Application of the Suspension Culture System for Scale-Up Manufacture of hPSCs and hPSC-Derived Cardiomyocytes

  • Vincent C. ChenEmail author
  • Larry A. Couture
  • Joseph Gold
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol., volume 4)


Establishment of a scalable, robust, and GMP-compatible manufacturing process for human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has been a bottleneck for the progress of cell therapy for heart diseases. The adherent cell culture platforms have been well developed for hPSC maintenance and cardiac differentiation. However, the two-dimensional culture system is limited by its scalability, hindering its application for scale-up cell production. Recent advances in development of suspension culture systems, which provide the advantage of scalability, have driven hPSC-CMs beyond bench research into preclinical development. With the suspension platform, the processes from hPSC expansion to cardiac differentiation have been streamlined for the hPSC-CM production. A fully suspension-based process avoids extensive labor associated with the conventional adherent culture and lowers production costs by reducing reagents, space, and operators. These advantages render this manufacturing process more manageable, cost-effective, labor-effective, and practical for large-scale cell production. In this chapter, we will review current status of the development of the suspension culture system for hPSC-CM production.


Pluripotent stem cells Cardiomyocytes Suspension cell cultures Cell production 


Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. Amit M, Chebath J, Margulets V, Laevsky I, Miropolsky Y, Shariki K, Peri M, Blais I, Slutsky G, Revel M, Itskovitz-Eldor J (2010) Suspension culture of undifferentiated human embryonic and induced pluripotent stem cells. Stem Cell Rev 6(2):248–259Google Scholar
  2. Amit M, Laevsky I, Miropolsky Y, Shariki K, Peri M, Itskovitz-Eldor J (2011) Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc 6(5):572–579PubMedGoogle Scholar
  3. Burridge PW, Keller G, Gold JD, JC W (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10(1):16–28PubMedPubMedCentralGoogle Scholar
  4. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD, JC W (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11(8):855–860PubMedPubMedCentralGoogle Scholar
  5. Chen AK, Chen X, Choo AB, Reuveny S, SK O (2011) Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res 7(2):97–111PubMedGoogle Scholar
  6. Chen VC, Couture LA (2015) The suspension culture of undifferentiated human pluripotent stem cells using spinner flasks. Methods Mol Biol 1283:13–21PubMedGoogle Scholar
  7. Chen VC, Couture SM, Ye J, Lin Z, Hua G, Huang HI, Wu J, Hsu D, Carpenter MK, Couture LA (2012) Scalable GMP compliant suspension culture system for human ES cells. Stem Cell Res 8(3):388–402PubMedGoogle Scholar
  8. Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J, Hsu D, Couture LA (2015) Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 15(2):365–375PubMedPubMedCentralGoogle Scholar
  9. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277PubMedPubMedCentralGoogle Scholar
  10. Fernandes AM, Marinho PA, Sartore RC, Paulsen BS, Mariante RM, Castilho LR, Rehen SK (2009) Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz J Med Biol Res 42(6):515–522PubMedGoogle Scholar
  11. Fonoudi H, Ansari H, Abbasalizadeh S, Larijani MR, Kiani S, Hashemizadeh S, Zarchi AS, Bosman A, Blue GM, Pahlavan S, Perry M, Orr Y, Mayorchak Y, Vandenberg J, Talkhabi M, Winlaw DS, Harvey RP, Aghdami N, Baharvand H (2015) A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Transl Med 4(12):1482–1494PubMedPubMedCentralGoogle Scholar
  12. Gassmann M, Fandrey J, Bichet S, Wartenberg M, Marti HH, Bauer C, Wenger RH, Acker H (1996) Oxygen supply and oxygen-dependent gene expression in differentiating embryonic stem cells. Proc Natl Acad Sci U S A 93(7):2867–2872PubMedPubMedCentralGoogle Scholar
  13. Geuss LR, Suggs LJ (2013) Making cardiomyocytes: how mechanical stimulation can influence differentiation of pluripotent stem cells. Biotechnol Prog 29(5):1089–1096PubMedGoogle Scholar
  14. Hemmi N, Tohyama S, Nakajima K, Kanazawa H, Suzuki T, Hattori F, Seki T, Kishino Y, Hirano A, Okada M, Tabei R, Ohno R, Fujita C, Haruna T, Yuasa S, Sano M, Fujita J, Fukuda K (2014) A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med 3(12):1473–1483PubMedPubMedCentralGoogle Scholar
  15. Ingber DE (2006) Mechanical control of tissue morphogenesis during embryological development. Int J Develop Biol 50(2–3):255–266Google Scholar
  16. Kalmbach A, Bordas R, Oncul AA, Thevenin D, Genzel Y, Reichl U (2011) Experimental characterization of flow conditions in 2-and 20-L bioreactors with wave-induced motion. Biotechnol Prog 27(2):402–409PubMedGoogle Scholar
  17. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228–240Google Scholar
  18. Kehoe DE, Lock LT, Parikh A, Tzanakakis ES (2008) Propagation of embryonic stem cells in stirred suspension without serum. Biotechnol Prog 24(6):1342–1352PubMedGoogle Scholar
  19. Kempf H, Olmer R, Kropp C, Ruckert M, Jara-Avaca M, Robles-Diaz D, Franke A, Elliott DA, Wojciechowski D, Fischer M, Roa Lara A, Kensah G, Gruh I, Haverich A, Martin U, Zweigerdt R (2014) Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem cell reports 3(6):1132–1146PubMedPubMedCentralGoogle Scholar
  20. Krawetz R, Taiani JT, Liu S, Meng G, Li X, Kallos MS, Rancourt DE (2010) Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng 16(4):573–582Google Scholar
  21. Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856PubMedGoogle Scholar
  22. Lam AT, Chen AK, Li J, Birch WR, Reuveny S, SK O (2014) Conjoint propagation and differentiation of human embryonic stem cells to cardiomyocytes in a defined microcarrier spinner culture. Stem Cell Res Therap 5(5):110Google Scholar
  23. Larijani MR, Seifinejad A, Pournasr B, Hajihoseini V, Hassani SN, Totonchi M, Yousefi M, Shamsi F, Salekdeh GH, Baharvand H (2011) Long-term maintenance of undifferentiated human embryonic and induced pluripotent stem cells in suspension. Stem Cells Dev 20(11):1911–1923PubMedGoogle Scholar
  24. Lei Y, Schaffer DV (2013) A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci U S A 110(52):E5039–E5048PubMedPubMedCentralGoogle Scholar
  25. Li Y, Powell S, Brunette E, Lebkowski J, Mandalam R (2005) Expansion of human embryonic stem cells in defined serum-free medium devoid of animal-derived products. Biotechnol Bioeng 91(6):688–698PubMedGoogle Scholar
  26. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109(27):E1848–E1857PubMedPubMedCentralGoogle Scholar
  27. Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8(1):162–175PubMedGoogle Scholar
  28. Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, Diecke S, Sallam K, Knowles JW, Wang PJ, Nguyen PK, Bers DM, Robbins RC, JC W (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127(16):1677–1691PubMedGoogle Scholar
  29. Lock LT, Tzanakakis ES (2009) Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng A 15(8):2051–2063Google Scholar
  30. Ludwig TE, Levenstein ME, Jones JM, Berggren WT, Mitchen ER, Frane JL, Crandall LJ, Daigh CA, Conard KR, Piekarczyk MS, Llanas RA, Thomson JA (2006) Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2):185–187PubMedGoogle Scholar
  31. Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P, Yang J, Qiu L, Priest CA, Shogbon C, Martin AW, Nelson J, West P, Beltzer JP, Pal S, Brandenberger R (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol 28(6):606–610PubMedGoogle Scholar
  32. Niebruegge S, Bauwens CL, Peerani R, Thavandiran N, Masse S, Sevaptisidis E, Nanthakumar K, Woodhouse K, Husain M, Kumacheva E, Zandstra PW (2009) Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor. Biotechnol Bioeng 102(2):493–507PubMedGoogle Scholar
  33. Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A, Choo AB, Reuveny S (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2(3):219–230PubMedGoogle Scholar
  34. Olmer R, Haase A, Merkert S, Cui W, Palecek J, Ran C, Kirschning A, Scheper T, Glage S, Miller K, Curnow EC, Hayes ES, Martin U (2010) Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res 5(1):51–64PubMedGoogle Scholar
  35. Oncul AA, Kalmbach A, Genzel Y, Reichl U, Thevenin D (2010) Characterization of flow conditions in 2 L and 20 L wave bioreactors (R) using computational fluid dynamics. Biotechnol Prog 26(1):101–110Google Scholar
  36. Otsuji TG, Bin J, Yoshimura A, Tomura M, Tateyama D, Minami I, Yoshikawa Y, Aiba K, Heuser JE, Nishino T, Hasegawa K, Nakatsuji N (2014) A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production. Stem Cell Rep 2(5):734–745Google Scholar
  37. Paluch E, Heisenberg CP (2009) Biology and physics of cell shape changes in development. Curr Biol 19(17):R790–R799PubMedGoogle Scholar
  38. Patwari P, Lee RT (2008) Mechanical control of tissue morphogenesis. Circ Res 103(3):234–243PubMedPubMedCentralGoogle Scholar
  39. Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM (2008) Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138(1–2):24–32PubMedGoogle Scholar
  40. Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J, Hovatta O, Tryggvason K (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol 28(6):611–615PubMedGoogle Scholar
  41. Rungarunlert S, Techakumphu M, Pirity MK, Dinnyes A (2009) Embryoid body formation from embryonic and induced pluripotent stem cells: benefits of bioreactors. World J Stem Cells 1(1):11–21PubMedPubMedCentralGoogle Scholar
  42. Shafa M, Krawetz R, Zhang Y, Rattner JB, Godollei A, Duff HJ, Rancourt DE (2011) Impact of stirred suspension bioreactor culture on the differentiation of murine embryonic stem cells into cardiomyocytes. BMC Cell Biol 12:53PubMedPubMedCentralGoogle Scholar
  43. Singh H, Mok P, Balakrishnan T, Rahmat SN, Zweigerdt R (2010) Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res 4(3):165–179PubMedGoogle Scholar
  44. Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30(1–3):149–158PubMedPubMedCentralGoogle Scholar
  45. Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y, Reubinoff B (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol 28(4):361–364PubMedGoogle Scholar
  46. Ting S, Chen A, Reuveny S, Oh S (2014) An intermittent rocking platform for integrated expansion and differentiation of human pluripotent stem cells to cardiomyocytes in suspended microcarrier cultures. Stem Cell Res 13(2):202–213PubMedGoogle Scholar
  47. Van Winkle AP, Gates ID, Kallos MS (2012) Mass transfer limitations in embryoid bodies during human embryonic stem cell differentiation. Cells Tissues Organs 196(1):34–47PubMedGoogle Scholar
  48. Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O'Shea KS, Lahann J, Smith GD (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol 28(6):581–583PubMedPubMedCentralGoogle Scholar
  49. Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D'Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110(12):4111–4119PubMedPubMedCentralGoogle Scholar
  50. Wang Y, Chou BK, Dowey S, He C, Gerecht S, Cheng L (2013) Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res 11(3):1103–1116PubMedPubMedCentralGoogle Scholar
  51. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681–686PubMedGoogle Scholar
  52. Wu J, Rostami MR, Cadavid Olaya DP, Tzanakakis ES (2014) Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures. PLoS One 9(7):e102486PubMedPubMedCentralGoogle Scholar
  53. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528PubMedGoogle Scholar
  54. Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J, Palecek SP, Lyons GE, Thomson JA, Herron TJ, Jalife J, Kamp TJ (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111(9):1125–1136PubMedPubMedCentralGoogle Scholar
  55. Zhang R, Mjoseng HK, Hoeve MA, Bauer NG, Pells S, Besseling R, Velugotla S, Tourniaire G, Kishen RE, Tsenkina Y, Armit C, Duffy CR, Helfen M, Edenhofer F, de Sousa PA, Bradley M (2013) A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nat Commun 4:1335PubMedPubMedCentralGoogle Scholar
  56. Zhu WZ, Van Biber B, Laflamme MA (2011) Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells. Methods Mol Biol 767:419–431PubMedPubMedCentralGoogle Scholar
  57. Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U (2011) Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc 6(5):689–700PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vincent C. Chen
    • 1
    Email author
  • Larry A. Couture
    • 2
    • 3
  • Joseph Gold
    • 1
  1. 1.Center for Biomedicine and GeneticsBeckman Research Institute of City of HopeDuarteUSA
  2. 2.ArrogeneLos AngelesUSA
  3. 3.Orbsen TherapeuticsIrelandIreland

Personalised recommendations