGoogle Scholar
  21. 21.
    Kilby MD, Gittoes N, McCabe C, Verhaeg J, Franklyn JA. Expression of thyroid receptor isoforms in the human fetal central nervous system and the effects of intrauterine growth restriction. Clin Endocrinol. 2000;53:469–77.CrossRefGoogle Scholar
  22. 22.
    Koibuchi N. Animal models to study thyroid hormone action in cerebellum. Cerebellum. 2009;8:89–97.PubMedCrossRefGoogle Scholar
  23. 23.
    Portella AC, Carvalho F, Faustino L, Wondisford FE, OrtigaCarvalho TM, Gomes FC. Thyroid hormone receptor β mutation causes severe impairment of cerebellar development. Mol Cell Neurosci. 2010;44:68–77.PubMedCrossRefGoogle Scholar
  24. 24.
    Venero C, Guadaño-Ferraz A, Herrero AI, Nordström K, Manzano J, de Escobar GM, Bernal J, Vennström B. Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor α1 can be ameliorated by T3 treatment. Genes Dev. 2005;19:2152–63.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Fauquier T, Chatonnet F, Picou F, Richard S, Fossat N, Aguilera N, Lamonerie T, Flamant F. Purkinje cells and Bergmann glia are primary targets of the TRα1 thyroid hormone receptor during mouse cerebellum postnatal development. Development. 2014;141:166–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Yu L, Iwasaki T, Xu M, Lesmana R, Xiong Y, Shimokawa N, Chin WW, Koibuchi N. Aberrant cerebellar development of transgenic mice expressing dominant-negative thyroid hormone receptor in cerebellar Purkinje cells. Endocrinology. 2015;156:1565–76.PubMedCrossRefGoogle Scholar
  27. 27.
    Beck-Peccoz P, Chatterjee VKK. The variable clinica phenotype in thyroid hormone resistance syndrome. Thyroid. 1994;4:225–32.PubMedCrossRefGoogle Scholar
  28. 28.
    Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol. 2014;10:582–91.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the Dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20:236–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Schwartz CE, May MM, Carpenter NJ, Rogers RC, Martin J, Bialer MG, Ward J, Sanabria J, Marsa S, Lewis JA, Echeverri R, Lubs HA, Voeller K, Simensen RJ, Stevenson RE. Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am J Hum Genet. 2005;77:41–53.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wirth EK, Schweizer U, Köhrle J. Transport of thyroid hormone in brain. Front Endocrinol. 2014;5:98.CrossRefGoogle Scholar
  32. 32.
    Delbaere J, Vancamp P, Van Herck SL, Bourgeois NM, Green MJ, Wingate RJ, Darras VM. MCT8 deficiency in Purkinje cells disrupts embryonic chicken cerebellar development. J Endocrinol. 2017;232:259–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Hampl R, Bičíková M, Sosvorová L. Hormones and the blood-brain barrier. Horm Mol Biol Clin Investig. 2015;21:159–64.PubMedGoogle Scholar
  34. 34.
    Wright CL, Schwarz JS, Dean SL, McCarthy MM. Cellular mechanisms of estradiol-mediated sexual differentiation of the brain. Trends Endocrinol Metab. 2010;21:553–61.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bakker J, Brock O. Early oestrogens in shaping reproductive networks: evidence for a potential organisational role of oestradiol in female brain development. J Neuroendocrinol. 2010;22:728–35.PubMedGoogle Scholar
  36. 36.
    Zuloaga DG, Puts DA, Jordan CL, Breedlove SM. The role of androgen receptors in the masculinization of brain and behavior: what we’ve learned from the testicular feminization mutation. Horm Behav. 2008;53:613–26.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Gottfried-Blackmore A, Croft G, McEwen BS, Bulloch K. Transcriptional activity of estrogen receptors ERα and ERβ in the EtC.1 cerebellar granule cell line. Brain Res. 2007;1186:41–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Ikeda Y, Nagai A. Differential expression of the estrogen receptors alpha and beta during postnatal development of the rat cerebellum. Brain Res. 2006;1083:39–49.PubMedCrossRefGoogle Scholar
  39. 39.
    Pérez SE, Chen EY, Mufson EJ. Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. Brain Res Dev Brain Res. 2003;145:117–39.PubMedCrossRefGoogle Scholar
  40. 40.
    Jakab RL, Wong JK, Belcher SM. Estrogen receptor-ß immunoreactivity in differentiating cells of the developing rat cerebellum. J Comp Neurol. 2001;430:396–409.PubMedCrossRefGoogle Scholar
  41. 41.
    Belcher SM. Rapid signaling mechanisms of estrogens in the developing cerebellum. Brain Res Rev. 2008;57:481–92.PubMedCrossRefGoogle Scholar
  42. 42.
    Sholl SA, Kim KL. Aromatase, 5-alpha-reductase, and androgen receptor levels in the fetal monkey brain during early development. Neuroendocrinology. 1990;52:94–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Lavaque E, Mayen A, Azoitia I, Tene-Sempere M, Garcia-Segura LM. Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, chtochrome p450scc, and aromatase in the olivocerebellar system. J Neurobiol. 2006;66:308–18.PubMedCrossRefGoogle Scholar
  44. 44.
    Sakamoto H, Mezaki Y, Shikimi H, Ukena K, Tsutusi K. Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology. 2003;144:4466–77.PubMedCrossRefGoogle Scholar
  45. 45.
    Ukena K, Kohchi C, Tsutsui K. Expression and activity of 3beta-hydroxysteroid dehydrogenase/delta5-delta4-isomerase in the rat Pukinje neuron during neonatal life. Endocrinology. 1999;140:805–13.PubMedCrossRefGoogle Scholar
  46. 46.
    Sakamoto H, Ukena K, Tsutsui K. Effects of progesterone synthesized de novo in the developing Purkinje cell on its dendritic growth and synaptogenesis. J Neurosci. 2001;21:6221–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Abel JM, Witt DM, Rissman EF. Sex differences in the cerebellum and frontal cortex: roles of estrogen receptor alpha and sex chromosome genes. Neuroendocrinology. 2011;93:230–40.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Raz N, Gunning-Dixon F, Head D, Williamson A, Acker JD. Age and sex difference in the cerebellum and the ventral pons: a prospective MR study of healthy adults. Am J Neuroradiol. 2001;22:1161–7.PubMedGoogle Scholar
  49. 49.
    Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex. 1996;6:551–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Nopoulos P, Flaum M, O’Leary D, Andreason NC. Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Res. 2000;98:1–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Werling DM. The role of sex-differential biology in risk for autism spectrum disorder. Biol Sex Differ. 2016;7:58.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard D, Artru AA, Maravilla KR, Giedd JN, Munson J, Dawson G, Dager SR. Brain structural abnormalities in young children with autism spectrum disorder. Neurology. 2002;59:184–92.PubMedCrossRefGoogle Scholar
  53. 53.
    Murakami JW, Courchesne E, Press GA, Yeung-Courchesne R, Hesselink JR. Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol. 1989;46:689–94.PubMedCrossRefGoogle Scholar
  54. 54.
    Courchesne E. Neuroanatomic imaging in autism. Pediatrics. 1991;87:781–90.PubMedGoogle Scholar
  55. 55.
    Heh CW, Smith R, Wu J, Hazlett E, Russell A, Asarnow R, Tanguay P, Buchsbaum MS. Positron emission tomography of the cerebellum in autism. Am J Psychiatry. 1989;146:242–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Davies W. Sex differences in attention deficit hyperactivity disorder: candidate genetic and endocrine mechanisms. Front Neuroendocrinol. 2014;35:331–46.PubMedCrossRefGoogle Scholar
  57. 57.
    Bledsoe J, Semrud-Clikeman M, Pliszka SR. A magnetic resonance imaging study of the cerebellar vermis in chronically treated and treatmentnaive children with attention-deficit/hyperactivity disorder combined type. Biol Psychiatry. 2009;65:620–4.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lesmana R, Shimokawa N, Takatsuru Y, Iwasaki T, Koibuchi N. Lactational exposure to hydroxylated polychlorinated biphenyls (OH-PCB 106) causes hyperactivity in male rat pups by aberrant increase in dopamine and its receptor. Environ Toxicol. 2014;29:876–83.PubMedCrossRefGoogle Scholar
  59. 59.
    Mueller SC, Wierckx K, Jackson K, T’Sjoen G. Circulating androgens correlate with resting-state MRI in transgender men. Psychoneuroendocrinology. 2016;73:91–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Simon L, Kozák LR, Simon V, Czobor P, Unoka Z, Szabó Á, Csukly G. Regional grey matter structure differences between transsexuals and healthy controls – a voxel based morphometry study. PLoS One. 2013;8:e83947.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rashid S, Lewis GF. The mechanisms of differential glucocorticoid and mineralocorticoid action in the brain and peripheral tissues. Clin Biochem. 2005;38:401–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Evanson NK, Herman JP, Sakai RR, Krause EG. Nongenomic actions of adrenal steroids in the central nervous system. J Neuroendocrinol. 2010;22:846–61.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Fowden AL, Li J, Forhead AJ. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc Nutr Soc. 1998;57:113–22.PubMedCrossRefGoogle Scholar
  64. 64.
    Diaz R, Brown RW, Seckl JR. Distinct ontogeny of glucocorticoid and mineralcoticoid receptor and 11b-hdroxysteriod dehydrogenase types I and II mRNAs in the fetal rat brain suggests acomplex control of glucocorticoid actions. J Neurosci. 1998;18:2570–80.PubMedCrossRefGoogle Scholar
  65. 65.
    Lawson A, Ahima RS, Krozowski Z, Harlan RE. Postnatal development of corticosteroid receptor immunoreactivity in the rat cerebellum and brain stem. Neuroendocrinology. 1992;55:695–707.PubMedCrossRefGoogle Scholar
  66. 66.
    Robson AC, Leckie CM, Seckl JR, Holms MC. 11beta-hydroxysteroid dehydrogenase type 2 in the postnatal and adult rat brain. Brain Res Mol Brain Res. 1998;61:1–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Rugerio-Vargas C, Ramírez-Escoto M, DelaRosa-Rugerio C, Rivas-Manzano P. Prenatal corticosterone influences the trajectory of neuronal development, delaying or accelerating aspects of the Purkinje cell differentiation. Histol Histopathol. 2007;22:963–9.PubMedGoogle Scholar
  68. 68.
    Pavlik A, Buresova M. The neonatal cerebellum: the highest level of glucocorticoid receptors in the brain. Brain Res. 1984;314:13–21.PubMedCrossRefGoogle Scholar
  69. 69.
    Velazquez PN, Romano MC. Corticosterone therapy during gestation: effects on the development of rat cerebellum. Int J Dev Neurosci. 1987;5:189–94.PubMedCrossRefGoogle Scholar
  70. 70.
    Bohn MC, Lauder JM. Cerebellar granule cell genesis in the hydrocortisone-treated rats. Dev Neurosci. 1980;3:81–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Ahlbom E, Gogvadze V, Chen M, Celsi G, Ceccatelli S. Prenatal exposure to high levels of glucocorticoids increases the susceptibility of cerebellar granule cells to oxidative stress-induced cell death. Proc Natl Acad Sci U S A. 2000;97:14726–30.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Carson R, Mnaghan-Nichols AP, DeFranco DB, Rudine AC. Effects of antenatal glucocorticoids on the developing brain. Steroids. 2016;114:25–32.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Noguchi KK. Gucocorticoid induced cerebellar toxicity in the developing neonate: implication for glucocorticoid therapy during bronchopulmonary dyspasia. Cell. 2014;3:36–52.CrossRefGoogle Scholar
  74. 74.
    Babenko O, Kovalchuk I, Metz GA. Stress-induced perinatal and transgenerational epgenetic programming of brain development and mental health. Neurosci Biobehav Res. 2015;48:70–91.CrossRefGoogle Scholar
  75. 75.
    Shutter DLJG. The cerebello-hypothalamic-pituitary-adrenal axis dysregulation hypothesis in depressive disorder. Med Hypotheses. 2012;79:779–83.CrossRefGoogle Scholar
  76. 76.
    Llorente R, Gallardo ML, Berzal AL, Prada C, Garcia-Segura LM, Viveros MP. Early maternal deprivation in rats induces gender-dependent effects on developing hippocampal and cerebellar cells. Int J Dev Neurosci. 2009;27:233–2341.PubMedCrossRefGoogle Scholar
  77. 77.
    Miki T, Yokoyama T, Kusaka T, Suzuki S, Ohta K, Warita K, Wang ZY, Ueki M, Sumitani K, Bellinger FP, Tamai M, Liu JQ, Yakura T, Takeuchi Y. Early postnatal repeated maternal deprivation causes a transient increase in OMpg and BDNF in rat cerebellum suggesting precocious myelination. J Neurol Sci. 2014;336:62–7.PubMedCrossRefGoogle Scholar
  78. 78.
    IPCS. Global assessment of the sate-of-the-science of endocrine disruptors. http://www.who.int/ipcs/publicatios/new_issues/endocrine_disruptors/en/.
  79. 79.
    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30:293–342.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:E1–E150.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13:330–8.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ibhazehiebo K, Iwasaki T, Kimura-Kuroda J, Miyazaki W, Shimokawa N, Koibuchi N. Disruption of thyroid hormone receptor-mediated transcription and thyroid hormone-induced Purkinje cell dendrite arborization by polybrominated diphenyl ethers. Env Health Perspect. 2011;119:168–75.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Integrative PhysiologyGunma University Graduate School of MedicineMaebashiJapan

Personalised recommendations