Metal Allergy pp 349-364 | Cite as

Metal Allergy: Chromium

  • Yolanda S. HedbergEmail author


Allergic contact dermatitis to chromium (Cr) is one of the most common and most severe metal allergies. Chromium-sensitized persons need to strictly avoid contact with chromium, which is a difficult task due to its main sources being nonmetals and non-labeled occupational or everyday life products. Regulations, work hygiene, and the decrease of hexavalent chromium sources can be effective measures to reduce the prevalence of allergic contact dermatitis. There are no inexpensive and simple analytical tools available that can detect released chromium with sufficient sensitivity to detect potential sources that should be avoided. Hexavalent chromium has significantly higher skin and cell penetration rates compared with trivalent chromium. Hexavalent chromium is therefore generally considered the more potent allergen compared with trivalent chromium. Anionic trivalent chromium species have the highest skin penetration rates among trivalent chromium species. The chromium release chemistry from potential sources, the chromium oxidation state and chemical form, skin penetration, and skin reactions depend all largely on pH and the presence of complexing and reducing species. Therefore, some environments and sources, especially alkaline ones, should be particularly avoided. A trivalent chromium-protein conjugate is the recognized antigen by cutaneous dendritic cells. Patch testing with potassium dichromate is the main diagnostic tool, but causes a relatively high percentage of irritant or doubtful reactions. Hypersensitivity to chromium released from metallic implants is rarer compared with allergic contact dermatitis. Allergic asthma to chromium has been reported for a few occupations.


  1. 1.
    Warshaw EM, Maibach HI, Taylor JS, Sasseville D, DeKoven JG, Zirwas MJ, et al. North American contact dermatitis group patch test results: 2011–2012. Dermatitis. 2015;26(1):49–59.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Uter W, Larese Filon F, Rui F, Balato A, Wilkinson M, Kręcisz B, et al. ESSCA results with nickel, cobalt and chromium, 2009–2012. Contact Dermatitis. 2016;75(2):117–21. doi:10.1111/cod.12582.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Proctor DM, Fredrick MM, Scott PK, Paustenbach DJ, Finley BL. The prevalence of chromium allergy in the United States and its implications for setting soil cleanup: a cost-effectiveness case study. Regul Toxicol Pharmacol. 1998;28(1):27–37.PubMedCrossRefGoogle Scholar
  4. 4.
    Bregnbak D, Johansen JD, Jellesen MS, Zachariae C, Menné T, Thyssen JP. Chromium allergy and dermatitis: prevalence and main findings. Contact Dermatitis. 2015;73(5):261–80. doi:10.1111/cod.12436.CrossRefPubMedGoogle Scholar
  5. 5.
    Zug KA, Pham AK, Belsito DV, DeKoven JG, DeLeo VA, Fowler JF Jr, et al. Patch testing in children from 2005 to 2012: results from the North American contact dermatitis group. Dermatitis. 2014;25(6):345–55.CrossRefGoogle Scholar
  6. 6.
    Simonsen AB, Deleuran M, Mortz CG, Johansen JD, Sommerlund M. Allergic contact dermatitis in Danish children referred for patch testing–a nationwide multicentre study. Contact Dermatitis. 2014;70:104–11.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lagrelius M, Wahlgren C-F, Matura M, Kull I, Lidén C. High prevalence of contact allergy in adolescence: results from the population-based BAMSE birth cohort. Contact Dermatitis. 2016;74(1):44–51.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Belloni Fortina A, Cooper SM, Spiewak R, Fontana E, Schnuch A, Uter W. Patch test results in children and adolescents across Europe. Analysis of the ESSCA network 2002–2010. Pediatr Allergy Immunol. 2015;26(5):446–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Stocks SJ, McNamee R, Turner S, Carder M, Agius RM. Has European Union legislation to reduce exposure to chromate in cement been effective in reducing the incidence of allergic contact dermatitis attributed to chromate in the UK? Occup Environ Med. 2012;69(2):150–2. doi:10.1136/oemed-2011-100220.PubMedCrossRefGoogle Scholar
  10. 10.
    Uter W, Rühl R, Pfahlberg A, Geier J, Schnuch A, Gefeller O. Contact allergy in construction workers: results of a multifactorial analysis. Ann Occup Hyg. 2004;48(1):21–7.PubMedGoogle Scholar
  11. 11.
    Thyssen JP, Menné T, Johansen JD. Hexavalent chromium in leather is now regulated in European Union member states to limit chromium allergy and dermatitis. Contact Dermatitis. 2014;70(1):1–2. doi:10.1111/cod.12182.PubMedCrossRefGoogle Scholar
  12. 12.
    Directive 2011/65/EU of the European Parlaiment and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast). 2011.Google Scholar
  13. 13.
    REACH - Registration, Evaluation, Authorisation and Restriction of Chemicals. 2007.Google Scholar
  14. 14.
    Schwensen JF, Menné T, Veien NK, Funding AT, Avnstorp C, Østerballe M, et al. Occupational contact dermatitis in blue-collar workers: results from a multicentre study from the Danish contact dermatitis group (2003–2012). Contact Dermatitis. 2014;71(6):348–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Fall S, Bruze M, Isaksson M, Lidén C, Matura M, Stenberg B, et al. Contact allergy trends in Sweden – a retrospective comparison of patch test data from 1992, 2000, and 2009. Contact Dermatitis. 2015;72(5):297–304. doi:10.1111/cod.12346.CrossRefPubMedGoogle Scholar
  16. 16.
    Mahler V, Geier J, Schnuch A. Current trends in patch testing–new data from the German contact dermatitis research group (DKG) and the information network of departments of dermatology (IVDK). J Dtsch Dermatol Ges. 2014;12(7):583–92.PubMedGoogle Scholar
  17. 17.
    Fida M, Topi G, Qirko E, Kellici S, Shehu E, Dervishi O, et al. The use of patch testing for the diagnosis of contact dermatitis: an Albanian experience. J Health Sci. 2015;5(2):65–71.CrossRefGoogle Scholar
  18. 18.
    Machovcová A, Dastychová E, Kostalova D, Vojtechovska A, Reslova J, Smejkalova D, et al. Common contact sensitizers in the Czech Republic. Patch test results in 12,058 patients with suspected contact dermatitis. Contact Dermatitis. 2005;53(3):162–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Tichy M, Karlova I. Allergic contact dermatitis and changes in the frequency of the causative allergens demonstrated with patch testing in 2008-2012. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015;159(3):480–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Reduta T, Bacharewicz J, Pawłoś A. Patch test results in patients with allergic contact dermatitis in the Podlasie region. Postepy Dermatol Alergol. 2013;30:350–7.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Beliauskiene A, Valiukeviciene S, Uter W, Schnuch A. The European baseline series in Lithuania: results of patch testing in consecutive adult patients. J Eur Acad Dermatol Venereol. 2011;25(1):59–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Rui F, Bovenzi M, Prodi A, Belloni Fortina A, Romano I, Corradin MT, et al. Nickel, chromium and cobalt sensitization in a patch test population in north-eastern Italy (1996–2010). Contact Dermatitis. 2013;68(1):23–31.CrossRefGoogle Scholar
  23. 23.
    García-Gavín J, Armario-Hita J, Fernández-Redondo V, Fernández-Vozmediano J, Sánchez-Pérez J, Silvestre J, et al. Epidemiology of contact dermatitis in Spain. Results of the Spanish surveillance system on contact allergies for the year 2008. Actas Dermosifiliogr. 2011;102(2):98–105.PubMedCrossRefGoogle Scholar
  24. 24.
    Aguilar-Bernier M, Bernal-Ruiz A, Rivas-Ruiz F, Fernández-Morano M, de Troya-Martín M. Contact sensitization to allergens in the Spanish standard series at hospital costa del sol in Marbella, Spain: a retrospective study (2005–2010). Actas Dermosifiliogr. 2012;103(3):223–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Bordel-Gómez MT, Miranda-Romero A, Castrodeza-Sanz J. Isolated and concurrent prevalence of sensitization to transition metals in a Spanish population. J Eur Acad Dermatol Venereol. 2008;22(12):1452–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Kridin K, Bergman R, Khamaisi M, Weltfriend S. Chromate allergy in northern Israel in relation to exposure to cement and detergents. Dermatitis. 2016;27(3):131–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Ertam I, Turkmen M, Alper S. Patch-test results of an academic Department in Izmir, Turkey. Dermatitis. 2008;19(4):213–5.PubMedGoogle Scholar
  28. 28.
    Wentworth AB, Yiannias JA, Keeling JH, Hall MR, Camilleri MJ, Drage LA, et al. Trends in patch-test results and allergen changes in the standard series: A Mayo Clinic 5-year retrospective review (January 1, 2006, to December 31, 2010). J Am Acad Dermatol. 2014;70(2):269–75.e4. doi:10.1016/j.jaad.2013.09.047.PubMedCrossRefGoogle Scholar
  29. 29.
    Toholka R, Wang YS, Tate B, Tam M, Cahill J, Palmer A, et al. The first Australian baseline series: recommendations for patch testing in suspected contact dermatitis. Aust J Dermatol. 2015;56(2):107–15.CrossRefGoogle Scholar
  30. 30.
    Boonchai W, Iamtharachai P. Risk factors for common contact allergens and patch test results using a modified European baseline series in patients tested during between 2000 and 2009 at Siriraj Hospital. Asian Pac J Allergy Immunol. 2014;32(1):60.PubMedGoogle Scholar
  31. 31.
    Goon AT, Goh C. Metal allergy in Singapore. Contact Dermatitis. 2005;52(3):130–2.PubMedCrossRefGoogle Scholar
  32. 32.
    Bajaj A, Saraswat A, Mukhija G, Rastogi S, Yadav S. Patch testing experience with 1000 patients. Indian J Dermatol Venereol Leprol. 2007;73(5):313.PubMedCrossRefGoogle Scholar
  33. 33.
    Yin R, Huang XY, Zhou XF, Hao F. A retrospective study of patch tests in Chongqing, China from 2004 to 2009. Contact Dermatitis. 2011;65(1):28–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Dou X, Zhao Y, Ni C, Zhu X, Liu L. Prevalence of contact allergy at a dermatology clinic in China from 1990-2009. Dermatitis. 2011;22(6):324–31.PubMedGoogle Scholar
  35. 35.
    Bilcha KD, Ayele A, Shibeshi D, Lovell C. Patch testing and contact allergens in Ethiopia–results of 514 contact dermatitis patients using the European baseline series. Contact Dermatitis. 2010;63(3):140–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Diepgen T, Ofenloch R, Bruze M, Bertuccio P, Cazzaniga S, Coenraads PJ, et al. Prevalence of contact allergy in the general population in different European regions. Br J Dermatol. 2016;174(2):319–29.PubMedCrossRefGoogle Scholar
  37. 37.
    Siegenthaler U, Laine A, Polak L. Studies on contact sensitivity to chromium in the guinea pig. The role of valence in the formation of the antigenic determinant. J Invest Dermatol. 1983;80(1):44–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Polak L, Frey JR. Studies on contact hypersensitivity to chromium in the Guinea pig. Int Arch Allergy Appl Immunol. 1973;44(1):51–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Shupack SI. The chemistry of chromium and some resulting analytical problems. Environ Health Perspect. 1991;92:7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Rollinson CL. The chemistry of chromium, molybdenum, and tungsten. Oxford: Robert Maxwell, M.C.; 1975.Google Scholar
  41. 41.
    Samitz M, Katz S. A study of the chemical reactions between chromium and skin. J Invest Dermatol. 1964;43(1):35–42.CrossRefGoogle Scholar
  42. 42.
    Mali JWH, Van Kooten WJ, Van Neer FCJ. Some aspects of the behavior of chromium compounds in the skin. J Invest Dermatol. 1963;41(3):111–22. doi:10.1038/jid.1963.83.PubMedCrossRefGoogle Scholar
  43. 43.
    Gammelgaard B, Fullerton A, Avnstorp C, Menné T. Permeation of chromium salts through human skin in vitro. Contact Dermatitis. 1992;27(5):302–10.CrossRefGoogle Scholar
  44. 44.
    Van Lierde V, Chéry CC, Roche N, Monstrey S, Moens L, Vanhaecke F. In vitro permeation of chromium species through porcine and human skin as determined by capillary electrophoresis-inductively coupled plasma-sector field mass spectrometry. Anal Bioanal Chem. 2006;384(2):378–84.Google Scholar
  45. 45.
    Yang J, Black J. Competitive binding of chromium, cobalt and nickel to serum proteins. Biomaterials. 1994;15(4):262–8. doi:10.1016/0142-9612(94)90049-3.PubMedCrossRefGoogle Scholar
  46. 46.
    Hedberg YS, Pettersson M, Pradhan S, Odnevall Wallinder I, Rutland MW, Persson C. Can cobalt(II) and chromium(III) ions released from joint prostheses influence the friction coefficient? ACS Biomater Sci Eng. 2015;1(8):617–20. doi:10.1021/acsbiomaterials.5b00183.CrossRefGoogle Scholar
  47. 47.
    Österberg R, Sjöberg B, Persson D. Cr (III)-induced polymerization of human albumin. Biol Trace Elem Res. 1981;3(3):157–67.PubMedCrossRefGoogle Scholar
  48. 48.
    Lundin M, Hedberg Y, Jiang T, Herting G, Wang X, Thormann E, et al. Adsorption and protein-induced metal release from chromium metal and stainless steel. J Colloid Interface Sci. 2012;366:155–64.PubMedCrossRefGoogle Scholar
  49. 49.
    Hedberg YS, Odnevall Wallinder I. Metal release from stainless steel in biological environments: a review. Biointerphases. 2016;11(1):018901-1–17. doi:10.1116/1.4934628.CrossRefGoogle Scholar
  50. 50.
    Puigdomenech I. Hydra/Medusa chemical equilibrium database and plotting software. KTH Royal Institute of Technology. 2015.!/
  51. 51.
    CEN. Reference test method for release of nickel from all post assemblies which are inserted into pierced parts of the human body and articles intended to come into direct and prolonged contact with the skin, EN-1811:2011. 2011.Google Scholar
  52. 52.
    Leygraf C, Wallinder IO, Tidblad J, Graedel T. Atmospheric corrosion. Hoboken: Wiley; 2016.CrossRefGoogle Scholar
  53. 53.
    Erfani B, Lidén C, Midander K. Short and frequent skin contact with nickel. Contact Dermatitis. 2015;73(4):222–30. doi:10.1111/cod.12426.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bregnbak D, Thyssen JP, Jellesen MS, Zachariae C, Johansen JD. Experimental skin deposition of chromium on the hands following handling of samples of leather and metal. Contact Dermatitis. 2016;75(2):89–95. doi:10.1111/cod.12605.PubMedCrossRefGoogle Scholar
  55. 55.
    Julander A, Skare L, Mulder M, Grander M, Vahter M, Lidén C. Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components. Ann Occup Hyg. 2010;54(3):340–50. doi:10.1093/annhyg/meq002.PubMedCrossRefGoogle Scholar
  56. 56.
    Lidén C, Skare L, Nise G, Vahter M. Deposition of nickel, chromium, and cobalt on the skin in some occupations - assessment by acid wipe sampling. Contact Dermatitis. 2008;58(6):347–54. doi:10.1111/j.1600-0536.2008.01326.x.CrossRefPubMedGoogle Scholar
  57. 57.
    Day GA, Virji MA, Stefaniak AB. Characterization of exposures among cemented tungsten carbide workers. Part II: assessment of surface contamination and skin exposures to cobalt, chromium and nickel. J Expo Sci Environ Epidemiol. 2009;19(4):423–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Lidén C, Skare L, Lind B, Nise G, Vahter M. Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP-MS. Contact Dermatitis. 2006;54(5):233–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Hedberg Y, Midander K. Size matters: mechanism of metal release from 316L stainless steel particles is governed by size-dependent properties of the surface oxide. Mater Lett. 2014;122:223–6. doi:10.1016/j.matlet.2014.02.034.CrossRefGoogle Scholar
  60. 60.
    Hedberg Y, Lidén C, Odnevall Wallinder I. Chromium released from leather – I: exposure conditions that govern the release of chromium(III) and chromium(VI). Contact Dermatitis. 2015;72(4):206–15. doi:10.1111/cod.12329.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hedberg YS, Lidén C. Chromium(III) and chromium(VI) release from leather during 8 months simulated use. Contact Dermatitis. 2016;75(2):82–8. doi:10.1111/cod.12581.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Samitz M, Katz S, Shrager JD. Studies of the diffusion of chromium compounds through skin. J Invest Dermatol. 1967;48(6):514–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Wahlberg J. Percutaneous absorption from chromium (51Cr) solutions of different pH, 1.4–12.8. Dermatology. 1968;137(1):17–25.CrossRefGoogle Scholar
  64. 64.
    Spruit D, van Neer FCJ. Penetration rate of Cr (III) and Cr (VI). Dermatology. 1966;132(2):179–82.CrossRefGoogle Scholar
  65. 65.
    Lidén S, Lundberg E. Penetration of chromium in intact human skin in vivo. J Invest Dermatol. 1979;72(1):42–5. doi:10.1111/1523-1747.ep12530184.PubMedCrossRefGoogle Scholar
  66. 66.
    Lepoittevin J-P. Molecular aspects in allergic and irritant contact dermatitis. In:Contact dermatitis. Berlin: Springer; 2011. p. 91–110.CrossRefGoogle Scholar
  67. 67.
    Saint-Mezard P, Rosieres A, Krasteva M, Berard F, Dubois B, Kaiserlian D, et al. Allergic contact dermatitis. Eur J Dermatol. 2004;14(5):284–95.PubMedGoogle Scholar
  68. 68.
    Rytter M, Haustein UF. Hapten conjugation in the leukocyte migration inhibition test in allergic chromate eczema. Br J Dermatol. 1982;106(2):161–8. doi:10.1111/j.1365-2133.1982.tb00925.x.PubMedCrossRefGoogle Scholar
  69. 69.
    Sinigaglia F. The molecular basis of metal recognition by T cells. J Invest Dermatol. 1994;102(4):398–401. doi:10.1111/1523-1747.ep12372149.PubMedCrossRefGoogle Scholar
  70. 70.
    Forte G, Petrucci F, Bocca B. Metal allergens of growing significance: epidemiology, immunotoxicology, strategies for testing and prevention. Inflamm Allergy Drug Targets. 2008;7(3):145–62. doi:10.2174/187152808785748146.PubMedCrossRefGoogle Scholar
  71. 71.
    Rachmawati D, Bontkes HJ, Verstege MI, Muris J, von Blomberg BME, Scheper RJ, et al. Transition metal sensing by toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis. 2013;68(6):331–8.CrossRefGoogle Scholar
  72. 72.
    Friedberg F. Effects of metal binding on protein structure. Q Rev Biophys. 1974;7(01):1–33. doi:10.1017/S0033583500001335.PubMedCrossRefGoogle Scholar
  73. 73.
    Thulin H, Zachariae H. The leucocyte migration test in chromium hypersensitivity. J Invest Dermatol. 1972;58(2):55–8. doi:10.1111/1523-1747.ep12551476.PubMedCrossRefGoogle Scholar
  74. 74.
    Cohen HA. Carrier specificity of tuberculin-type reaction to trivalent chromium. Arch Dermatol. 1966;93(1):34–40.PubMedCrossRefGoogle Scholar
  75. 75.
    Cohen HA. Tuberculin-type reaction to heparin-chromium complex: heparin—a specific carrier of chromium sensitivity. Arch Dermatol. 1966;94(4):409–12. doi:10.1001/archderm.1966.01600280027005.PubMedCrossRefGoogle Scholar
  76. 76.
    Cohen HA. Hyaluronic acid: a specific carrier of chromium sensitivity. Arch Dermatol. 1968;98(2):148–51. doi:10.1001/archderm.1968.01610140046010.PubMedCrossRefGoogle Scholar
  77. 77.
    Hansen MB, Rydin S, Menné T, Johansen JD. Quantitative aspects of contact allergy to chromium and exposure to chrome-tanned leather. Contact Dermatitis. 2002;47(3):127–34.PubMedCrossRefGoogle Scholar
  78. 78.
    Basketter D, Horev L, Slodovnik D, Merimes S, Trattner A, Ingber A. Investigation of the threshold for allergic reactivity to chromium. Contact Dermatitis. 2001;44(2):70–4. doi:10.1034/j.1600-0536.2001.440202.x.PubMedCrossRefGoogle Scholar
  79. 79.
    Nielsen N, Kristiansen J, Borg L, Christensen J, Poulsen L, Menne T. Repeated exposures to cobalt or chromate on the hands of patients with hand eczema and contact allergy to that metal. Contact Dermatitis. 2000;43(4):212–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Albert MR, Chang Y, González E. Concomitant positive reactions to allergens in a patch testing standard series from 1988-1997. Dermatitis. 1999;10(4):219–23.CrossRefGoogle Scholar
  81. 81.
    Lidén C, Andersson N, Julander A, Matura M. Cobalt allergy: suitable test concentration, and concomitant reactivity to nickel and chromium. Contact Dermatitis. 2016;74(6):360–7. doi:10.1111/cod.12568.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Samitz M, Shrager J. Patch test reactions to hexavalent and trivalent chromium compounds. Arch Dermatol. 1966;94(3):304–6.PubMedCrossRefGoogle Scholar
  83. 83.
    Fregert S, Rorsman H. Allergy to trivalent chromium. Arch Dermatol. 1964;90(1):4.PubMedCrossRefGoogle Scholar
  84. 84.
    Fregert S, Rorsman H. Allergic reactions to trivalent chromium compounds. Arch Dermatol. 1966;93(6):711–3.PubMedCrossRefGoogle Scholar
  85. 85.
    Hansen MB, Johansen JD, Menné T. Chromium allergy: significance of both Cr(III) and Cr(VI). Contact Dermatitis. 2003;49(4):206–12. doi:10.1111/j.0105-1873.2003.0230.x.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hansen MB, Menné T, Johansen JD. Cr(III) reactivity and foot dermatitis in Cr(VI) positive patients. Contact Dermatitis. 2006;54(3):140–4. doi:10.1111/j.0105-1873.2006.00802.x.PubMedCrossRefGoogle Scholar
  87. 87.
    Allenby C, Goodwin B. Influence of detergent washing powders on minimal eliciting patch test concentrations of nickel and chromium. Contact Dermatitis. 1983;9(6):491–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Fregert S, Rorsman H. Patch test reactions to basic chromium (III) sulfate. Arch Dermatol. 1965;91(3):233–4.PubMedCrossRefGoogle Scholar
  89. 89.
    Nethercott J, Paustenbach D, Adams R, Fowler J, Marks J, Morton C, et al. A study of chromium induced allergic contact dermatitis with 54 volunteers: implications for environmental risk assessment. Occup Environ Med. 1994;51(6):371–80. doi:10.1136/oem.51.6.371.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kosann MK, Brancaccio RR, Shupack JL, Franks AG Jr, Cohen DE. Six-hour versus 48-hour patch testing with varying concentrations of potassium dichromate. Dermatitis. 1998;9(2):92–5.CrossRefGoogle Scholar
  91. 91.
    Hansen MB, Menné T, Johansen JD. Cr(III) and Cr(VI) in leather and elicitation of eczema. Contact Dermatitis. 2006;54(5):278–82. doi:10.1111/j.0105-1873.2006.00824.x.CrossRefPubMedGoogle Scholar
  92. 92.
    Basketter DA, Angelini G, Ingber A, Kern PS, Menné T. Nickel, chromium and cobalt in consumer products: revisiting safe levels in the new millennium. Contact Dermatitis. 2003;49(1):1–7. doi:10.1111/j.0105-1873.2003.00149.x.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lindström D, Hedberg Y, Odnevall Wallinder I. Chromium(III) and chromium(VI) surface treated galvanized steel for outdoor constructions: environmental aspects. Environ Sci Technol. 2010;44(11):4322–7. doi:10.1021/es1003022.PubMedCrossRefGoogle Scholar
  94. 94.
    Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39. doi:10.1289/ehp.7339.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Keegan GM, Learmonth ID, Case C. A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from industry and surgical implants. Crit Rev Toxicol. 2008;38(8):645–74. doi:10.1080/10408440701845534.PubMedCrossRefGoogle Scholar
  96. 96.
    Hedberg Y, Odnevall Wallinder I. Metal release and speciation of released chromium from a biomedical CoCrMo alloy into simulated physiologically relevant solutions. J Biomed Mater Res B Appl Biomater. 2014;102(4):693–9. doi:10.1002/jbm.b.33048.PubMedCrossRefGoogle Scholar
  97. 97.
    Liden C, Bruze M, Thyssen JP, Menné T, editors. Metals. Contact dermatitis. Berlin Heidelberg: Springer; 2011.Google Scholar
  98. 98.
    Kleban M. Lanxess Deutschland GmbH, personal communication. 2016.Google Scholar
  99. 99.
    Wass U, Wahlberg JE. Chromated steel and contact allergy. Contact Dermatitis. 1991;24(2):114–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Hedberg Y, Gustafsson J, Karlsson HL, Möller L, Odnevall Wallinder I. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective. Part Fibre Toxicol. 2010;7:23. doi:10.1186/1743-8977-7-23.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hedberg Y, Midander K, Odnevall Wallinder I. Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact. Integr Environ Assess Manag. 2010;6(3):456–68. doi:10.1002/ieam.66.PubMedCrossRefGoogle Scholar
  102. 102.
    Midander K, de Frutos A, Hedberg Y, Darrie G, Odnevall Wallinder I. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel. Integr Environ Assess Manag. 2010;6(3):441–55. doi:10.1002/ieam.32.PubMedCrossRefGoogle Scholar
  103. 103.
    Hedberg YS, Herting G, Latvala S, Elihn K, Karlsson HL, Odnevall Wallinder I. Surface passivity largely governs the bioaccessibility of nickel-based powder particles at human exposure conditions. Regul Toxicol Pharmacol. 2016;81:162–70. doi:10.1016/j.yrtph.2016.08.013.PubMedCrossRefGoogle Scholar
  104. 104.
    Hedberg Y, Wang X, Hedberg J, Lundin M, Blomberg E, Odnevall Wallinder I. Surface-protein interactions on different stainless steel grades – effects of protein adsorption, surface changes and metal release. J Mater Sci Mater Med. 2013;24(4):1015–33. doi:10.1007/s10856-013-4859-8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hedberg Y, Mazinanian N, Odnevall Wallinder I. Metal release from stainless steel powders and massive sheet – comparison and implication for risk assessment of alloys. Environ Sci Process Impacts. 2013;15(2):381–92. doi:10.1039/C2EM30818E.PubMedCrossRefGoogle Scholar
  106. 106.
    Flint G, Carter S, Fairman B. Skin allergy from exposure to alloys of chromium. Contact Dermatitis. 1998;39(6):315–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Keane M, Stone S, Chen B, Slaven J, Schwegler-Berry D, Antonini J. Hexavalent chromium content in stainless steel welding fumes is dependent on the welding process and shield gas type. J Environ Monit. 2009;11(2):418–24.PubMedCrossRefGoogle Scholar
  108. 108.
    Hedberg Y, Lidén C, Odnevall Wallinder I. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI). J Hazard Mater. 2014;280:654–61. doi:10.1016/j.jhazmat.2014.08.061.PubMedCrossRefGoogle Scholar
  109. 109.
    Mathiason F, Lidén C, Hedberg Y. Chromium released from leather – II: the importance of environmental parameters. Contact Dermatitis. 2015;72(5):275–85. doi:10.1111/cod.12334.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hedberg YS, Lidén C, Lindberg M. Chromium dermatitis in a metal worker due to leather gloves and alkaline coolant. Acta Derm Venereol. 2016;96(1):104–6. doi:10.2340/00015555-2160.PubMedCrossRefGoogle Scholar
  111. 111.
    Hedberg YS, Gumulka M, Lind M-L, Matura M, Lidén C. Severe occupational chromium allergy despite cement legislation. Contact Dermatitis. 2014;70(5):321–3. doi:10.1111/cod.12203.CrossRefPubMedGoogle Scholar
  112. 112.
    Odler I. The BET-specific surface area of hydrated Portland cement and related materials. Cem Concr Res. 2003;33(12):2049–56. doi:10.1016/S0008-8846(03)00225-4.CrossRefGoogle Scholar
  113. 113.
    Dooms-Goossens A, Ceuterick A, Vanmaele N, Degreef H. Follow-up study of patients with contact dermatitis caused by chromates, nickel, and cobalt. Dermatology. 1980;160(4):249–60.CrossRefGoogle Scholar
  114. 114.
    Hald M, Agner T, Blands J, Ravn H, Johansen JD. Allergens associated with severe symptoms of hand eczema and a poor prognosis. Contact Dermatitis. 2009;61(2):101–8. doi:10.1111/j.1600-0536.2009.01577.x.PubMedCrossRefGoogle Scholar
  115. 115.
    Bregnbak D, Thyssen JP, Zachariae C, Johansen JD. Characteristics of chromium-allergic dermatitis patients prior to regulatory intervention for chromium in leather: a questionnaire study. Contact Dermatitis. 2014;71(6):338–47.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Avnstorp C. Follow-up of workers from the prefabricated concrete industry after the addition of ferrous sulphate to Danish cement. Contact Dermatitis. 1989;20(5):365–71. doi:10.1111/j.1600-0536.1989.tb03174.x.PubMedCrossRefGoogle Scholar
  117. 117.
    Thormann J, Jespersen N, Joensen H. Persistence of contact allergy to chromium. Contact Dermatitis. 1979;5(4):261–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Bang Pedersen N. Chapter 11—the effects of chromium on the skin. In: Langård S, editor. Biological and environmental aspects of chromium. Amsterdam: Elsevier Biomedical Press; 1982. p. 249–75.CrossRefGoogle Scholar
  119. 119.
    Wall LM, Gebauer KA. A follow-up study of occupational skin disease in Western Australia. Contact Dermatitis. 1991;24(4):241–3.PubMedCrossRefGoogle Scholar
  120. 120.
    Fregert S. Occupational dermatitis in a 10–year material. Contact Dermatitis. 1975;1(2):96–107.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Lips R, Rast H, Elsner P. Outcome of job change in patients with occupational chromate dermatitis. Contact Dermatitis. 1996;34(4):268–71.PubMedCrossRefGoogle Scholar
  122. 122.
    De Marchi S, Cecchin E, De Marchi SU. Systemic allergic dermatitis resulting from oral administration of chromium with a food supplement. Contact Dermatitis. 2014;70(2):123–5.PubMedCrossRefGoogle Scholar
  123. 123.
    Thomas P, Summer B. Diagnosis and management of patients with allergy to metal implants. Expert Rev Clin Immunol. 2015;11(4):501–9. doi:10.1586/1744666x.2015.1016501.PubMedCrossRefGoogle Scholar
  124. 124.
    Bizzotto N, Sandri A, Trivellin G, Magnan B, Micheloni GM, Zamò A, et al. Chromium-induced diffuse dermatitis with lymph node involvement resulting from Langerhans cell histiocytosis after metal-on-metal hip resurfacing. Br J Dermatol. 2015;172(6):1633–6. doi:10.1111/bjd.13517.PubMedCrossRefGoogle Scholar
  125. 125.
    Hubler WR. Dermatitis from a chromium dental plate. Contact Dermatitis. 1983;9(5):377–83. doi:10.1111/j.1600-0536.1983.tb04432.x.PubMedCrossRefGoogle Scholar
  126. 126.
    Lachiewicz PF, Watters TS, Jacobs JJ. Metal hypersensitivity and total knee Arthroplasty. J Am Acad Orthop Surg. 2016;24(2):106–12. doi:10.5435/jaaos-d-14-00290.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Thomas P. Clinical and diagnostic challenges of metal implant allergy using the example of orthopaedic surgical implants. Allergo J Int. 2014;23(6):179–85. doi:10.1007/s40629-014-0023-3.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Lützner J, Hartmann A, Dinnebier G, Spornraft-Ragaller P, Hamann C, Kirschner S. Metal hypersensitivity and metal ion levels in patients with coated or uncoated total knee arthroplasty: a randomised controlled study. Int Orthop. 2013;37(10):1925–31. doi:10.1007/s00264-013-2010-6.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Bravo D, Wagner ER, Larson DR, Davis MP, Pagnano MW, Sierra RJ. No increased risk of knee arthroplasty failure in patients with positive skin patch testing for metal hypersensitivity: a matched cohort study. J Arthroplast. 2016;31:1717.CrossRefGoogle Scholar
  130. 130.
    Gustafson K, Jakobsen SS, Lorenzen ND, Thyssen JP, Johansen JD, Bonefeld CM, et al. Metal release and metal allergy after total hip replacement with resurfacing versus conventional hybrid prosthesis. Acta Orthop. 2014;85(4):348–54. doi:10.3109/17453674.2014.922730.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Münch HJ, Jacobsen SS, Olesen JT, Menné T, Søballe K, Johansen JD, et al. The association between metal allergy, total knee arthroplasty, and revision. Acta Orthop. 2015;86(3):378–83. doi:10.3109/17453674.2014.999614.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    To T, Stanojevic S, Moores G, Gershon AS, Bateman ED, Cruz AA, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health. 2012;12(1):1.CrossRefGoogle Scholar
  133. 133.
    Anandan C, Nurmatov U, Van Schayck O, Sheikh A. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy. 2010;65(2):152–67.PubMedCrossRefGoogle Scholar
  134. 134.
    Leynaert B, Sunyer J, Garcia-Esteban R, Svanes C, Jarvis D, Cerveri I, et al. Gender differences in prevalence, diagnosis and incidence of allergic and non-allergic asthma: a population-based cohort. Thorax. 2012;67(7):625–31.PubMedCrossRefGoogle Scholar
  135. 135.
    Nemery B. Metal toxicity and the respiratory tract. Eur Respir J. 1990;3(2):202–19.PubMedGoogle Scholar
  136. 136.
    Fernández-Nieto M, Quirce S, Carnés J, Sastre J. Occupational asthma due to chromium and nickel salts. Int Arch Occup Environ Health. 2006;79(6):483–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Hannu T, Piipari R, Tuppurainen M, Nordman H, Tuomi T. Occupational asthma caused by stainless steel welding fumes: a clinical study. Eur Respir J. 2007;29(1):85–90.PubMedCrossRefGoogle Scholar
  138. 138.
    Novey HS, Habib M, Wells ID. Asthma and IgE antibodies induced by chromium and nickel salts. J Allergy Clin Immunol. 1983;72(4):407–12.PubMedCrossRefGoogle Scholar
  139. 139.
    Keskinen H, Kalliomäki P-L, Alanko K. Occupational asthma due to stainless steel welding fumes. Clin Exp Allergy. 1980;10(2):151–9.CrossRefGoogle Scholar
  140. 140.
    Shirakawa T, Kusaka Y, Fujimura N, Goto S, Kato M, Heki S, et al. Occupational asthma from cobalt sensitivity in workers exposed to hard metal dust. Chest J. 1989;95(1):29–37.CrossRefGoogle Scholar
  141. 141.
    Hegewald J, Uter W, Kränke B, Schnuch A, Gefeller O, Pfahlberg A. Patch test results with metals and meteorological conditions. Int Arch Allergy Immunol. 2008;147(3):235–40.PubMedCrossRefGoogle Scholar
  142. 142.
    de Waard-van der Spek FB, Darsow U, Mortz CG, Orton D, Worm M, Muraro A, et al. EAACI position paper for practical patch testing in allergic contact dermatitis in children. Pediatr Allergy Immunol. 2015;26(7):598–606.PubMedCrossRefGoogle Scholar
  143. 143.
    Fowler JF Jr, Kauffman CL, Marks JG Jr, Proctor DM, Fredrick MM, Otani JM, et al. An environmental hazard assessment of low-level dermal exposure to hexavalent chromium in solution among chromium-sensitized volunteers. J Occup Environ Med. 1999;41(3):150–60.PubMedCrossRefGoogle Scholar
  144. 144.
    Bregnbak D, Johansen JD, Hamann D, Hamann CR, Hamann C, Spiewak R, et al. Assessment of chromium(VI) release from 848 jewellery items by use of a diphenylcarbazide spot test. Contact Dermatitis. 2016;75(2):115–7. doi:10.1111/cod.12577.PubMedCrossRefGoogle Scholar
  145. 145.
    Bregnbak D, Johansen JD, Jellesen MS, Zachariae C, Thyssen JP. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test. Contact Dermatitis. 2015;73(5):281–8. doi:10.1111/cod.12406.CrossRefPubMedGoogle Scholar
  146. 146.
    Pflaum RT, Howick LC. The chromium-diphenylcarbazide reaction. J Am Chem Soc. 1956;78(19):4862–6. doi:10.1021/ja01600a014.CrossRefGoogle Scholar
  147. 147.
    Marques M, Salvador A, Morales-Rubio A, De la Guardia M. Chromium speciation in liquid matrices: a survey of the literature. Fresen J Anal Chem. 2000;367(7):601–13.CrossRefGoogle Scholar
  148. 148.
    EN 196-10:2006. Methods of testing cement – Part 10: Determination of the water-soluble chromium (VI) content of cement. CEN. 2006.Google Scholar
  149. 149.
    ISO. ISO 17075, Leather - Chemical tests - Determination of chromium(VI) content. 2007.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
  2. 2.Division of Surface and Corrosion Science, Department of Chemistry, School of Chemical Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations