Decision Support System for Site-Specific Fertilizer Recommendations in Cassava Production in Southern Togo

  • Kodjovi Senam Ezui
  • Peter A. Leffelaar
  • Angelinus C. Franke
  • Abdoulaye Mando
  • Ken E. Giller
Chapter

Abstract

The Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model recommended as a decision support tool for deriving optimal site-specific fertilizer rates for cassava has limited ability to estimate water-limited yields. We assessed potential and water-limited yields based on the light interception and utilization (LINTUL) modelling approach in order to enhance the determination of fertilizer requirements for cassava production in Southern Togo. Data collected in 2 years field experiments in Sevekpota and Djakakope were used. Potential ranged from 12.2 to 17.6 Mg ha−1, and water-limited yields from 10.4 to 14.5 Mg ha−1. The simulated average fertilizer requirements were 121 kg N, 2 kg P and no K ha−1 for a target yield of 9.3 Mg ha−1 at Sevekpota, and 103 kg N, 6 kg P and 175 kg K ha−1 for a target yield of 9.7 Mg ha−1 at Djakakope. The variability of fertilizer requirements was attributed to differences in indigenous soil fertility and water-limited yields. The latter correlated well with rainfall variability over years and sites. Integrating LINTUL output with QUEFTS helped account for location-specific weather seasonal variability and enhanced assessment of fertilizer requirement for cassava production in Southern Togo.

Keywords

LINTUL Water-limited yield Potential yield QUEFTS Togo 

Notes

Acknowledgements

The financial support for this study was provided by the International Fund for Agricultural Development (IFAD) and the United States Agency for International Development (USAID), to whom we are grateful. We also thank K. Koukoudé, K. Gbedevi and E. Kpodo for supporting data collection.

References

  1. Alves, A. A. C. (2002). Cassava botany and physiology. In R. J. Hillocks, J. M. Thresh, & A. C. Bellotti (Eds.), Cassava: Biology, production and utilization. Wallingford: CABI.Google Scholar
  2. Carsky, R. J., & Toukourou, M. A. (2005). Identification of nutrients limiting cassava yield maintenance on a sedimentary soil in southern Benin, West Africa. Nutrient Cycling in Agroecosystems, 71, 151–162.CrossRefGoogle Scholar
  3. Connor, D. J., Cock, J. H., & Parra, G. E. (1981). Response of cassava to water shortage I. Growth and yield. Field Crops Research, 4, 181–200.CrossRefGoogle Scholar
  4. Ezui, K. S. (2017). Understanding the productivity of cassava in West Africa. Ph.D. thesis, Plant Production System, Graduate School of Production Ecology and Resource Conservation, Wageningen University, The Netherlands.Google Scholar
  5. Ezui, K. S., Franke, A. C., Mando, A., Ahiabor, B. D. K., Tetteh, F. M., Sogbedji, J., Janssen, B. H., & Giller, K. E. (2016). Fertiliser requirements for balanced nutrition of cassava across eight locations in West Africa. Field Crops Research, 185, 69–78.CrossRefGoogle Scholar
  6. Ezui, K. S., Franke, A. C., Leffelaar, P. A., Mando, A., van Heerwaarden, J., Sanabria, J., Sogbedji, J. M., & Giller, K. E. (2017). Water and radiation use efficiencies explain the effect of potassium on the productivity of cassava. European Journal of Agronomy, 83, 28–39.CrossRefGoogle Scholar
  7. FAOSTAT. (2014). FAO statistics. Rome: FAO Statistics Division.Google Scholar
  8. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.CrossRefGoogle Scholar
  9. Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7, 51–73.CrossRefGoogle Scholar
  10. Matthews, R. B., & Hunt, L. A. (1994). GUMCAS: A model describing the growth of cassava (Manihot esculenta L. Crantz). Field Crops Research, 36, 69–84.CrossRefGoogle Scholar
  11. Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 281, 277–294.CrossRefGoogle Scholar
  12. Odedina, S. A., Odedina, J. N., Ogunkoya, M. O., & Ojeniyi, S. O. (2009). Agronomic evaluation of new cassava varieties introduced to farmers in Nigeria. In African crop science conference proceedings (pp. 77–80). Uganda: African Crop Science Society.Google Scholar
  13. Sieverding, E., & Howeler, R. H. (1985). Influence of species of VA mycorrhizal fungi on cassava yield response to phosphorus fertilization. Plant and Soil, 88, 213–221.CrossRefGoogle Scholar
  14. Singh, U., Matthews, R. B., Griffin, T. S., Ritchie, J. T., Hunt, L. A., & Goenaga, R. (1998). Modeling growth and development of root and tuber crops. Systems Approaches for Sustainable Agricultural Development, 7, 129–156.CrossRefGoogle Scholar
  15. Smaling, E. M. A., Nandwa, S. M., & Janssen, B. H. (1997). Soil fertility in Africa is at stake! In R. J. Buresh, P. A. Sanchez, & F. G. Calhoun (Eds.), Replenishing soil fertility in Africa. Wisconsin: Soil Science Society of America and American Society of Agronomy.Google Scholar
  16. Somana, K., & Nkpenu, E. K. (2008). Bien cultiver et transformer le manioc. In K. Tetevi, D. K. Tsatsu, B. Badjare, & A. Ale Gonh-Goh (Eds.), Collection brochures et fiches techniques. 18. Lomé: Institut Togolais de Recherche Agronomique.Google Scholar
  17. Spitters, C. J. T. (1990). Crop growth models: Their usefulness and limitations. In Acta Horticulturae (pp. 349–368). Leuven: International Society for Horticultural Science (ISHS).Google Scholar
  18. Spitters, C. J. T., & Schapendonk, A. H. C. M. (1990). Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. Plant and Soil, 123, 193–203.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kodjovi Senam Ezui
    • 1
    • 2
    • 3
  • Peter A. Leffelaar
    • 2
  • Angelinus C. Franke
    • 4
  • Abdoulaye Mando
    • 1
    • 5
  • Ken E. Giller
    • 2
  1. 1.International Fertilizer Development Centre (IFDC)North and West Africa DivisionLoméTogo
  2. 2.Plant Production Systems GroupWageningen UniversityWageningenThe Netherlands
  3. 3.International Plant Nutrition Institute (IPNI)IbadanNigeria
  4. 4.Soil, Crop and Climate SciencesUniversity of the Free StateBloemfonteinSouth Africa
  5. 5.Groupe de Recherche et d’Actions pour le Développement (GRAD Consulting Group)OuagaBurkina Faso

Personalised recommendations