Epicardial Progenitors in the Embryonic and Adult Heart

  • Cristina Villa del Campo
  • Joaquim Miguel Vieira
  • Paul R. RileyEmail author
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol., volume 4)


Over the last decade, our knowledge of the function(s) of the epicardium in vertebrate heart development and repair has increased considerably. In development, the epicardium is required for proper heart formation by regulating myocardial compaction and contributing major cardiovascular cell types. In the adult heart, the idea of a dormant epicardium has been challenged by the observation that it can reacquire embryonic properties after heart injury and may contribute to tissue repair and regeneration. This has elevated the status of the adult epicardium to a resident source of regenerative cells with potential to restore cardiac structure and function after injury. Yet, many questions remain to be answered, in particular whether the observations arising from studies on model organisms are applicable to the human (diseased) heart. Here, we review the key established and emerging findings regarding epicardium formation, heterogeneity, and its therapeutic potential in heart repair. Moreover, we draw attention to studies focusing on the human epicardium, highlighting new tools that are being developed to promote further insight into the epicardium and its regenerative potential.


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.


  1. Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, Banfi S, Sauer MF, Olsen GS, Duffield JS, Olson EN, Tallquist MD (2012) The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development 139(12):2139–2149. doi: 10.1242/dev.079970 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Austin AF, Compton LA, Love JD, Brown CB, Barnett JV (2008) Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFbeta. Dev Dyn 237(2):366–376. doi: 10.1002/dvdy.21421 CrossRefPubMedGoogle Scholar
  3. Balmer GM, Bollini S, Dube KN, Martinez-Barbera JP, Williams O, Riley PR (2014) Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nat Commun 5:4054. doi: 10.1038/ncomms5054 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bax NA, van Oorschot AA, Maas S, Braun J, van Tuyn J, de Vries AA, Groot AC, Goumans MJ (2011) In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFbeta-signaling and WT1. Basic Res Cardiol 106(5):829–847. doi: 10.1007/s00395-011-0181-0 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102. doi: 10.1126/science.1164680 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andra M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisen J (2015) Dynamics of cell generation and turnover in the human heart. Cell 161(7):1566–1575. doi: 10.1016/j.cell.2015.05.026 CrossRefGoogle Scholar
  7. Bishop T, Ratcliffe PJ (2015) HIF hydroxylase pathways in cardiovascular physiology and medicine. Circ Res 117(1):65–79. doi: 10.1161/CIRCRESAHA.117.305109 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bock-Marquette I, Shrivastava S, Pipes GCT, Thatcher JE, Blystone A, Shelton JM, Galindo CL, Melegh B, Srivastava D, Olson EN, DiMaio JM (2009) Thymosin β4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J Mol Cell Cardiol 46(5):728–738. doi: 10.1016/j.yjmcc.2009.01.017 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bollini S, Vieira JM, Howard S, Dube KN, Balmer GM, Smart N, Riley PR (2014) Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts. Stem Cells Dev 23(15):1719–1730. doi: 10.1089/scd.2014.0019 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bollini S, Riley PR, Smart N (2015) Thymosin beta4: multiple functions in protection, repair and regeneration of the mammalian heart. Expert Opin Biol Ther 15(Suppl 1):S163–S174. doi: 10.1517/14712598.2015.1022526 CrossRefPubMedGoogle Scholar
  11. Boyer AS, Ayerinskas II, Vincent EB, McKinney LA, Weeks DL, Runyan RB (1999) TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol 208(2):530–545. doi: 10.1006/dbio.1999.9211 CrossRefPubMedGoogle Scholar
  12. Brade T, Kumar S, Cunningham TJ, Chatzi C, Zhao X, Cavallero S, Li P, Sucov HM, Ruiz-Lozano P, Duester G (2011) Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2. Development 138(1):139–148. doi: 10.1242/dev.054239 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Braitsch CM, Kanisicak O, van Berlo JH, Molkentin JD, Yutzey KE (2013) Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J Mol Cell Cardiol 65:108–119. doi: 10.1016/j.yjmcc.2013.10.005 CrossRefPubMedGoogle Scholar
  14. Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454(7200):104–108. doi: 10.1038/nature06969 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cano E, Carmona R, Ruiz-Villalba A, Rojas A, Chau YY, Wagner KD, Wagner N, Hastie ND, Munoz-Chapuli R, Perez-Pomares JM (2016) Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc Natl Acad Sci U S A 113(3):656–661. doi: 10.1073/pnas.1509834113 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chau YY, Bandiera R, Serrels A, Martinez-Estrada OM, Qing W, Lee M, Slight J, Thornburn A, Berry R, McHaffie S, Stimson RH, Walker BR, Chapuli RM, Schedl A, Hastie N (2014) Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol 16(4):367–375. doi: 10.1038/ncb2922 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen T, Chang TC, Kang JO, Choudhary B, Makita T, Tran CM, Burch JB, Eid H, Sucov HM (2002) Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol 250(1):198–207CrossRefGoogle Scholar
  18. Chen HI, Sharma B, Akerberg BN, Numi HJ, Kivela R, Saharinen P, Aghajanian H, McKay AS, Bogard PE, Chang AH, Jacobs AH, Epstein JA, Stankunas K, Alitalo K, Red-Horse K (2014) The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development 141(23):4500–4512. doi: 10.1242/dev.113639 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Christoffels VM, Grieskamp T, Norden J, Mommersteeg MT, Rudat C, Kispert A (2009) Tbx18 and the fate of epicardial progenitorsNature 458 (7240):E8-E9.; discussion E9-10. doi: 10.1038/nature07916 CrossRefPubMedGoogle Scholar
  20. Clunie-O'Connor C, Smits AM, Antoniades C, Russell AJ, Yellon DM, Goumans MJ, Riley PR (2015) The derivation of primary human epicardium-derived cells. Curr Protoc Stem Cell Biol 35:2C 5 1–2C 5 12. doi: 10.1002/9780470151808.sc02c05s35 CrossRefGoogle Scholar
  21. del Monte G, Casanova JC, Guadix JA, MacGrogan D, Burch JB, Perez-Pomares JM, de la Pompa JL (2011) Differential notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res 108(7):824–836. doi: 10.1161/CIRCRESAHA.110.229062 CrossRefPubMedGoogle Scholar
  22. Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193(2):169–181. doi: 10.1006/dbio.1997.8801 CrossRefPubMedGoogle Scholar
  23. Duim SN, Kurakula K, Goumans MJ, Kruithof BP (2015) Cardiac endothelial cells express Wilms' tumor-1: Wt1 expression in the developing, adult and infarcted heart. J Mol Cell Cardiol 81:127–135. doi: 10.1016/j.yjmcc.2015.02.007 CrossRefPubMedGoogle Scholar
  24. Eralp I, Lie-Venema H, Bax NA, Wijffels MC, Van Der Laarse A, Deruiter MC, Bogers AJ, Van Den Akker NM, Gourdie RG, Schalij MJ, Poelmann RE, Gittenberger-De Groot AC (2006) Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart. Anat Rec A Discov Mol Cell Evol Biol 288(12):1272–1280. doi: 10.1002/ar.a.20398 CrossRefGoogle Scholar
  25. Evans MA, Smart N, Dube KN, Bollini S, Clark JE, Evans HG, Taams LS, Richardson R, Levesque M, Martin P, Mills K, Riegler J, Price AN, Lythgoe MF, Riley PR (2013) Thymosin beta4-sulfoxide attenuates inflammatory cell infiltration and promotes cardiac wound healing. Nat Commun 4:2081. doi: 10.1038/ncomms3081 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11(5):255–265. doi: 10.1038/nrcardio.2014.28 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53(1):31–47CrossRefGoogle Scholar
  28. Gherghiceanu M, Popescu LM (2010) Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med 14(4):871–877. doi: 10.1111/j.1582-4934.2010.01060.x CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gittenberger-de Groot AC, Vrancken Peeters MP, Mentink MM, Gourdie RG, Poelmann RE (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82(10):1043–1052CrossRefGoogle Scholar
  30. Gittenberger-de Groot AC, Vrancken Peeters MP, Bergwerff M, Mentink MM, Poelmann RE (2000) Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res 87(11):969–971CrossRefGoogle Scholar
  31. Gourdie RG, Wei Y, Kim D, Klatt SC, Mikawa T (1998) Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci U S A 95(12):6815–6818CrossRefGoogle Scholar
  32. Guadix JA, Carmona R, Munoz-Chapuli R, Perez-Pomares JM (2006) In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Dev Dyn 235(4):1014–1026. doi: 10.1002/dvdy.20685 CrossRefPubMedGoogle Scholar
  33. Guadix JA, Ruiz-Villalba A, Lettice L, Velecela V, Munoz-Chapuli R, Hastie ND, Perez-Pomares JM, Martinez-Estrada OM (2011) Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development 138(6):1093–1097. doi: 10.1242/dev.044594 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Guimaraes-Camboa N, Stowe J, Aneas I, Sakabe N, Cattaneo P, Henderson L, Kilberg MS, Johnson RS, Chen J, McCulloch AD, Nobrega MA, Evans SM, Zambon AC (2015) HIF1 alpha represses cell stress pathways to allow proliferation of hypoxic fetal cardiomyocytes. Dev Cell 33(5):507–521. doi: 10.1016/j.devcel.2015.04.021 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hertig CM, Kubalak SW, Wang Y, Chien KR (1999) Synergistic roles of neuregulin-1 and insulin-like growth factor-I in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis. J Biol Chem 274(52):37362–37369CrossRefGoogle Scholar
  36. Hirakow R (1992) Epicardial formation in staged human embryos. Kaibogaku Zasshi J Anat 67(5):616–622Google Scholar
  37. Iyer D, Gambardella L, Bernard WG, Serrano F, Mascetti VL, Pedersen RA, Talasila A, Sinha S (2015) Robust derivation of epicardium and its differentiated smooth muscle cell progeny from human pluripotent stem cells. Development 142(8):1528–1541. doi: 10.1242/dev.119271 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Iyer S, Chou FY, Wang R, Chiu HS, Raju VK, Little MH, Thomas WG, Piper M, Pennisi DJ (2016) Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Sci Rep 6:19832. doi: 10.1038/srep19832 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kang JO, Sucov HM (2005) Convergent proliferative response and divergent morphogenic pathways induced by epicardial and endocardial signaling in fetal heart development. Mech Dev 122(1):57–65. doi: 10.1016/j.mod.2004.09.001 CrossRefPubMedGoogle Scholar
  40. Katz TC, Singh MK, Degenhardt K, Rivera-Feliciano J, Johnson RL, Epstein JA, Tabin CJ (2012) Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell 22(3):639–650. doi: 10.1016/j.devcel.2012.01.012 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kelder TP, Duim SN, Vicente-Steijn R, Vegh AM, Kruithof BP, Smits AM, van Bavel TC, Bax NA, Schalij MJ, Gittenberger-de Groot AC, DeRuiter MC, Goumans MJ, Jongbloed MR (2015) The epicardium as modulator of the cardiac autonomic response during early development. J Mol Cell Cardiol. doi: 10.1016/j.yjmcc.2015.10.025 CrossRefPubMedGoogle Scholar
  42. Kikuchi K, Gupta V, Wang J, Holdway JE, Wills AA, Fang Y, Poss KD (2011) tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138(14):2895–2902. doi: 10.1242/dev.067041 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, Abderrahman Y, Chen R, Garcia JA, Shelton JM, Richardson JA, Ashour AM, Asaithamby A, Liang H, Xing C, Lu Z, Zhang CC, Sadek HA (2015) Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 523(7559):226–230. doi: 10.1038/nature14582 CrossRefPubMedGoogle Scholar
  44. Kocabas F, Mahmoud AI, Sosic D, Porrello ER, Chen R, Garcia JA, DeBerardinis RJ, Sadek HA (2012) The hypoxic epicardial and subepicardial microenvironment. J Cardiovasc Transl Res 5(5):654–665. doi: 10.1007/s12265-012-9366-7 CrossRefPubMedGoogle Scholar
  45. Komiyama M, Ito K, Shimada Y (1987) Origin and development of the epicardium in the mouse embryo. Anat Embryol 176(2):183–189CrossRefGoogle Scholar
  46. Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, Labow MA (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121(2):489–503PubMedGoogle Scholar
  47. Lavine KJ, Yu K, White AC, Zhang X, Smith C, Partanen J, Ornitz DM (2005) Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell 8(1):85–95. doi: 10.1016/j.devcel.2004.12.002 CrossRefPubMedGoogle Scholar
  48. Lavine KJ, White AC, Park C, Smith CS, Choi K, Long F, Hui CC, Ornitz DM (2006) Fibroblast growth factor signals regulate a wave of hedgehog activation that is essential for coronary vascular development. Genes Dev 20(12):1651–1666. doi: 10.1101/gad.1411406 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lavine KJ, Long F, Choi K, Smith C, Ornitz DM (2008) Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 135(18):3161–3171. doi: 10.1242/dev.019919 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C (1995) Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378(6555):394–398. doi: 10.1038/378394a0 CrossRefPubMedGoogle Scholar
  51. Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127(3):607–619. doi: 10.1016/j.cell.2006.08.052 CrossRefPubMedGoogle Scholar
  52. Li N, Wang C, Jia L, Du J (2014) Heart regeneration, stem cells, and cytokines. Regener Med Res 2(1):6. doi: 10.1186/2050-490X-2-6 CrossRefGoogle Scholar
  53. Liu J, Stainier DY (2010) Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish. Circ Res 106(12):1818–1828. doi: 10.1161/CIRCRESAHA.110.217950 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Liu W, Shen SM, Zhao XY, Chen GQ (2012) Targeted genes and interacting proteins of hypoxia inducible factor-1. Int J Biochem Mol Biol 3(2):165–178PubMedPubMedCentralGoogle Scholar
  55. Liu Q, Huang X, Oh JH, Lin RZ, Duan S, Yu Y, Yang R, Qiu J, Melero-Martin JM, Pu WT, Zhou B (2014) Epicardium-to-fat transition in injured heart. Cell Res 24(11):1367–1369. doi: 10.1038/cr.2014.125 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Majesky MW (2004) Development of coronary vessels. Curr Top Dev Biol 62:225–259. doi: 10.1016/S0070-2153(04)62008-4 CrossRefPubMedGoogle Scholar
  57. Manner J (1992) The development of pericardial villi in the chick embryo. Anat Embryol 186(4):379–385CrossRefGoogle Scholar
  58. Manner J (1999) Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat Rec 255(2):212–226CrossRefGoogle Scholar
  59. Merki E, Zamora M, Raya A, Kawakami Y, Wang J, Zhang X, Burch J, Kubalak SW, Kaliman P, Izpisua Belmonte JC, Chien KR, Ruiz-Lozano P (2005) Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci U S A 102(51):18455–18460. doi: 10.1073/pnas.0504343102 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mikawa T, Fischman DA (1992) Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci U S A 89(20):9504–9508CrossRefGoogle Scholar
  61. Mikawa T, Gourdie RG (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174(2):221–232. doi: 10.1006/dbio.1996.0068 CrossRefPubMedGoogle Scholar
  62. Miller CL, Anderson DR, Kundu RK, Raiesdana A, Nurnberg ST, Diaz R, Cheng K, Leeper NJ, Chen CH, Chang IS, Schadt EE, Hsiung CA, Assimes TL, Quertermous T (2013) Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus. PLoS Genet 9(7):e1003652. doi: 10.1371/journal.pgen.1003652 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7(2):150–161. doi: 10.1016/j.stem.2010.07.007 CrossRefPubMedGoogle Scholar
  64. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 104(13):5431–5436. doi: 10.1073/pnas.0701152104 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Pennisi DJ, Ballard VL, Mikawa T (2003) Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn 228(2):161–172. doi: 10.1002/dvdy.10360 CrossRefPubMedGoogle Scholar
  66. Peralta M, Steed E, Harlepp S, Gonzalez-Rosa JM, Monduc F, Ariza-Cosano A, Cortes A, Rayon T, Gomez-Skarmeta JL, Zapata A, Vermot J, Mercader N (2013) Heartbeat-driven pericardiac fluid forces contribute to epicardium morphogenesis. Curr Biol 23(18):1726–1735. doi: 10.1016/j.cub.2013.07.005 CrossRefPubMedGoogle Scholar
  67. Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R (1997) Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn 210(2):96–105. doi: 10.1002/(SICI)1097-0177(199710)210:2<96::AID-AJA3>3.0.CO;2-4 CrossRefPubMedGoogle Scholar
  68. Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R (1998) The origin of the subepicardial mesenchyme in the avian embryo: an immunohistochemical and quail-chick chimera study. Dev Biol 200(1):57–68CrossRefGoogle Scholar
  69. Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, Atencia G, Wessels A, Munoz-Chapuli R (2002a) Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol 46(8):1005–1013PubMedGoogle Scholar
  70. Perez-Pomares JM, Phelps A, Sedmerova M, Carmona R, Gonzalez-Iriarte M, Munoz-Chapuli R, Wessels A (2002b) Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol 247(2):307–326CrossRefGoogle Scholar
  71. Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bokenkamp R, Hogers B (1993) Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 73(3):559–568CrossRefGoogle Scholar
  72. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080. doi: 10.1126/science.1200708 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Potts JD, Runyan RB (1989) Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor beta. Dev Biol 134(2):392–401CrossRefGoogle Scholar
  74. Potts JD, Dagle JM, Walder JA, Weeks DL, Runyan RB (1991) Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor beta 3. Proc Natl Acad Sci U S A 88(4):1516–1520CrossRefGoogle Scholar
  75. Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA (2014) The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157(3):565–579. doi: 10.1016/j.cell.2014.03.032 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Red-Horse K, Ueno H, Weissman IL, Krasnow MA (2010) Coronary arteries form by developmental reprogramming of venous cells. Nature 464(7288):549–553. doi: 10.1038/nature08873 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Risebro CA, Vieira JM, Klotz L, Riley PR (2015) Characterisation of the human embryonic and foetal epicardium during heart development. Development 142(21):3630–3636. doi: 10.1242/dev.127621 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rodgers LS, Lalani S, Runyan RB, Camenisch TD (2008) Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Dev Dyn 237(1):145–152. doi: 10.1002/dvdy.21378 CrossRefPubMedGoogle Scholar
  79. Rudat C, Kispert A (2012) Wt1 and epicardial fate mapping. Circ Res 111(2):165–169. doi: 10.1161/CIRCRESAHA.112.273946 CrossRefPubMedGoogle Scholar
  80. Ruiz-Villalba A, Ziogas A, Ehrbar M, Perez-Pomares JM (2013) Characterization of epicardial-derived cardiac interstitial cells: differentiation and mobilization of heart fibroblast progenitors. PLoS One 8(1):e53694. doi: 10.1371/journal.pone.0053694 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85(14):5166–5170CrossRefGoogle Scholar
  82. Sazonova O, Zhao Y, Nurnberg S, Miller C, Pjanic M, Castano VG, Kim JB, Salfati EL, Kundaje AB, Bejerano G, Assimes T, Yang X, Quertermous T (2015) Characterization of TCF21 downstream target regions identifies a transcriptional network linking multiple independent coronary artery disease loci. PLoS Genet 11(5):e1005202. doi: 10.1371/journal.pgen.1005202 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Schulte I, Schlueter J, Abu-Issa R, Brand T, Manner J (2007) Morphological and molecular left-right asymmetries in the development of the proepicardium: a comparative analysis on mouse and chick embryos. Dev Dyn 236(3):684–695. doi: 10.1002/dvdy.21065 CrossRefPubMedGoogle Scholar
  84. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436. doi: 10.1038/nature11682 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Serluca FC (2008) Development of the proepicardial organ in the zebrafish. Dev Biol 315(1):18–27. doi: 10.1016/j.ydbio.2007.10.007 CrossRefPubMedGoogle Scholar
  86. Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, Riley PR (2007a) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445(7124):177–182. doi: 10.1038/nature05383 CrossRefPubMedGoogle Scholar
  87. Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, Riley PR (2007b) Thymosin beta-4 is essential for coronary vessel development and promotes neovascularization via adult epicardium. Ann N Y Acad Sci 1112:171–188. doi: 10.1196/annals.1415.000 CrossRefPubMedGoogle Scholar
  88. Smart N, Risebro CA, Clark JE, Ehler E, Miquerol L, Rossdeutsch A, Marber MS, Riley PR (2010) Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart. Ann N Y Acad Sci 1194:97–104. doi: 10.1111/j.1749-6632.2010.05478.x CrossRefPubMedGoogle Scholar
  89. Smart N, Bollini S, Dube KN, Vieira JM, Zhou B, Davidson S, Yellon D, Riegler J, Price AN, Lythgoe MF, Pu WT, Riley PR (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474(7353):640–644. doi: 10.1038/nature10188 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Sosne G, Qiu P, Christopherson PL, Wheater MK (2007) Thymosin beta 4 suppression of corneal NFkappaB: a potential anti-inflammatory pathway. Exp Eye Res 84(4):663–669. doi: 10.1016/j.exer.2006.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Stuckmann I, Evans S, Lassar AB (2003) Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev Biol 255(2):334–349CrossRefGoogle Scholar
  92. Sylva M, van den Hoff MJ, Moorman AF (2014) Development of the human heart. Am J Med Genet A 164A(6):1347–1371. doi: 10.1002/ajmg.a.35896 CrossRefPubMedGoogle Scholar
  93. Tao J, Doughman Y, Yang K, Ramirez-Bergeron D, Watanabe M (2013) Epicardial HIF signaling regulates vascular precursor cell invasion into the myocardium. Dev Biol 376(2):136–149. doi: 10.1016/j.ydbio.2013.01.026 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tian X, Hu T, Zhang H, He L, Huang X, Liu Q, Yu W, He L, Yang Z, Yan Y, Yang X, Zhong TP, Pu WT, Zhou B (2014) Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart. Science 345(6192):90–94. doi: 10.1126/science.1251487 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Tomanek RJ (2015) Developmental progression of the coronary vasculature in human embryos and fetuses. Anat Rec. doi: 10.1002/ar.23283 CrossRefGoogle Scholar
  96. Tomanek RJ, Sandra A, Zheng W, Brock T, Bjercke RJ, Holifield JS (2001) Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circ Res 88(11):1135–1141CrossRefGoogle Scholar
  97. van Tuyn J, Atsma DE, Winter EM, van der Velde-van Dijke I, Pijnappels DA, Bax NA, Knaan-Shanzer S, Gittenberger-de Groot AC, Poelmann RE, van der Laarse A, van der Wall EE, Schalij MJ, de Vries AA (2007) Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 25(2):271–278. doi: 10.1634/stemcells.2006-0366 CrossRefPubMedGoogle Scholar
  98. van Wijk B, Gunst QD, Moorman AF, van den Hoff MJ (2012) Cardiac regeneration from activated epicardium. PLoS One 7(9):e44692. doi: 10.1371/journal.pone.0044692 CrossRefPubMedPubMedCentralGoogle Scholar
  99. von Gise A, Zhou B, Honor LB, Ma Q, Petryk A, Pu WT (2011) WT1 regulates epicardial epithelial to mesenchymal transition through beta-catenin and retinoic acid signaling pathways. Dev Biol 356(2):421–431. doi: 10.1016/j.ydbio.2011.05.668 CrossRefGoogle Scholar
  100. Wada AM, Smith TK, Osler ME, Reese DE, Bader DM (2003) Epicardial/mesothelial cell line retains vasculogenic potential of embryonic epicardium. Circ Res 92(5):525–531. doi: 10.1161/01.RES.0000060484.11032.0B CrossRefPubMedGoogle Scholar
  101. Wagner KD, Wagner N, Bondke A, Nafz B, Flemming B, Theres H, Scholz H (2002) The Wilms' tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction. FASEB J 16(9):1117–1119. doi: 10.1096/fj.01-0986fje CrossRefPubMedGoogle Scholar
  102. Wang J, Cao J, Dickson AL, Poss KD (2015) Epicardial regeneration is guided by cardiac outflow tract and hedgehog signalling. Nature 522(7555):226–230. doi: 10.1038/nature14325 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S, Zhu W, Fajardo G, Noseda M, Nakamura K, Tian X, Liu Q, Wang A, Matsuura Y, Bushway P, Cai W, Savchenko A, Mahmoudi M, Schneider MD, van den Hoff MJ, Butte MJ, Yang PC, Walsh K, Zhou B, Bernstein D, Mercola M, Ruiz-Lozano P (2015) Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525(7570):479–485. doi: 10.1038/nature15372 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wessels A, van den Hoff MJ, Adamo RF, Phelps AL, Lockhart MM, Sauls K, Briggs LE, Norris RA, van Wijk B, Perez-Pomares JM, Dettman RW, Burch JB (2012) Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Dev Biol 366(2):111–124. doi: 10.1016/j.ydbio.2012.04.020 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Wills AA, Holdway JE, Major RJ, Poss KD (2008) Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135(1):183–192. doi: 10.1242/dev.010363 CrossRefPubMedGoogle Scholar
  106. Wilm B, Ipenberg A, Hastie ND, Burch JB, Bader DM (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132(23):5317–5328. doi: 10.1242/dev.02141 CrossRefPubMedGoogle Scholar
  107. Winter EM, van Oorschot AA, Hogers B, van der Graaf LM, Doevendans PA, Poelmann RE, Atsma DE, Gittenberger-de Groot AC, Goumans MJ (2009) A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Fail 2(6):643–653. doi: 10.1161/CIRCHEARTFAILURE.108.843722 CrossRefPubMedGoogle Scholar
  108. Witty AD, Mihic A, Tam RY, Fisher SA, Mikryukov A, Shoichet MS, Li RK, Kattman SJ, Keller G (2014) Generation of the epicardial lineage from human pluripotent stem cells. Nat Biotechnol 32(10):1026–1035. doi: 10.1038/nbt.3002 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wu M, Smith CL, Hall JA, Lee I, Luby-Phelps K, Tallquist MD (2010) Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell 19(1):114–125. doi: 10.1016/j.devcel.2010.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Wu B, Zhang Z, Lui W, Chen X, Wang Y, Chamberlain AA, Moreno-Rodriguez RA, Markwald RR, O'Rourke BP, Sharp DJ, Zheng D, Lenz J, Baldwin HS, Chang CP, Zhou B (2012) Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell 151(5):1083–1096. doi: 10.1016/j.cell.2012.10.023 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Xavier-Neto J, Shapiro MD, Houghton L, Rosenthal N (2000) Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart. Dev Biol 219(1):129–141. doi: 10.1006/dbio.1999.9588 CrossRefPubMedGoogle Scholar
  112. Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, Sucov HM (2015) Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARgamma activation. Proc Natl Acad Sci U S A 112(7):2070–2075. doi: 10.1073/pnas.1417232112 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Yang JT, Rayburn H, Hynes RO (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121(2):549–560PubMedGoogle Scholar
  114. Zamora M, Manner J, Ruiz-Lozano P (2007) Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc Natl Acad Sci U S A 104(46):18109–18114. doi: 10.1073/pnas.0702415104 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454(7200):109–113. doi: 10.1038/nature07060 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zhou B, von Gise A, Ma Q, Hu YW, Pu WT (2010) Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev Biol 338(2):251–261. doi: 10.1016/j.ydbio.2009.12.007 CrossRefPubMedGoogle Scholar
  117. Zhou B, Honor LB, He H, Ma Q, Oh JH, Butterfield C, Lin RZ, Melero-Martin JM, Dolmatova E, Duffy HS, Gise A, Zhou P, Hu YW, Wang G, Zhang B, Wang L, Hall JL, Moses MA, McGowan FX, Pu WT (2011) Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest 121(5):1894–1904. doi: 10.1172/JCI45529 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Zhou B, Honor LB, Ma Q, Oh JH, Lin RZ, Melero-Martin JM, von Gise A, Zhou P, Hu T, He L, Wu KH, Zhang H, Zhang Y, Pu WT (2012) Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J Mol Cell Cardiol 52(1):43–47. doi: 10.1016/j.yjmcc.2011.08.020 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cristina Villa del Campo
    • 1
  • Joaquim Miguel Vieira
    • 1
  • Paul R. Riley
    • 1
    Email author
  1. 1.Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations