Purification of Pluripotent Stem Cell-Derived Cardiomyocytes for Safe Cardiac Regeneration

  • Shugo Tohyama
  • Keiichi FukudaEmail author
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol., volume 4)


Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced PSCs (iPSCs), have the potential to differentiate into various cells types and may be used as cell sources for regenerative medicine in the context of various diseases, including severe heart failure. However, one of the biggest hurdles in the use of human PSCs for clinical applications is tumor formation due to contamination with residual tumor-forming cells, primarily undifferentiated PSCs. In addition, hundreds of millions of cardiomyocytes are required for heart repair. Two approaches have been developed for achievement of safer cardiac regenerative therapy using human PSCs: (1) selective elimination of residual tumor-forming cells before cell transplantation and (2) purification of PSC-derived cardiomyocytes. Many methodologies, including genetic and nongenetic modification, have been developed using these strategies. In this chapter, we focus on the current status of selective elimination of residual PSCs and purification of cardiomyocytes for safe stem cell therapy.


Induced pluripotent stem cell Embryonic stem cell Purification Cardiomyocyte Tumor 



The present work was supported by the Highway Program for Realization of Regenerative Medicine from Japan Science and Technology Agency (to K.F.) and SENSHIN Medical Research Foundation (to S.T.).

Compliance with Ethical Standards

Conflict of Interest

The Shugo Tohyama declare that they have no conflict of interest. Keiichi Fukuda is a cofounder of Heartseed Inc.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. Aalto-Setala K, Fuerstenau-Sharp M, Zimmermann ME, Stark K, Jentsch N, Klingenstein M et al (2015) Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. PLoS One 10(5):e0126596Google Scholar
  2. Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C (2007) Transgenic enrichment of Cardiomyocytes from human embryonic stem cells. Mol Ther 15(11):2027–2036PubMedGoogle Scholar
  3. Ban K (2013) Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation 128:1897–1909. doi: 10.1161/CIRCULATIONAHA.113.004228 CrossRefPubMedGoogle Scholar
  4. Ben-David U (2013) Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 12:162–179Google Scholar
  5. Ben-David U, Nudel N, Benvenisty N (2013) Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun 4:1992PubMedGoogle Scholar
  6. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167:723–734. doi: 10.1083/jcb.200405144 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10(1):16–28PubMedPubMedCentralGoogle Scholar
  8. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11(8):855–860PubMedPubMedCentralGoogle Scholar
  9. Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A et al (2016) Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22(5):547–556PubMedPubMedCentralGoogle Scholar
  10. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2014) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518(7539):413–416PubMedPubMedCentralGoogle Scholar
  11. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277PubMedPubMedCentralGoogle Scholar
  12. Choo AB (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26:1454–1463. doi: 10.1634/stemcells.2007-0576 CrossRefPubMedGoogle Scholar
  13. Dabir Deepa V, Hasson Samuel A, Setoguchi K, Johnson Meghan E, Wongkongkathep P, Douglas Colin J et al (2013) A small molecule inhibitor of redox-regulated protein translocation into mitochondria. Dev Cell 25(1):81–92PubMedPubMedCentralGoogle Scholar
  14. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG et al (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29(11):1011–1018PubMedPubMedCentralGoogle Scholar
  15. Dudek J, Cheng IF, Chowdhury A, Wozny K, Balleininger M, Reinhold R et al (2015) Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome. EMBO Mol Med 8(2):139–154PubMedCentralGoogle Scholar
  16. Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R, Lagerqvist EL et al (2011) NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods 8(12):1037–1040PubMedGoogle Scholar
  17. Folmes Clifford DL, Nelson Timothy J, Martinez-Fernandez A, Arrell DK, Lindor Jelena Z, Dzeja Petras P et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14(2):264–271PubMedPubMedCentralGoogle Scholar
  18. Fong CY, Peh GS, Gauthaman K, Bongso A (2009) Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Rev 5:72–80. doi: 10.1007/s12015-009-9054-4 CrossRefGoogle Scholar
  19. Fonoudi H, Ansari H, Abbasalizadeh S, Larijani MR, Kiani S, Hashemizadeh S et al (2015) A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Transl Med 4(12):1482–1494PubMedPubMedCentralGoogle Scholar
  20. Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T, Chonabayashi K et al (2016) Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 6:19111PubMedPubMedCentralGoogle Scholar
  21. Gassanov N, Er F, Zagidullin N, Hoppe UC (2004) Endothelin induces differentiation of ANP-EGFP expressing embryonic stem cells towards a pacemaker phenotype. FASEB J 18(14):1710–1712PubMedGoogle Scholar
  22. Gerbin KA, Yang X, Murry CE, Coulombe KL (2015) Enhanced electrical integration of engineered human myocardium via intramyocardial versus epicardial delivery in infarcted rat hearts. PLoS One 10(7):e0131446PubMedPubMedCentralGoogle Scholar
  23. Hattori F (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7:61–66. doi: 10.1038/nmeth.1403 CrossRefPubMedGoogle Scholar
  24. Hemmi N, Tohyama S, Nakajima K, Kanazawa H, Suzuki T, Hattori F et al (2014) A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med 3(12):1473–1483PubMedPubMedCentralGoogle Scholar
  25. Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2(3):198–210PubMedGoogle Scholar
  26. Hidaka K, Shirai M, Lee JK, Wakayama T, Kodama I, Schneider MD et al (2009) The cellular prion protein identifies bipotential cardiomyogenic progenitors. Circ Res 106(1):111–119PubMedGoogle Scholar
  27. Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S et al (2015) Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349(6251):982–986PubMedPubMedCentralGoogle Scholar
  28. Huber I, Itzhaki I, Caspi O, Arbel G, Tzukerman M, Gepstein A et al (2007) Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J 21(10):2551–2563PubMedGoogle Scholar
  29. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228–240PubMedGoogle Scholar
  30. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T et al (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126(11 Suppl 1):S29–S37PubMedGoogle Scholar
  31. Kawamura A, Miyagawa S, Fukushima S, Kawamura T, Kashiyama N, Ito E et al (2016) Teratocarcinomas arising from allogeneic induced pluripotent stem cell-derived cardiac tissue constructs provoked host immune rejection in mice. Sci Rep 6:19464PubMedPubMedCentralGoogle Scholar
  32. Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K et al (2016) iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 18(10):1031–1042PubMedPubMedCentralGoogle Scholar
  33. Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, Bernard D et al (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9(3):293–299PubMedGoogle Scholar
  34. Kuroda T, Yasuda S, Kusakawa S, Hirata N, Kanda Y, Suzuki K et al (2012) Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells. PLoS One 7(5):e37342PubMedPubMedCentralGoogle Scholar
  35. van Laake LW, Qian L, Cheng P, Huang Y, Hsiao EC, Conklin BR et al (2010) Reporter-based isolation of induced pluripotent stem cell- and embryonic stem cell-derived cardiac progenitors reveals limited Gene expression variance. Circ Res 107(3):340–347PubMedPubMedCentralGoogle Scholar
  36. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024PubMedGoogle Scholar
  37. Lee MO (2013) Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci U S A 110:E3281–E3290. doi: 10.1073/pnas.1303669110 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lian X (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci 109:E1848–E1857. doi: 10.1073/pnas.1200250109 CrossRefPubMedGoogle Scholar
  39. Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Goldfarb S et al (2015) The registry of the international society for heart and lung transplantation: thirty-second official adult heart transplantation report–2015; focus theme: early graft failure. J Heart Lung Transplant 34(10):1244–1254PubMedPubMedCentralGoogle Scholar
  40. Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ et al (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 301(5):H2006–H2017PubMedPubMedCentralGoogle Scholar
  41. Marsboom G, Zhang G-F, Pohl-Avila N, Zhang Y, Yuan Y, Kang H et al (2016) Glutamine metabolism regulates the Pluripotency transcription factor OCT4. Cell Rep 16(2):323–332PubMedPubMedCentralGoogle Scholar
  42. Matsa E, Burridge PW, Yu KH, Ahrens JH, Termglinchan V, Wu H et al (2016) Transcriptome profiling of patient-specific human iPSC-cardiomyocytes predicts individual drug safety and efficacy responses in vitro. Cell Stem Cell 19(3):311–325PubMedPubMedCentralGoogle Scholar
  43. Miki K, Endo K, Takahashi S, Funakoshi S, Takei I, Katayama S et al (2015) Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell 16(6):699–711PubMedGoogle Scholar
  44. Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S et al (2012) A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep 2(5):1448–1460PubMedGoogle Scholar
  45. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743–745PubMedGoogle Scholar
  46. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D et al (2015) Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21(3):392–402PubMedGoogle Scholar
  47. Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459PubMedGoogle Scholar
  48. Nguyen Doan C, Hookway Tracy A, Wu Q, Jha R, Preininger Marcela K, Chen X et al (2014) Microscale generation of cardiospheres promotes robust enrichment of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports 3(2):260–268PubMedPubMedCentralGoogle Scholar
  49. Nori S, Okada Y, Nishimura S, Sasaki T, Itakura G, Kobayashi Y et al (2015) Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Reports. 4(3):360–373PubMedPubMedCentralGoogle Scholar
  50. Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26(3):313–315PubMedGoogle Scholar
  51. Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R et al (2011) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22(1):168–177PubMedPubMedCentralGoogle Scholar
  52. Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453(7193):322–329PubMedGoogle Scholar
  53. Rust W, Balakrishnan T, Zweigerdt R (2009) Cardiomyocyte enrichment from human embryonic stem cell cultures by selection of ALCAM surface expression. Regen Med 4(2):225–237PubMedGoogle Scholar
  54. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489(7415):322–325PubMedPubMedCentralGoogle Scholar
  55. Shiba Y, Filice D, Fernandes S, Minami E, Dupras SK, Biber BV et al (2014) Electrical integration of human embryonic stem cell-derived cardiomyocytes in a guinea pig chronic infarct model. J Cardiovasc Pharmacol Ther 19(4):368–381PubMedPubMedCentralGoogle Scholar
  56. Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G et al (2014) Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19(5):p780–p794Google Scholar
  57. Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S et al (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339(6116):222–226PubMedGoogle Scholar
  58. Takahashi K (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 CrossRefGoogle Scholar
  59. Tan HL, Fong WJ, Lee EH, Yap M, Choo A (2009) mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 27:1792–1801. doi: 10.1002/stem.109 CrossRefPubMedGoogle Scholar
  60. Tang C (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834. doi: 10.1038/nbt.1947 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Tano K, Yasuda S, Kuroda T, Saito H, Umezawa A, Sato Y (2014) A novel in vitro method for detecting undifferentiated human pluripotent stem cells as impurities in cell therapy products using a highly efficient culture system. PLoS One 9(10):e110496PubMedPubMedCentralGoogle Scholar
  62. Tateno H, Onuma Y, Ito Y, Minoshima F, Saito S, Shimizu M et al (2015) Elimination of tumorigenic human pluripotent stem cells by a recombinant lectin-toxin fusion protein. Stem Cell Rep 4(5):811–820Google Scholar
  63. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147PubMedGoogle Scholar
  64. Tohyama S (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137. doi: 10.1016/j.stem.2012.09.013 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tohyama S, Fujita J, Hishiki T, Matsuura T, Hattori F, Ohno R et al (2016) Glutamine oxidation is indispensable for survival of human pluripotent stem cells. Cell Metab 23(4):663–674PubMedGoogle Scholar
  66. Uosaki H (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 6:e23657. doi: 10.1371/journal.pone.0023657 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Uosaki H, Cahan P, Lee Dong I, Wang S, Miyamoto M, Fernandez L et al (2015) Transcriptional landscape of cardiomyocyte maturation. Cell Rep 13(8):1705–1716PubMedPubMedCentralGoogle Scholar
  68. Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325(5939):435–439PubMedPubMedCentralGoogle Scholar
  69. Willems E, Spiering S, Davidovics H, Lanier M, Xia Z, Dawson M et al (2011) Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circ Res 109(4):360–364PubMedPubMedCentralGoogle Scholar
  70. Xu C, Police S, Hassanipour M, Gold JD (2006) Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells Dev 15(5):631–639PubMedGoogle Scholar
  71. Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96PubMedGoogle Scholar
  72. Ye L, Chang Y-H, Xiong Q, Zhang P, Zhang L, Somasundaram P et al (2014) Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 15(6):750–761PubMedPubMedCentralGoogle Scholar
  73. Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK et al (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111(9):1125–1136PubMedPubMedCentralGoogle Scholar
  74. Zhang L, Pan Y, Qin G, Chen L, Chatterjee T, Weintraub N et al (2014) Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic Nanog-positive cells: improving the safety of iPS cell transplantation to myocardium. Cell Cycle 13(5):762–771PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of CardiologyKeio University School of MedicineTokyoJapan
  2. 2.Department of Organ FabricationKeio University School of MedicineTokyoJapan

Personalised recommendations