Biology and Genomics of LCH and Related Disorders

Chapter

Abstract

The results of genomic analyses have provided a better understanding of the pathophysiology of the histiocytoses. This has been particularly relevant for the L Group histiocytoses, which include Langerhans cell histiocytosis (LCH), Erdheim-Chester disease (ECD), and indeterminate cell histiocytosis (ICH). Although the phenotype of LCH histiocytes is distinct from that of ECD histiocytes and the clinical presentations of the pure forms of each disease are different, they share many of the same genetic abnormalities. Approximately 50% of patients with LCH or ECD have activating somatic mutations of BRAF, and another 25% have activating mutations of MAP2K1, which encodes MEK1. The remaining LCH patients have mutations in NRAS, KRAS, or PIK3CA or no genomic abnormalities detected to date, although the ERK pathway is activated in those patients. The remaining ECD patients also have mutations in NRAS, KRAS, and PIK3CA. Translocations that produce fusion proteins which activate BRAF occur more frequently in ECD than in LCH. The presence of some of these activating mutations in circulating cells or in CD34+ bone marrow cells suggests that these diseases may arise from transforming events in early myeloid precursors. ICH cells do not carry these mutations but rather recurrent translocations. The driver status of BRAF and MAP2K1 mutations in LCH and ECD is supported by the clinical responses of patients with these mutations to the corresponding inhibitor drugs. Thus, the contemporary understanding is that these diseases are neoplasms of myeloid lineage cells accompanied by inflammatory cells.

Keywords

Langerhans cell histiocytosis Erdheim-Chester disease Intermediate cell histiocytosis ERK BRAF MAP2K1 MEK Neoplasm 

References

  1. 1.
    Emile JF, Abla O, Fraitag S, Horne A, Haroche J, Donadieu J, et al. Revised classification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127(22):2672–81.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F. WHO classification of tumours of soft tissue and bone. 4th ed. International Agency for Research on Cancer: Lyon; 2013.Google Scholar
  3. 3.
    Nezelof C, Basset F, Rousseau MF. Histiocytosis X: histogenetic arguments for a Langerhans cell origin. Biomedicine. 1973;18(5):365–71.PubMedGoogle Scholar
  4. 4.
    Writing Group of the Histiocyte Society. Histiocytosis syndromes in children. Lancet. 1987;1(8526):208–9.Google Scholar
  5. 5.
    Stalemark H, Laurencikas E, Karis J, Gavhed D, Fadeel B, Henter JI. Incidence of Langerhans cell histiocytosis in children: a population-based study. Pediatr Blood Cancer. 2008;51(1):76–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Guyot-Goubin A, Donadieu J, Barkaoui M, Bellec S, Thomas C, Clavel J. Descriptive epidemiology of childhood Langerhans cell histiocytosis in France, 2000-2004. Pediatr Blood Cancer. 2008;51(1):71–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Gadner H, Heitger A, Grois N, Gatterer-Menz I, Ladisch S. Treatment strategy for disseminated Langerhans cell histiocytosis. DAL HX-83 study group. Med Pediatr Oncol. 1994;23(2):72–80.PubMedCrossRefGoogle Scholar
  8. 8.
    Minkov M, Grois N, Heitger A, Potschger U, Westermeier T, Gadner H. Treatment of multisystem Langerhans cell histiocytosis. Results of the DAL-HX 83 and DAL-HX 90 studies. DAL-HX study group. Klin Padiatr. 2000;212(4):139–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Badalian-Very G, Vergilio JA, Fleming M, Rollins BJ. Pathogenesis of Langerhans cell histiocytosis. Annu Rev Pathol. 2013;8:1–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Degar BA, Fleming MD, Rollins BJ, Rodriguez-Galindo C. Histiocytoses. In: Orkin SH, Fisher DE, Ginsburg D, Look AT, Lux SE, Nathan DG, editors. Nathan and Oski’s hematology and oncology of infancy and childhood. 8th ed. Philadelphia: Elsevier Saunders; 2015. p. 2100–22.Google Scholar
  11. 11.
    Diamond EL, Dagna L, Hyman DM, Cavalli G, Janku F, Estrada-Veras J, et al. Consensus guidelines for the diagnosis and clinical management of Erdheim-Chester disease. Blood. 2014;124(4):483–92.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hervier B, Haroche J, Arnaud L, Charlotte F, Donadieu J, Neel A, et al. Association of both Langerhans cell histiocytosis and Erdheim-Chester disease linked to the BRAFV600E mutation. Blood. 2014;124(7):1119–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Wood GS, Hu CH, Beckstead JH, Turner RR, Winkelmann RK. The indeterminate cell proliferative disorder: report of a case manifesting as an unusual cutaneous histiocytosis. J Dermatol Surg Oncol. 1985;11(11):1111–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Sidoroff A, Zelger B, Steiner H, Smith N. Indeterminate cell histiocytosis--a clinicopathological entity with features of both X- and non-X histiocytosis. Br J Dermatol. 1996;134(3):525–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Rezk SA, Spagnolo DV, Brynes RK, Weiss LM. Indeterminate cell tumor: a rare dendritic neoplasm. Am J Surg Pathol. 2008;32(12):1868–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Broadbent V, Pritchard J, Davies EG, Levinsky RJ, Heaf D, Atherton DJ, et al. Spontaneous remission of multi-system histiocytosis X. Lancet. 1984;1(8371):253–4.PubMedCrossRefGoogle Scholar
  17. 17.
    McElligott J, McMichael A, Sangueza OP, Anthony E, Rose D, McLean TW. Spontaneous regression of Langerhans cell histiocytosis in a neonate with multiple bony lesions. J Pediatr Hematol Oncol. 2008;30(1):85–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Jenson HB, McClain KL, Leach CT, Deng JH, Gao SJ. Evaluation of human herpesvirus type 8 infection in childhood Langerhans cell histiocytosis. Am J Hematol. 2000;64(4):237–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Jeziorski E, Senechal B, Molina TJ, Devez F, Leruez-Ville M, Morand P, et al. Herpes-virus infection in patients with Langerhans cell histiocytosis: a case-controlled sero-epidemiological study, and in situ analysis. PLoS One. 2008;3(9):e3262.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Murakami I, Matsushita M, Iwasaki T, Kuwamoto S, Kato M, Horie Y, et al. Merkel cell polyomavirus DNA sequences in peripheral blood and tissues from patients with Langerhans cell histiocytosis. Hum Pathol. 2014;45(1):119–26.PubMedCrossRefGoogle Scholar
  21. 21.
    de Graaf JH, Tamminga RY, Dam-Meiring A, Kamps WA, Timens W. The presence of cytokines in Langerhans’ cell histiocytosis. J Pathol. 1996;180(4):400–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Egeler RM, Favara BE, van Meurs M, Laman JD, Claassen E. Differential in situ cytokine profiles of Langerhans-like cells and T cells in Langerhans cell histiocytosis: abundant expression of cytokines relevant to disease and treatment. Blood. 1999;94(12):4195–201.PubMedGoogle Scholar
  23. 23.
    Emile JF, Fraitag S, Leborgne M, de Prost Y, Brousse N. Langerhans’ cell histiocytosis cells are activated Langerhans’ cells. J Pathol. 1994;174(2):71–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Emile JF, Tartour E, Brugieres L, Donadieu J, Le Deist F, Charnoz I, et al. Detection of GM-CSF in the sera of children with Langerhans’ cell histiocytosis. Pediatr Allergy Immunol. 1994;5(3):162–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Rolland A, Guyon L, Gill M, Cai YH, Banchereau J, McClain K, et al. Increased blood myeloid dendritic cells and dendritic cell-poietins in Langerhans cell histiocytosis. J Immunol. 2005;174(5):3067–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Coury F, Annels N, Rivollier A, Olsson S, Santoro A, Speziani C, et al. Langerhans cell histiocytosis reveals a new IL-17A-dependent pathway of dendritic cell fusion. Nat Med. 2008;14(1):81–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Hogarty MD. IL-17A in LCH: systemic biomarker, local factor, or none of the above? Mol Ther J Am Soc Gene Ther. 2011;19(8):1405–6.CrossRefGoogle Scholar
  28. 28.
    Willman CL, Busque L, Griffith BB, Favara BE, McClain KL, Duncan MH, et al. Langerhans’-cell histiocytosis (histiocytosis X)--a clonal proliferative disease. N Engl J Med. 1994;331(3):154–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Yu RC, Chu C, Buluwela L, Chu AC. Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet. 1994;343(8900):767–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Betts DR, Leibundgut KE, Feldges A, Pluss HJ, Niggli FK. Cytogenetic abnormalities in Langerhans cell histiocytosis. Br J Cancer. 1998;77(4):552–5.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    da Costa CE, Szuhai K, van Eijk R, Hoogeboom M, Sciot R, Mertens F, et al. No genomic aberrations in Langerhans cell histiocytosis as assessed by diverse molecular technologies. Genes Chromosomes Cancer. 2009;48(3):239–49.PubMedCrossRefGoogle Scholar
  32. 32.
    Murakami I, Gogusev J, Fournet JC, Glorion C, Jaubert F. Detection of molecular cytogenetic aberrations in langerhans cell histiocytosis of bone. Hum Pathol. 2002;33(5):555–60.PubMedCrossRefGoogle Scholar
  33. 33.
    Chikwava KR, Hunt JL, Mantha GS, Murphy JE, Jaffe R. Analysis of loss of heterozygosity in single-system and multisystem Langerhans’ cell histiocytosis. Pediatr Dev Pathol. 2007;10(1):18–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B, Calicchio ML, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Tang K, Fu D, Kotter S, Cotter RJ, Cantor CR, Koster H. Matrix-assisted laser desorption/ionization mass spectrometry of immobilized duplex DNA probes. Nucleic Acids Res. 1995;23(16):3126–31.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, et al. High-throughput oncogene mutation profiling in human cancer. Nat Genet. 2007;39(3):347–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Chetritt J, Paradis V, Dargere D, Adle-Biassette H, Maurage CA, Mussini JM, et al. Chester-Erdheim disease: a neoplastic disorder. Hum Pathol. 1999;30(9):1093–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Gong L, He XL, Li YH, Ren KX, Zhang L, Liu XY, et al. Clonal status and clinicopathological feature of Erdheim-Chester disease. Pathol Res Pract. 2009;205(9):601–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Vencio EF, Jenkins RB, Schiller JL, Huynh TV, Wenger DD, Inwards CY, et al. Clonal cytogenetic abnormalities in Erdheim-Chester disease. Am J Surg Pathol. 2007;31(2):319–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Haroche J, Charlotte F, Arnaud L, von Deimling A, Helias-Rodzewicz Z, Hervier B, et al. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood. 2012;120(13):2700–3.PubMedCrossRefGoogle Scholar
  41. 41.
    O’Malley DP, Agrawal R, Grimm KE, Hummel J, Glazyrin A, Dim DC, et al. Evidence of BRAF V600E in indeterminate cell tumor and interdigitating dendritic cell sarcoma. Ann Diagn Pathol. 2015;19(3):113–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Brown RA, Kwong BY, McCalmont TH, Ragsdale B, Ma L, Cheung C, et al. ETV3-NCOA2 in indeterminate cell histiocytosis: clonal translocation supports sui generis. Blood. 2015;126(20):2344–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Nelson DS, Quispel W, Badalian-Very G, van Halteren AG, van den Bos C, Bovee JV, et al. Somatic activating ARAF mutations in Langerhans cell histiocytosis. Blood. 2014;123(20):3152–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Chakraborty R, Hampton OA, Shen X, Simko SJ, Shih A, Abhyankar H, et al. Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood. 2014;124(19):3007–15.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Berres ML, Lim KP, Peters T, Price J, Takizawa H, Salmon H, et al. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med. 2014;211(4):669–83.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Heritier S, Emile JF, Barkaoui MA, Thomas C, Fraitag S, Boudjemaa S, et al. BRAF mutation correlates with high-risk Langerhans cell histiocytosis and increased resistance to first-line therapy. J Clin Oncol. 2016;34(25):3023–30.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Mourah S, How-Kit A, Meignin V, Gossot D, Lorillon G, Bugnet E, et al. Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J. 2016;47(6):1785–96.PubMedCrossRefGoogle Scholar
  49. 49.
    Wei R, Wang Z, Li X, Shu Y, Fu B. Frequent mutation has no effect on tumor invasiveness in patients with Langerhans cell histiocytosis. Biomed Rep. 2013;1(3):365–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Alayed K, Medeiros LJ, Patel KP, Zuo Z, Li S, Verma S, et al. BRAF and MAP2K1 mutations in Langerhans cell histiocytosis: a study of 50 cases. Hum Pathol. 2016;52:61–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Go H, Jeon YK, Huh J, Choi SJ, Choi YD, Cha HJ, et al. Frequent detection of BRAF(V600E) mutations in histiocytic and dendritic cell neoplasms. Histopathology. 2014;65(2):261–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Sasaki Y, Guo Y, Arakawa F, Miyoshi H, Yoshida N, Koga Y, et al. Analysis of the BRAFV600E mutation in 19 cases of Langerhans cell histiocytosis in Japan. Hematol Oncol. 2016; doi:  10.1002/hon.2293.
  53. 53.
    Yousem SA, Colby TV, Chen YY, Chen WG, Weiss LM. Pulmonary Langerhans’ cell histiocytosis: molecular analysis of clonality. Am J Surg Pathol. 2001;25(5):630–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.PubMedCrossRefGoogle Scholar
  55. 55.
    Kansal R, Quintanilla-Martinez L, Datta V, Lopategui J, Garshfield G, Nathwani BN. Identification of the V600D mutation in exon 15 of the BRAF oncogene in congenital, benign langerhans cell histiocytosis. Genes Chromosomes Cancer. 2013;52(1):99–106.PubMedCrossRefGoogle Scholar
  56. 56.
    Rubinstein JC, Sznol M, Pavlick AC, Ariyan S, Cheng E, Bacchiocchi A, et al. Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. J Transl Med. 2010;8:67.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Satoh T, Smith A, Sarde A, Lu HC, Mian S, Trouillet C, et al. B-RAF mutant alleles associated with Langerhans cell histiocytosis, a granulomatous pediatric disease. PLoS One. 2012;7(4):e33891.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Chakraborty R, Burke TM, Hampton OA, Zinn DJ, Lim KP, Abhyankar H, et al. Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis. Blood. 2016;128(21):2533–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Chen SH, Zhang Y, Van Horn RD, Yin T, Buchanan S, Yadav V, et al. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120. Cancer Discov. 2016;6(3):300–15.PubMedCrossRefGoogle Scholar
  60. 60.
    Foster SA, Whalen DM, Ozen A, Wongchenko MJ, Yin J, Yen I, et al. Activation mechanism of oncogenic deletion mutations in BRAF, EGFR, and HER2. Cancer Cell. 2016;29(4):477–93.PubMedCrossRefGoogle Scholar
  61. 61.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest. 2008;118(5):1739–49.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Diamond EL, Durham BH, Haroche J, Yao Z, Ma J, Parikh SA, et al. Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 2016;6(2):154–65.PubMedCrossRefGoogle Scholar
  64. 64.
    Brown NA, Furtado LV, Betz BL, Kiel MJ, Weigelin HC, Lim MS, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E negative Langerhans cell histiocytosis. Blood. 2014;124:1655.PubMedCrossRefGoogle Scholar
  65. 65.
    Kamionek M, Ahmadi Moghaddam P, Sakhdari A, Kovach AE, Welch M, Meng X, et al. Mutually exclusive extracellular signal-regulated kinase pathway mutations are present in different stages of multi-focal pulmonary Langerhans cell histiocytosis supporting clonal nature of the disease. Histopathology. 2016;69(3):499–509.PubMedCrossRefGoogle Scholar
  66. 66.
    Nelson DS, van Halteren A, Quispel WT, van den Bos C, Bovee JV, Patel B, et al. MAP2K1 and MAP3K1 mutations in langerhans cell histiocytosis. Genes Chromosomes Cancer. 2015;54(6):361–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, Kim JJ, et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci U S A. 2009;106(48):20411–6.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Marks JL, Gong Y, Chitale D, Golas B, McLellan MD, Kasai Y, et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res. 2008;68(14):5524–8.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 2011;29(22):3085–96.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Waterfall JJ, Arons E, Walker RL, Pineda M, Roth L, Killian JK, et al. High prevalence of MAP2K1 mutations in variant and IGHV4-34-expressing hairy-cell leukemias. Nat Genet. 2014;46(1):8–10.PubMedCrossRefGoogle Scholar
  72. 72.
    Rollins BJ. Genomic alterations in Langerhans cell histiocytosis. Hematol Oncol Clin North Am. 2015;29(5):839–51.PubMedCrossRefGoogle Scholar
  73. 73.
    Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL. A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science. 1993;260(5106):315–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 2012;486(7403):353–60.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Ozono S, Inada H, Nakagawa S, Ueda K, Matsumura H, Kojima S, et al. Juvenile myelomonocytic leukemia characterized by cutaneous lesion containing Langerhans cell histiocytosis-like cells. Int J Hematol. 2011;93(3):389–93.PubMedCrossRefGoogle Scholar
  76. 76.
    Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci. 2011;36(6):320–8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Spencer A, Yoon SS, Harrison SJ, Morris SR, Smith DA, Brigandi RA, et al. The novel AKT inhibitor afuresertib shows favorable safety, pharmacokinetics, and clinical activity in multiple myeloma. Blood. 2014;124(14):2190–5.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Arceci RJ, Allen CE, Dunkel I, Jacobsen ED, Whitlock J, Vassallo R, et al. Evaluation of afuresertib, an oral pan-AKT inhibitor, in patients with Langehans cell histiocytosis. Blood. 2013;122(21):2907.Google Scholar
  79. 79.
    Heritier S, Saffroy R, Radosevic-Robin N, Pothin Y, Pacquement H, Peuchmaur M, et al. Common cancer-associated PIK3CA activating mutations rarely occur in Langerhans cell histiocytosis. Blood. 2015;125(15):2448–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Weintraub M, Bhatia KG, Chandra RS, Magrath IT, Ladisch S. p53 expression in Langerhans cell histiocytosis. J Pediatr Hematol Oncol. 1998;20(1):12–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Cao Y, Gao Q, Wazer DE, Band V. Abrogation of wild-type p53-mediated transactivation is insufficient for mutant p53-induced immortalization of normal human mammary epithelial cells. Cancer Res. 1997;57(24):5584–9.PubMedGoogle Scholar
  82. 82.
    Hinds PW, Finlay CA, Quartin RS, Baker SJ, Fearon ER, Vogelstein B, et al. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1990;1(12):571–80.PubMedGoogle Scholar
  83. 83.
    Lu X, Liu DP, Xu Y. The gain of function of p53 cancer mutant in promoting mammary tumorigenesis. Oncogene. 2013;32(23):2900–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Cangi MG, Biavasco R, Cavalli G, Grassini G, Dal-Cin E, Campochiaro C, et al. BRAFV600E-mutation is invariably present and associated to oncogene-induced senescence in Erdheim-Chester disease. Ann Rheum Dis. 2015;74(8):1596–602.PubMedCrossRefGoogle Scholar
  85. 85.
    Imielinski M, Greulich H, Kaplan B, Araujo L, Amann J, Horn L, et al. Oncogenic and sorafenib-sensitive ARAF mutations in lung adenocarcinoma. J Clin Invest. 2014;124(4):1582–6.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hyman DM, Diamond EL, Vibat CR, Hassaine L, Poole JC, Patel M, et al. Prospective blinded study of BRAFV600E mutation detection in cell-free DNA of patients with systemic histiocytic disorders. Cancer Discov. 2015;5(1):64–71.PubMedCrossRefGoogle Scholar
  87. 87.
    Diamond EL, Abdel-Wahab O, Pentsova E, Borsu L, Chiu A, Teruya-Feldstein J, et al. Detection of an NRAS mutation in Erdheim-Chester disease. Blood. 2013;122(6):1089–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Emile JF, Diamond EL, Helias-Rodzewicz Z, Cohen-Aubart F, Charlotte F, Hyman DM, et al. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood. 2014;124(19):3016–9.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Hutchinson KE, Lipson D, Stephens PJ, Otto G, Lehmann BD, Lyle PL, et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin Cancer Res. 2013;19(24):6696–702.PubMedCrossRefGoogle Scholar
  90. 90.
    Sievert AJ, Lang SS, Boucher KL, Madsen PJ, Slaunwhite E, Choudhari N, et al. Paradoxical activation and RAF inhibitor resistance of BRAF protein kinase fusions characterizing pediatric astrocytomas. Proc Natl Acad Sci U S A. 2013;110(15):5957–62.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K, Fraenkel E, et al. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal. 2011;4(196):rs11.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Hong H, Kohli K, Garabedian MJ, Stallcup MR. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol. 1997;17(5):2735–44.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Carapeti M, Aguiar RC, Goldman JM, Cross NC. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 1998;91(9):3127–33.PubMedGoogle Scholar
  94. 94.
    Arbajian E, Magnusson L, Mertens F, Domanski HA. Vult von Steyern F, Nord KH. A novel GTF2I/NCOA2 fusion gene emphasizes the role of NCOA2 in soft tissue angiofibroma development. Genes Chromosomes Cancer. 2013;52(3):330–1.PubMedCrossRefGoogle Scholar
  95. 95.
    Yu J, Wu WK, Liang Q, Zhang N, He J, Li X, et al. Disruption of NCOA2 by recurrent fusion with LACTB2 in colorectal cancer. Oncogene. 2016;35(2):187–95.PubMedCrossRefGoogle Scholar
  96. 96.
    Strehl S, Nebral K, Konig M, Harbott J, Strobl H, Ratei R, et al. ETV6-NCOA2: a novel fusion gene in acute leukemia associated with coexpression of T-lymphoid and myeloid markers and frequent NOTCH1 mutations. Clin Cancer Res. 2008;14(4):977–83.PubMedCrossRefGoogle Scholar
  97. 97.
    Sumegi J, Nishio J, Nelson M, Frayer RW, Perry D, Bridge JA. A novel t(4;22)(q31;q12) produces an EWSR1-SMARCA5 fusion in extraskeletal Ewing sarcoma/primitive neuroectodermal tumor. Mod Pathol. 2011;24(3):333–42.PubMedCrossRefGoogle Scholar
  98. 98.
    Allen CE, Li L, Peters TL, Leung HC, Yu A, Man TK, et al. Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells. J Immunol. 2010;184(8):4557–67.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Haroche J, Cohen-Aubart F, Emile JF, Arnaud L, Maksud P, Charlotte F, et al. Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood. 2013;121(9):1495–500.PubMedCrossRefGoogle Scholar
  100. 100.
    Haroche J, Cohen-Aubart F, Emile JF, Maksud P, Drier A, Toledano D, et al. Reproducible and sustained efficacy of targeted therapy with vemurafenib in patients with BRAF(V600E)-mutated Erdheim-Chester disease. J Clin Oncol. 2015;33(5):411–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Euskirchen P, Haroche J, Emile JF, Buchert R, Vandersee S, Meisel A. Complete remission of critical neurohistiocytosis by vemurafenib. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e78.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tzoulis C, Schwarzlmuller T, Gjerde IO, Softeland E, Neckelmann G, Biermann M, et al. Excellent response of intramedullary Erdheim-Chester disease to vemurafenib: a case report. BMC Res Notes. 2015;8:171.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hyman DM, Puzanov I, Subbiah V, Faris JE, Chau I, Blay JY, et al. Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med. 2015;373(8):726–36.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Heritier S, Jehanne M, Leverger G, Emile JF, Alvarez JC, Haroche J, et al. Vemurafenib use in an infant for high-risk Langerhans cell histiocytosis. JAMA Oncol. 2015;1(6):836–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Gandolfi L, Adamo S, Pileri A, Broccoli A, Argnani L, Zinzani PL. Multisystemic and multiresistant Langerhans cell histiocytosis: a case treated with BRAF inhibitor. J Natl Compr Cancer Netw. 2015;13(6):715–8.CrossRefGoogle Scholar
  106. 106.
    Sahm F, Capper D, Preusser M, Meyer J, Stenzinger A, Lasitschka F, et al. BRAFV600E mutant protein is expressed in cells of variable maturation in Langerhans cell histiocytosis. Blood. 2012;120(12):e28–34.PubMedCrossRefGoogle Scholar
  107. 107.
    Roden AC, Hu X, Kip S, Parrilla Castellar ER, Rumilla KM, Vrana JA, et al. BRAF V600E expression in Langerhans cell histiocytosis: clinical and immunohistochemical study on 25 pulmonary and 54 extrapulmonary cases. Am J Surg Pathol. 2014;38(4):548–51.PubMedCrossRefGoogle Scholar
  108. 108.
    Chilosi M, Facchetti F, Calio A, Zamo A, Brunelli M, Martignoni G, et al. Oncogene-induced senescence distinguishes indolent from aggressive forms of pulmonary and non-pulmonary Langerhans cell histiocytosis. Leuk Lymphoma. 2014;55(11):2620–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Mehes G, Irsai G, Bedekovics J, Beke L, Fazakas F, Rozsa T, et al. Activating BRAF V600E mutation in aggressive pediatric Langerhans cell histiocytosis: demonstration by allele-specific PCR/direct sequencing and immunohistochemistry. Am J Surg Pathol. 2014;38(12):1644–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Varga E, Korom I, Polyanka H, Szabo K, Szell M, Baltas E, et al. BRAFV600E mutation in cutaneous lesions of patients with adult Langerhans cell histiocytosis. J Eur Acad Dermatol Venereol. 2014;29:1205.PubMedCrossRefGoogle Scholar
  111. 111.
    Bubolz AM, Weissinger SE, Stenzinger A, Arndt A, Steinestel K, Bruderlein S, et al. Potential clinical implications of BRAF mutations in histiocytic proliferations. Oncotarget. 2014;5(12):4060–70.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Emile JF, Charlotte F, Amoura Z, Haroche J. BRAF mutations in Erdheim-Chester disease. J Clin Oncol. 2013;31(3):398.PubMedCrossRefGoogle Scholar
  113. 113.
    Mazor RD, Manevich-Mazor M, Kesler A, Aizenstein O, Eshed I, Jaffe R, et al. Clinical considerations and key issues in the management of patients with Erdheim-Chester disease: a seven case series. BMC Med. 2014;12:221.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Cao XX, Sun J, Li J, Zhong DR, Niu N, Duan MH, et al. Evaluation of clinicopathologic characteristics and the BRAF V600E mutation in Erdheim-Chester disease among Chinese adults. Ann Hematol. 2016;95(5):745–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations