Metal Allergy pp 285-300 | Cite as

Hypersensitivity to Dental Alloys

  • Joris MurisEmail author
  • Cees J. Kleverlaan


Most dental appliances to restore or replace decayed teeth are (partially) composed of alloys that may contain a large variety of metals. Corrosion is an inevitable chemical reaction between the oral environment and dental alloys that may lead to substantial and clinically relevant ion release and in turn result in adverse reactions like hypersensitivity and allergic contact dermatitis (ACD). There is a strong relation between exposure to dental alloys and ACD; thus, dental crowns seem to play a key role. However, a relationship between hypersensitivity to metals and objective oral abnormalities is less clear. Most likely the ability of various metals to trigger the innate immune system and the tolerant character of the oral mucosa play a key role. Notably, several cases describe ACD on distant sites due to oral exposure in the absence of oral complaints. On top of that, dental crowns are often difficult to distinguish from natural teeth, making them almost invisible to untrained eyes. Allergists and dermatologists should be aware of this insidious source of metal exposure, especially in cases of persistent metal ACD, and co-management with the patient’s dentist can be helpful.


  1. 1.
    Wataha JC. Biocompatibility of dental casting alloys: a review. J Prosthet Dent. 2000;83(2):223–34.PubMedGoogle Scholar
  2. 2.
    ADA. Revised Classification System for Alloys for Fixed Prosthodontics [01-23-2017]. Available from:
  3. 3.
    Aberer W, Holub H, Strohal R, Slavicek R. Palladium in dental alloys--the dermatologists' responsibility to warn? Contact Dermatitis. 1993;28(3):163–5.Google Scholar
  4. 4.
    Muris J, Feilzer AJ. Micro analysis of metals in dental restorations as part of a diagnostic approach in metal allergies. Neuro Endocrinol Lett. 2006;27(Suppl 1):49–52.PubMedGoogle Scholar
  5. 5.
    Davis MD, Wang MZ, Yiannias JA, Keeling JH, Connolly SM, Richardson DM, et al. Patch testing with a large series of metal allergens: findings from more than 1,000 patients in one decade at Mayo Clinic. Dermatitis. 2011;22(5):256–71.Google Scholar
  6. 6.
    Kanerva L, Rantanen T, Aalto-Korte K, Estlander T, Hannuksela M, Harvima RJ, et al. A multicenter study of patch test reactions with dental screening series. Am J Contact Dermat. 2001;12(2):83–7.PubMedGoogle Scholar
  7. 7.
    Torgerson RR, Davis MD, Bruce AJ, Farmer SA, Rogers RS 3rd. Contact allergy in oral disease. J Am Acad Dermatol. 2007;57(2):315–21.PubMedGoogle Scholar
  8. 8.
    Moller H. Dental gold alloys and contact allergy. Contact Dermatitis. 2002;47(2):63–6.PubMedGoogle Scholar
  9. 9.
    Ahlgren C, Bruze M, Moller H, Gruvberger B, Axell T, Liedholm R, et al. Contact allergy to gold in patients with oral lichen lesions. Acta Derm Venereol. 2012;92(2):138–43.PubMedGoogle Scholar
  10. 10.
    Ahlgren C, Ahnlide I, Bjorkner B, Bruze M, Liedholm R, Moller H, et al. Contact allergy to gold is correlated to dental gold. Acta Derm Venereol. 2002;82(1):41–4.PubMedGoogle Scholar
  11. 11.
    Berzins DW, Kawashima I, Graves R, Sarkar NK. Electrochemical characteristics of high-Pd alloys in relation to Pd-allergy. Dent Mater. 2000;16(4):266–73.PubMedGoogle Scholar
  12. 12.
    Manaranche C, Hornberger H. A proposal for the classification of dental alloys according to their resistance to corrosion. Dent Mater. 2007;23(11):1428–37.PubMedGoogle Scholar
  13. 13.
    Pigatto PD, Feilzer AJ, Valentine-Thon E, Zerboni R, Guzzi G. Burning mouth syndrome associated with palladium allergy? Eur J Dermatol. 2008;18(3):356–7.PubMedGoogle Scholar
  14. 14.
    Muris J, Goossens A, Goncalo M, Bircher AJ, Gimenez-Arnau A, Foti C, et al. Sensitization to palladium and nickel in Europe and the relationship with oral disease and dental alloys. Contact Dermatitis. 2015;72(5):286–96.Google Scholar
  15. 15.
    Faurschou A, Menne T, Johansen JD, Thyssen JP. Metal allergen of the 21st century-a review on exposure, epidemiology and clinical manifestations of palladium allergy. Contact Dermatitis. 2011;64(4):185–95.Google Scholar
  16. 16.
    Al-Imam H, Benetti AR, Ozhayat EB, Pedersen AM, Johansen JD, Thyssen JP, et al. Cobalt release and complications resulting from the use of dental prostheses. Contact Dermatitis. 2016;75(6):377–83.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Thyssen JP, Menne T. Metal allergy—a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem Res Toxicol. 2010;23(2):309–18.Google Scholar
  18. 18.
    Wataha JC, Drury JL, Chung WO. Nickel alloys in the oral environment. Expert Rev Med Devices. 2013;10(4):519–39.PubMedGoogle Scholar
  19. 19.
    Milheiro A, Kleverlaan C, Muris J, Feilzer A, Pallav P. Nickel release from orthodontic retention wires-the action of mechanical loading and pH. Dent Mater. 2012;28(5):548–53.PubMedGoogle Scholar
  20. 20.
    Feilzer AJ, Laeijendecker R, Kleverlaan CJ, van Schendel P, Muris J. Facial eczema because of orthodontic fixed retainer wires. Contact Dermatitis. 2008;59(2):118–20.Google Scholar
  21. 21.
    Mathew MT, Barao VA, Yuan JC, Assuncao WG, Sukotjo C, Wimmer MA. What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium? J Mech Behav Biomed Mater. 2012;8:71–85.PubMedGoogle Scholar
  22. 22.
    Noguti J, de Oliveira F, Peres RC, Renno AC, Ribeiro DA. The role of fluoride on the process of titanium corrosion in oral cavity. Biometals. 2012;25(5):859–62.PubMedGoogle Scholar
  23. 23.
    Sicilia A, Cuesta S, Coma G, Arregui I, Guisasola C, Ruiz E, et al. Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clin Oral Implants Res. 2008;19(8):823–35.PubMedGoogle Scholar
  24. 24.
    Siddiqi A, Payne AG, De Silva RK, Duncan WJ. Titanium allergy: could it affect dental implant integration? Clin Oral Implants Res. 2011;22(7):673–80.PubMedGoogle Scholar
  25. 25.
    Fage SW, Muris J, Jakobsen SS, Thyssen JP. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis. 2016;74(6):323–45.Google Scholar
  26. 26.
    Gulson B, McCall MJ, Bowman DM, Pinheiro T. A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch Toxicol. 2015;89(11):1909–30.PubMedGoogle Scholar
  27. 27.
    Roblegg E, Frohlich E, Meindl C, Teubl B, Zaversky M, Zimmer A. Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology. 2012;6(4):399–413.PubMedGoogle Scholar
  28. 28.
    Teubl BJ, Leitinger G, Schneider M, Lehr CM, Frohlich E, Zimmer A, et al. The buccal mucosa as a route for TiO2 nanoparticle uptake. Nanotoxicology. 2015;9(2):253–61.PubMedGoogle Scholar
  29. 29.
    Valentine-Thon E, Muller K, Guzzi G, Kreisel S, Ohnsorge P, Sandkamp M. LTT-MELISA (R) is clinically relevant for detecting and monitoring metal sensitivity. Neuroendocrinol Lett. 2006;27:17–24.Google Scholar
  30. 30.
    Valentine-Thon E, Schiwara HW. Validity of MELISA for metal sensitivity testing. Neuro Endocrinol Lett. 2003;24(1–2):57–64.PubMedGoogle Scholar
  31. 31.
    Muller K, Valentine-Thon E. Hypersensitivity to titanium: clinical and laboratory evidence. Neuro Endocrinol Lett. 2006;27(Suppl 1):31–5.PubMedGoogle Scholar
  32. 32.
    Geurtsen W. Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med. 2002;13(1):71–84.PubMedGoogle Scholar
  33. 33.
    Wataha JC, Craig RG, Hanks CT. The release of elements of dental casting alloys into cell-culture medium. J Dent Res. 1991;70(6):1014–8.Google Scholar
  34. 34.
    Khan MA, Williams RL, Williams DF. Conjoint corrosion and wear in titanium alloys. Biomaterials. 1999;20(8):765–72.PubMedGoogle Scholar
  35. 35.
    Bosshardt DD, Lang NP. The junctional epithelium: from health to disease. J Dent Res. 2005;84(1):9–20.PubMedGoogle Scholar
  36. 36.
    Fine DH, Pechersky JL, McKibben DH. The penetration of human gingival sulcular tissue by carbon particles. Arch Oral Biol. 1969;14(9):1117–9.PubMedGoogle Scholar
  37. 37.
    Tolo KJ. A study of permeability of gingival pocket epithelium to albumin in guinea pigs and Norwegian pigs. Arch Oral Biol. 1971;16(8):881–8.PubMedGoogle Scholar
  38. 38.
    Wataha JC, Lockwood PE, Khajotia SS, Turner R. Effect of pH on element release from dental casting alloys. J Prosthet Dent. 1998;80(6):691–8.PubMedGoogle Scholar
  39. 39.
    Hedberg Y, Wang X, Hedberg J, Lundin M, Blomberg E, Wallinder IO. Surface-protein interactions on different stainless steel grades: effects of protein adsorption, surface changes and metal release. J Mater Sci Mater Med. 2013;24(4):1015–33.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Wataha JC, Nelson SK, Lockwood PE. Elemental release from dental casting alloys into biological media with and without protein. Dent Mater. 2001;17(5):409–14.PubMedGoogle Scholar
  41. 41.
    Bal W, Sokolowska M, Kurowska E, Faller P. Binding of transition metal ions to albumin: sites, affinities and rates. Biochim Biophys Acta. 2013;1830(12):5444–55.PubMedGoogle Scholar
  42. 42.
    Su N, Marek CL, Ching V, Grushka M. Caries prevention for patients with dry mouth. J Can Dent Assoc. 2011;77:b85.PubMedGoogle Scholar
  43. 43.
    Kagawa R, Ikebe K, Enoki K, Murai S, Okada T, Matsuda K, et al. Influence of hypertension on pH of saliva in older adults. Oral Dis. 2013;19(5):525–9.PubMedGoogle Scholar
  44. 44.
    Wataha JC, Lockwood PE, Frazier KB, Khajotia SS. Effect of toothbrushing on elemental release from dental casting alloys. J Prosthodont. 1999;8(4):245–51.PubMedGoogle Scholar
  45. 45.
    Wataha JC, Lockwood PE, Mettenburg D, Bouillaguet S. Toothbrushing causes elemental release from dental casting alloys over extended intervals. J Biomed Mater Res B Appl Biomater. 2003;65(1):180–5.PubMedGoogle Scholar
  46. 46.
    Wataha JC, Lockwood PE, Noda M, Nelson SK, Mettenburg DJ. Effect of toothbrushing on the toxicity of casting alloys. J Prosthet Dent. 2002;87(1):94–8.PubMedGoogle Scholar
  47. 47.
    McGinley EL, Dowling AH, Moran GP, Fleming GJ. Influence of S. Mutans on base-metal dental casting alloy toxicity. J Dent Res. 2013;92(1):92–7.PubMedGoogle Scholar
  48. 48.
    McGinley EL, Coleman DC, Moran GP, Fleming GJ. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy. Dent Mater. 2011;27(7):637–50.PubMedGoogle Scholar
  49. 49.
    Bjorkman L, Lundekvam BF, Laegreid T, Bertelsen BI, Morild I, Lilleng P, et al. Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ Health. 2007;6:30.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Langworth S, Bjorkman L, Elinder CG, Jarup L, Savlin P. Multidisciplinary examination of patients with illness attributed to dental fillings. J Oral Rehabil. 2002;29(8):705–13.PubMedGoogle Scholar
  51. 51.
    Begerow J, Zander D, Freier I, Dunemann L. Long-term mercury excretion in urine after removal of amalgam fillings. Int Arch Occup Environ Health. 1994;66(3):209–12.PubMedGoogle Scholar
  52. 52.
    Molin M. Mercury release from dental amalgam in man. Influences on selenium, glutathione peroxidase and some other blood and urine components. Swed Dent J Suppl. 1990;71:1–122.PubMedGoogle Scholar
  53. 53.
    Garhammer P, Schmalz G, Hiller KA, Reitinger T. Metal content of biopsies adjacent to dental cast alloys. Clin Oral Investig. 2003;7(2):92–7.PubMedGoogle Scholar
  54. 54.
    Cristaudo A, Bordignon V, Petrucci F, Caimi S, De Rocco M, Picardo M, et al. Release of palladium from biomechanical prostheses in body fluids can induce or support PD-specific IFN gamma T cell responses and the clinical setting of a palladium hypersensitivity. Int J Immunopathol Pharmacol. 2009;22(3):605–14.PubMedGoogle Scholar
  55. 55.
    Drasch G, Muss C, Roider G. Gold and palladium burden from dental restoration materials. J Trace Elem Med Biol. 2000;14(2):71–5.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kielhorn J, Melber C, Keller D, Mangelsdorf I. Palladium—a review of exposure and effects to human health. Int J Hyg Environ Health. 2002;205(6):417–32.Google Scholar
  57. 57.
    Begerow J, Neuendorf J, Turfeld M, Raab W, Dunemann L. Long-term urinary platinum, palladium, and gold excretion of patients after insertion of noble-metal dental alloys. Biomarkers. 1999;4(1):27–36.PubMedGoogle Scholar
  58. 58.
    Kratzenstein B, Sauer KH, Weber H. In-vivo corrosion phenomena of cast restorations and their interactions with the oral cavity. Dtsch Zahnarztl Z. 1988;43(3):343–8.PubMedGoogle Scholar
  59. 59.
    Schwickerath H. Solubility of dental alloys. Deutsche Zahnarztliche Zeitschrift. 1988;43(3):339–42.PubMedGoogle Scholar
  60. 60.
    Ahlgren C, Molin M, Lundh T, Nilner K. Levels of gold in plasma after dental gold inlay insertion. Acta Odontol Scand. 2007;65(6):331–4.PubMedGoogle Scholar
  61. 61.
    Ekqvist S, Lundh T, Svedman C, Bjork J, Moller H, Nilsson LA, et al. Does gold concentration in the blood influence the result of patch testing to gold? Br J Dermatol. 2009;160(5):1016–21.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Ekqvist S, Svedman C, Lundh T, Moller H, Bjork J, Bruze M. A correlation found between gold concentration in blood and patch test reactions in patients with coronary stents. Contact Dermatitis. 2008;59(3):137–42.Google Scholar
  63. 63.
    Milheiro A, Muris J, Kleverlaan CJ, Feilzer AJ. Influence of shape and finishing on the corrosion of palladium-based dental alloys. J Adv Prosthodont. 2015;7(1):56–61.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Berzins DW, Kawashima I, Graves R, Sarkar NK. Heat treatment effects on electrochemical corrosion parameters of high-Pd alloys. J Mater Sci Mater Med. 2008;19(1):335–41.PubMedGoogle Scholar
  65. 65.
    Viennot S, Lissac M, Malquarti G, Dalard F, Grosgogeat B. Influence of casting procedures on the corrosion resistance of clinical dental alloys containing palladium. Acta Biomater. 2006;2(3):321–30.PubMedGoogle Scholar
  66. 66.
    Kessler DA. Introducing MEDWatch. A new approach to reporting medication and device adverse effects and product problems. JAMA. 1993;269(21):2765–8.PubMedGoogle Scholar
  67. 67.
    Fuller J, Parmentier C. Dental device-associated problems: an analysis of FDA postmarket surveillance data. J Am Dent Assoc. 2001;132(11):1540–8.PubMedGoogle Scholar
  68. 68.
    Hosoki M, Bando E, Asaoka K, Takeuchi H, Nishigawa K. Assessment of allergic hypersensitivity to dental materials. Biomed Mater Eng. 2009;19(1):53–61.Google Scholar
  69. 69.
    van Noort R, Gjerdet NR, Schedle A, Bjorkman L, Berglund A. An overview of the current status of national reporting systems for adverse reactions to dental materials. J Dent. 2004;32(5):351–8.PubMedGoogle Scholar
  70. 70.
    Muris J, Scheper RJ, Kleverlaan CJ, Rustemeyer T, van Hoogstraten IM, von Blomberg ME, et al. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses. Contact Dermatitis. 2014;71:82–91.Google Scholar
  71. 71.
    Issa Y, Duxbury AJ, Macfarlane TV, Brunton PA. Oral lichenoid lesions related to dental restorative materials. Br Dent J. 2005;198(6):361–6. disussion 549; quiz 372PubMedGoogle Scholar
  72. 72.
    Marcusson JA. Contact allergies to nickel sulfate, gold sodium thiosulfate and palladium chloride in patients claiming side-effects from dental alloy components. Contact Dermatitis. 1996;34(5):320–3.Google Scholar
  73. 73.
    Vamnes JS, Morken T, Helland S, Gjerdet NR. Dental gold alloys and contact hypersensitivity. Contact Dermatitis. 2000;42(3):128–33.PubMedGoogle Scholar
  74. 74.
    Axell T. Hypersensitivity of the oral mucosa: clinics and pathology. Acta Odontol Scand. 2001;59(5):315–9.PubMedGoogle Scholar
  75. 75.
    Wahlberg JE, Boman AS. Palladium chloride—a potent sensitizer in the Guinea pig. Am J Contact Dermat. 1990;1(2):112–3.Google Scholar
  76. 76.
    Wahlberg JE, Boman AS. Cross-reactivity to palladium and nickel studied in the guinea pig. Acta Derm Venereol. 1992;72(2):95–7.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Wahlberg JE, Liden C. Cross-reactivity patterns of palladium and nickel studied by repeated open applications (ROATs) to the skin of guinea pigs. Contact Dermatitis. 1999;41(3):145–9.PubMedGoogle Scholar
  78. 78.
    Hindsen M, Spiren A, Bruze M. Cross-reactivity between nickel and palladium demonstrated by systemic administration of nickel. Contact Dermatitis. 2005;53(1):2–8.PubMedGoogle Scholar
  79. 79.
    Moulon C, Vollmer J, Weltzien HU. Characterization of processing requirements and metal cross-reactivities in T cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol. 1995;25(12):3308–15.Google Scholar
  80. 80.
    Pistoor FH, Kapsenberg ML, Bos JD, Meinardi MM, von Blomberg ME, Scheper RJ. Cross-reactivity of human nickel-reactive T-lymphocyte clones with copper and palladium. J Invest Dermatol. 1995;105(1):92–5.Google Scholar
  81. 81.
    Muris J, Goossens A, Goncalo M, Bircher AJ, Gimenez-Arnau A, Foti C, et al. Sensitization to palladium in Europe. Contact Dermatitis. 2015;72(1):11–9.Google Scholar
  82. 82.
    Muris J, Kleverlaan CJ, Feilzer AJ, Rustemeyer T. Sodium tetrachloropalladate (Na2[PdCl4]) as an improved test salt for palladium allergy patch testing. Contact Dermatitis. 2008;58(1):42–6.PubMedGoogle Scholar
  83. 83.
    Muris J, Kleverlaan CJ, Rustemeyer T, von Blomberg ME, van Hoogstraten IM, Feilzer AJ, et al. Sodium tetrachloropalladate for diagnosing palladium sensitization. Contact Dermatitis. 2012;67(2):94–100.Google Scholar
  84. 84.
    Khamaysi Z, Bergman R, Weltfriend S. Positive patch test reactions to allergens of the dental series and the relation to the clinical presentations. Contact Dermatitis. 2006;55(4):216–8.PubMedGoogle Scholar
  85. 85.
    Raap U, Stiesch M, Reh H, Kapp A, Werfel T. Investigation of contact allergy to dental metals in 206 patients. Contact Dermatitis. 2009;60(6):339–43.Google Scholar
  86. 86.
    Wray D, Rees SR, Gibson J, Forsyth A. The role of allergy in oral mucosal diseases. QJM. 2000;93(8):507–11.PubMedGoogle Scholar
  87. 87.
    Shah M, Lewis FM, Gawkrodger DJ. Contact allergy in patients with oral symptoms: a study of 47 patients. Am J Contact Dermat. 1996;7(3):146–51.PubMedGoogle Scholar
  88. 88.
    Ahlgren C, Axell T, Moller H, Isaksson M, Liedholm R, Bruze M. Contact allergies to potential allergens in patients with oral lichen lesions. Clin Oral Investig. 2014;18(1):227–37.PubMedGoogle Scholar
  89. 89.
    Rachmawati D, Bontkes HJ, Verstege MI, Muris J, von Blomberg BM, Scheper RJ, et al. Transition metal sensing by toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis. 2013;68(6):331–8.Google Scholar
  90. 90.
    Schmidt M, Raghavan B, Muller V, Vogl T, Fejer G, Tchaptchet S, et al. Crucial role for human toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol. 2010;11(9):814–9.Google Scholar
  91. 91.
    Rachmawati D, Alsalem IW, Bontkes HJ, Verstege MI, Gibbs S, von Blomberg BM, et al. Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury). Toxicol In Vitro. 2015;29(2):363–9.Google Scholar
  92. 92.
    Kollisch G, Kalali BN, Voelcker V, Wallich R, Behrendt H, Ring J, et al. Various members of the toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology. 2005;114(4):531–41.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Oosterhoff D, Heusinkveld M, Lougheed SM, Kosten I, Lindstedt M, Bruijns SC, et al. Intradermal delivery of TLR agonists in a human explant skin model: preferential activation of migratory dendritic cells by polyribosinic-polyribocytidylic acid and peptidoglycans. J Immunol. 2013;190(7):3338–45.PubMedGoogle Scholar
  94. 94.
    Rachmawati D, Buskermolen JK, Scheper RJ, Gibbs S, von Blomberg BM, van Hoogstraten IM. Dental metal-induced innate reactivity in keratinocytes. Toxicol In Vitro. 2015;30(1 Pt B):325–30.Google Scholar
  95. 95.
    Rachmawati D, von Blomberg BM, Kleverlaan CJ, Scheper RJ, van Hoogstraten IM. Immunostimulatory capacity of dental casting alloys on endotoxin responsiveness. J Prosthet Dent. 2016;117:677–84.Google Scholar
  96. 96.
    Kosten IJ, Buskermolen JK, Spiekstra SW, de Gruijl TD, Gibbs S. Gingiva equivalents secrete negligible amounts of key chemokines involved in Langerhans cell migration compared to skin equivalents. J Immunol Res. 2015;2015:627125.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Novak N, Gros E, Bieber T, Allam JP. Human skin and oral mucosal dendritic cells as ‘good guys’ and ‘bad guys’ in allergic immune responses. Clin Exp Immunol. 2010;161(1):28–33.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Allam JP, Peng WM, Appel T, Wenghoefer M, Niederhagen B, Bieber T, et al. Toll-like receptor 4 ligation enforces tolerogenic properties of oral mucosal Langerhans cells. J Allergy Clin Immunol. 2008;121(2):368–74. e1PubMedGoogle Scholar
  99. 99.
    Fors R, Stenberg B, Stenlund H, Persson M. Nickel allergy in relation to piercing and orthodontic appliances—a population study. Contact Dermatitis. 2012;67(6):342–50.PubMedGoogle Scholar
  100. 100.
    Van Hoogstraten IM, Andersen KE, Von Blomberg BM, Boden D, Bruynzeel DP, Burrows D, et al. Reduced frequency of nickel allergy upon oral nickel contact at an early age. Clin Exp Immunol. 1991;85(3):441–5.PubMedPubMedCentralGoogle Scholar
  101. 101.
    van Hoogstraten IM, Boden D, von Blomberg ME, Kraal G, Scheper RJ. Persistent immune tolerance to nickel and chromium by oral administration prior to cutaneous sensitization. J Invest Dermatol. 1992;99(5):608–16.Google Scholar
  102. 102.
    Van Hoogstraten IM, Boos C, Boden D, Von Blomberg ME, Scheper RJ, Kraal G. Oral induction of tolerance to nickel sensitization in mice. J Invest Dermatol. 1993;101(1):26–31.Google Scholar
  103. 103.
    Zavala WD, Cavicchia JC. Deterioration of the Langerhans cell network of the human gingival epithelium with aging. Arch Oral Biol. 2006;51(12):1150–5.PubMedGoogle Scholar
  104. 104.
    Geginat J, Paroni M, Maglie S, Alfen JS, Kastirr I, Gruarin P, et al. Plasticity of human CD4 T cell subsets. Front Immunol. 2014;5:630.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Islam SA, Luster AD. T cell homing to epithelial barriers in allergic disease. Nat Med. 2012;18(5):705–15.PubMedGoogle Scholar
  106. 106.
    Feilzer AJ, Kleverlaan CJ, Prahl C, Muris J. Systemic reactions to orally applied metal alloys. Ned Tijdschr Tandheelkd. 2013;120(6):335–41.PubMedGoogle Scholar
  107. 107.
    Fernandez-Redondo V, Gomez-Centeno P, Toribio J. Chronic urticaria from a dental bridge. Contact Dermatitis. 1998;38(3):178–9.Google Scholar
  108. 108.
    Hanafusa T, Yoshioka E, Azukizawa H, Itoi S, Tani M, Kira M, et al. Systemic allergic contact dermatitis to palladium inlay manifesting as annular erythema. Eur J Dermatol. 2012;22(5):697–8.PubMedGoogle Scholar
  109. 109.
    Van Loon LA, Nieboer C, Van Ketel WG. A case of local and systemic disorders caused by palladium hypersensitivity. Ned Tijdschr Tandheelkd. 1982;89(2):50–1.Google Scholar
  110. 110.
    Al-Hashimi I, Schifter M, Lockhart PB, Wray D, Brennan M, Migliorati CA, et al. Oral lichen planus and oral lichenoid lesions: diagnostic and therapeutic considerations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(Suppl:S25):e1–12.Google Scholar
  111. 111.
    Nakayama H. New aspects of metal allergy. Acta Dermatovenerol Croat. 2002;10(4):207–19.Google Scholar
  112. 112.
    Schlosser BJ. Lichen planus and lichenoid reactions of the oral mucosa. Dermatol Ther. 2010;23(3):251–67.Google Scholar
  113. 113.
    Koch P, Bahmer FA. Oral lesions and symptoms related to metals used in dental restorations: a clinical, allergological, and histologic study. J Am Acad Dermatol. 1999;41(3 Pt 1):422–30.PubMedGoogle Scholar
  114. 114.
    Laeijendecker R, Dekker SK, Burger PM, Mulder PG, Van Joost T, Neumann MH. Oral lichen planus and allergy to dental amalgam restorations. Arch Dermatol. 2004;140(12):1434–8.PubMedGoogle Scholar
  115. 115.
    Laeijendecker R, van Joost T. Oral manifestations of gold allergy. J Am Acad Dermatol. 1994;30(2 Pt 1):205–9.PubMedGoogle Scholar
  116. 116.
    Skoglund A. Value of epicutaneous patch testing in patients with oral, mucosal lesions of lichenoid character. Scand J Dent Res. 1994;102(4):216–22.PubMedGoogle Scholar
  117. 117.
    Dunsche A, Kastel I, Terheyden H, Springer IN, Christophers E, Brasch J. Oral lichenoid reactions associated with amalgam: improvement after amalgam removal. Br J Dermatol. 2003;148(1):70–6.PubMedGoogle Scholar
  118. 118.
    Wong L, Freeman S. Oral lichenoid lesions (OLL) and mercury in amalgam fillings. Contact Dermatitis. 2003;48(2):74–9.PubMedGoogle Scholar
  119. 119.
    Thornhill MH, Pemberton MN, Simmons RK, Theaker ED. Amalgam-contact hypersensitivity lesions and oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(3):291–9.PubMedGoogle Scholar
  120. 120.
    Thornhill MH, Sankar V, Xu XJ, Barrett AW, High AS, Odell EW, et al. The role of histopathological characteristics in distinguishing amalgam-associated oral lichenoid reactions and oral lichen planus. J Oral Pathol Med. 2006;35(4):233–40.PubMedGoogle Scholar
  121. 121.
    Lygre GB, Gjerdet NR, Gronningsaeter AG, Bjorkman L. Reporting on adverse reactions to dental materials–intraoral observations at a clinical follow-up. Community Dent Oral Epidemiol. 2003;31(3):200–6.PubMedGoogle Scholar
  122. 122.
    Lygre GB, Gjerdet NR, Bjorkman L. A follow-up study of patients with subjective symptoms related to dental materials. Community Dent Oral Epidemiol. 2005;33(3):227–34.PubMedGoogle Scholar
  123. 123.
    Lygre GB, Sjursen TT, Svahn J, Helland V, Lundekvam BF, Dalen K, et al. Characterization of health complaints before and after removal of amalgam fillings–3-year follow-up. Acta Odontol Scand. 2013;71(3–4):560–9.PubMedGoogle Scholar
  124. 124.
    Melchart D, Vogt S, Kohler W, Streng A, Weidenhammer W, Kremers L, et al. Treatment of health complaints attributed to amalgam. J Dent Res. 2008;87(4):349–53.PubMedGoogle Scholar
  125. 125.
    Sjursen TT, Lygre GB, Dalen K, Helland V, Laegreid T, Svahn J, et al. Changes in health complaints after removal of amalgam fillings. J Oral Rehabil. 2011;38(11):835–48.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Stejskal VD, Danersund A, Lindvall A, Hudecek R, Nordman V, Yaqob A, et al. Metal-specific lymphocytes: biomarkers of sensitivity in man. Neuroendocrinol Lett. 1999;20(5):289–98.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Stejskal V, Hudecek R, Stejskal J, Sterzl I. Diagnosis and treatment of metal-induced side-effects. Neuro Endocrinol Lett. 2006;27(Suppl 1):7–16.PubMedGoogle Scholar
  128. 128.
    Herrstrom P, Hogstedt B. Clinical study of oral galvanism: no evidence of toxic mercury exposure but anxiety disorder an important background factor. Scand J Dent Res. 1993;101(4):232–7.PubMedGoogle Scholar
  129. 129.
    Marino R, Capaccio P, Pignataro L, Spadari F. Burning mouth syndrome: the role of contact hypersensitivity. Oral Dis. 2009;15(4):255–8.PubMedGoogle Scholar
  130. 130.
    Gurvits GE, Tan A. Burning mouth syndrome. World J Gastroenterol. 2013;19(5):665–72.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Scully C, Bagan JV. Adverse drug reactions in the orofacial region. Crit Rev Oral Biol Med. 2004;15(4):221–39.PubMedGoogle Scholar
  132. 132.
    Smith RG, Burtner AP. Oral side-effects of the most frequently prescribed drugs. Spec Care Dentist. 1994;14(3):96–102.PubMedGoogle Scholar
  133. 133.
    Dutt P, Chaudhary S, Kumar P. Oral health and menopause: a comprehensive review on current knowledge and associated dental management. Ann Med Health Sci Res. 2013;3(3):320–3.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Dental Materials Science, Academic Centre for Dentistry AmsterdamVU University Amsterdam and University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations