Diagnostic Imaging

  • Diego JaramilloEmail author
  • Vernon M. Chapman
Part of the Contemporary Pediatric and Adolescent Sports Medicine book series (PASM)


When imaging injuries of young athletes, it is important to take into account the different strengths of each modality. Plain radiographs are the necessary first step and often suffice for most musculoskeletal injuries. Ultrasound is having an increasingly important role in the evaluation of tendinous and ligamentous abnormalities. In injuries that require dynamic imaging, such as the diagnosis of muscle hernias, ultrasound is the modality of choice. Computed tomography is the main technique for evaluating acute head injuries, as it can detect hemorrhage and bony injuries better than MRI. Its speed and contrast resolution make it ideal to evaluate severe abdominal trauma, and the capability of easy multiplanar reconstruction is extremely useful for evaluating complex fractures. MRI is the modality of choice to visualize the brain and for evaluation of internal derangement of the joints. It can also evaluate the cartilaginous injuries that are unique to the growing skeleton.


Radiography Ultrasound Tendinous and ligamentous abnormality Dynamic imaging Computed tomography Magnetic resonance imaging (MRI) Nuclear medicine Young athletes Brain injuries Cartilaginous injuries Arthrography 


  1. 1.
    Bushberg JT, Seibert JA, Leidholdt EM, Boone JM. The essential physics of medical imaging. 2nd ed. Baltimore: Williams and Wilkins; 2002.Google Scholar
  2. 2.
    Körner M, Weber CH, Wirth S, Pfeifer KJ, Reiser MF, Treitl M. Advances in digital radiography: physical principles and system overview. Radiographics. 2007;27(3):675–86.CrossRefGoogle Scholar
  3. 3.
    Wybier M, Bossard P. Musculoskeletal imaging in progress: the EOS imaging system. Joint Bone Spine. 2013;80:238–43.CrossRefGoogle Scholar
  4. 4.
    Fayad LM, Johnson P, Fishman EK. Multidetector CT of musculoskeletal disease in the pediatric patient: principles, techniques, and clinical applications. Radiographics. 2005;25:603–18.CrossRefGoogle Scholar
  5. 5.
    Brenner DJ, Elliston CD, Hall EJ, Berdon WE. Estimated risk of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol. 2001;176:289–96.CrossRefGoogle Scholar
  6. 6.
    Biswas D, Bible JE, Bohan M, Simpson AK, Whang PG, Grauer JN. Radiation exposure from musculoskeletal computerized tomographic scans. J Bone Joint Surg Am. 2009;91(8):1882–9.CrossRefGoogle Scholar
  7. 7.
    Hendrick RE. Basic physics of MR imaging: an introduction. Radiographics. 1994;14:829–46.CrossRefGoogle Scholar
  8. 8.
    Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: an illustrative review. Radiographics. 2003;23:341–58.CrossRefGoogle Scholar
  9. 9.
    Middleton WD, Kurtz AB. Ultrasound: the requisites. 2nd ed. St. Louis: Mosby; 2003.Google Scholar
  10. 10.
    Poussaint TY, Moeller KK. Imaging of pediatric head trauma. Neuroimaging Clin N Am. 2002;12:271–94.CrossRefGoogle Scholar
  11. 11.
    Noguchi K, Ogawa T, Seto H, et al. Subacute and chronic subarachnoid hemorrhage: diagnosis with fluid-attenuated inversion recovery MR imaging. Radiology. 1997;203:257–62.CrossRefGoogle Scholar
  12. 12.
    Turner BG, Rhea JT, Thrall JH, Small AB, Novelline RA. Trends in the use of CT and radiography in the evaluation of facial trauma, 1992–2002: implications for current costs. Am J Roentgenol. 2004;183:751–4.CrossRefGoogle Scholar
  13. 13.
    Redelmeier DA, Raza S. Concussions and repercussions. PLoS Med. 2016;13(8):e1002104. CrossRefGoogle Scholar
  14. 14.
    Keenan HT, Hollingshead MC, Chung CJ, Ziglar MK. Using CT of the cervical spine for early evaluation of pediatric patients with head trauma. Am J Roentgenol. 2001;177:1405–9.CrossRefGoogle Scholar
  15. 15.
    Afshani E, Kuhn JP. Common causes of low back pain in children. Radiographics. 1991;11:269–91.CrossRefGoogle Scholar
  16. 16.
    Sivit CJ, Eichelberger MR, Taylor GA. CT in children with rupture of the bowel caused by blunt trauma: diagnostic efficacy and comparison with hypoperfusion complex. Am J Roentgenol. 1994;163:1195–8.CrossRefGoogle Scholar
  17. 17.
    Landin L. Epidemiology of children’s fractures. J Pediatr Orthop B. 1997;6:79–83.CrossRefGoogle Scholar
  18. 18.
    Salter R, Harris W. Injuries involving the epiphyseal plate. J Bone Joint Surg Am. 1963;45:587–622.CrossRefGoogle Scholar
  19. 19.
    Jaimes C, Chauvin NA, Delgado J, Jaramillo D. MR imaging of normal epiphyseal development and common epiphyseal disorders. Radiographics. 2014;34(2):449–71.CrossRefGoogle Scholar
  20. 20.
    O’Dell MC, Jaramillo D, Bancroft L, Varich L, Logsdon G, Servaes S. Imaging of sports-related injuries of the lower extremity in pediatric patients. Radiographics. 2016;36(6):1807–27.CrossRefGoogle Scholar
  21. 21.
    Delgado J, Jaramillo D, Chauvin NA. Imaging the injured pediatric athlete: upper extremity. Radiographics. 2016;36(6):1672–87.CrossRefGoogle Scholar
  22. 22.
    Bedoya MA, Jaramillo D, Chauvin NA. Overuse injuries in children. Top Magn Reson Imaging. 2015;24(2):67–81.PubMedGoogle Scholar
  23. 23.
    Jaimes C, Sabshin N, Laor T, Jaramillo D. Taking the stress out of evaluating stress injuries in children. Radiographics. 2012;32(2):537–55.CrossRefGoogle Scholar
  24. 24.
    Laor T, Wall EJ, Louis PV. Physeal widening in the knee due to stress injury in child athletes. Am J Roentgenol. 2006;186:1260–4.CrossRefGoogle Scholar
  25. 25.
    Umans H, Liebling MS, Moy L, et al. Slipped capital femoral epiphysis: a physeal lesion diagnosed by MRI, with radiographic and CT correlation. Skelet Radiol. 1998;27:139–44.CrossRefGoogle Scholar
  26. 26.
    Rogers L, Poznanski A. Imaging of epiphyseal injuries. Radiology. 1994;191:297–308.CrossRefGoogle Scholar
  27. 27.
    Peterson HA, Madhok R, Benson JT, et al. Physeal fractures: part 1. Epidemiology in Olmstead County, Minnesota, 1979–1988. J Pediatr Orthop. 1994;14:423–30.CrossRefGoogle Scholar
  28. 28.
    Peterson HA. Physeal and apophyseal injuries. In: Rockwood J, Wilkins KE, Beaty JH, editors. Fractures in children. 3rd ed. Philadelphia: Lippincott-Raven; 1996. p. 103–65.Google Scholar
  29. 29.
    Ecklund K, Jaramillo D. Patterns of premature physeal arrest: MR imaging of 111 children. Am J Roentgenol. 2002;178:967–72.CrossRefGoogle Scholar
  30. 30.
    Disler DG. Fat-suppressed three-dimensional spoiled gradient-recalled MR imaging: assessment of articular and physeal hyaline cartilage. Am J Roentgenol. 1997;169:1117–24.CrossRefGoogle Scholar
  31. 31.
    Borsa JJ, Peterson HA, Ehman RL. MR imaging of physeal bars. Radiology. 1996;199:683–7.CrossRefGoogle Scholar
  32. 32.
    Shailam R, Jaramillo D, Kan JH. Growth arrest and leg length discrepancy. Pediatr Radiol. 2013;43(Suppl 1):155–65.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of RadiologyMiami Children’s HospitalMiamiUSA
  2. 2.Radiology Imaging AssociatesEnglewoodUSA

Personalised recommendations