State-of-the-Art in Tissue-Engineered Heart Repair

  • Buntaro Fujita
  • Malte Tiburcy
  • Stephan Ensminger
  • Wolfram-Hubertus ZimmermannEmail author
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol., volume 4)


Heart muscle restoration with in vitro engineered tissue constructs is an exciting and rapidly advancing field. Feasibility, safety, and efficacy data have been obtained in animal models. First clinical trials are on the way to explore the therapeutic utility of cell-free and non-contractile cell-containing grafts. Engineering of contractile patches according to current good manufacturing practice (cGMP) for bona fide myocardial re-muscularization and scalability to address clinical demands remains challenging. Proof-of-concept for solutions to address obvious technical hurdles exists, and it can be anticipated that the first generation of clinically applicable engineered heart muscle (EHM) grafts will become available in the near future. Foreseeable, but likely manageable risks include arrhythmia induction and teratoma formation. Remaining biomedical challenges pertain to the requirement of immune suppression and the strategic approach to optimize immune suppression without subjecting the target patient population to an unacceptable risk. This chapter summarizes the current state of tissue-engineered heart repair with a special emphasis on knowledge gained from in vitro and in vivo studies as well as issues pertaining to transplant immunology and cGMP process development.



The authors are supported by the ADUMED foundation (B.F.), the German Research Foundation (DFG ZI 708/10-1, SFB 1002 TP C04/S, SFB 937 A18, IRTG 1816; M.T., W.H.Z.), the Foundation Leducq (W.H.Z.), and the German Federal Ministry for Science and Education (BMBF FKZ 13GW0007A [BMBF/CIRM ETIII Award] and DZHK; W.H.Z.).

Compliance with Ethical Standards

Conflict of Interest

W.H.Z is cofounder and advisor of Repairon GmbH.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.


  1. Aicher A, Brenner W, Zuhayra M, Badorff C, Massoudi S, Assmus B, Eckey T, Henze E, Zeiher AM, Dimmeler S (2003) Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107:2134–2139PubMedGoogle Scholar
  2. Anker SD, Coats AJ, Cristian G, Dragomir D, Pusineri E, Piredda M, Bettari L, Dowling R, Volterrani M, Kirwan BA et al (2015) A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur Heart J 36:2297–2309PubMedPubMedCentralGoogle Scholar
  3. Bartunek J, Davison B, Sherman W, Povsic T, Henry TD, Gersh B, Metra M, Filippatos G, Hajjar R, Behfar A et al (2016) Congestive heart failure cardiopoietic regenerative therapy (CHART-1) trial design. Eur J Heart Fail 18:160–168PubMedGoogle Scholar
  4. Bel A, Planat-Bernard V, Saito A, Bonnevie L, Bellamy V, Sabbah L, Bellabas L, Brinon B, Vanneaux V, Pradeau P et al (2010) Composite cell sheets: a further step toward safe and effective myocardial regeneration by cardiac progenitors derived from embryonic stem cells. Circulation 122:S118–S123PubMedGoogle Scholar
  5. Bellamy V, Vanneaux V, Bel A, Nemetalla H, Emmanuelle Boitard S, Farouz Y, Joanne P, Perier MC, Robidel E, Mandet C et al (2015) Long-term functional benefits of human embryonic stem cell-derived cardiac progenitors embedded into a fibrin scaffold. J Heart Lung Transplant 34:1198–1207PubMedGoogle Scholar
  6. Blin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B, Bellamy V, Rucker-Martin C, Barbry P, Bel A et al (2010) A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 120:1125–1139PubMedPubMedCentralGoogle Scholar
  7. Blocklet D, Toungouz M, Berkenboom G, Lambermont M, Unger P, Preumont N, Stoupel E, Egrise D, Degaute JP, Goldman M et al (2006) Myocardial homing of nonmobilized peripheral-blood CD34+ cells after intracoronary injection. Stem Cells 24:333–336PubMedGoogle Scholar
  8. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857PubMedPubMedCentralGoogle Scholar
  9. Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28PubMedPubMedCentralGoogle Scholar
  10. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007a) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50:1884–1893PubMedGoogle Scholar
  11. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, Gepstein L, Levenberg S (2007b) Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res 100:263–272PubMedGoogle Scholar
  12. Chachques JC, Trainini JC, Lago N, Cortes-Morichetti M, Schussler O, Carpentier A (2008) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 85:901–908PubMedGoogle Scholar
  13. Chachques JC, Trainini JC, Lago N, Masoli OH, Barisani JL, Cortes-Morichetti M, Schussler O, Carpentier A (2007) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM clinical trial): one year follow-up. Cell Transplant 16:927–934PubMedGoogle Scholar
  14. Chakravarty T, Makkar RR, Ascheim D, Traverse JH, Schatz R, DeMaria A, Francis GS, Povsic TJ, Smith R, Lima JA et al (2016) ALLogeneic heart stem cells to achieve myocardial regeneration (ALLSTAR) trial: rationale & design. Cell Transplant 26(2):205–214PubMedGoogle Scholar
  15. Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J et al (2015) Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 15:365–375PubMedPubMedCentralGoogle Scholar
  16. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277PubMedPubMedCentralGoogle Scholar
  17. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44:654–660PubMedGoogle Scholar
  18. Didié M, Christalla P, Rubart M, Muppala V, Döker S, Unsöld B, El-Armouche A, Rau T, Eschenhagen T, Schwoerer AP et al (2013) Parthenogenetic stem cells for tissue-engineered heart repair. J Clin Invest 123:1285–1298PubMedPubMedCentralGoogle Scholar
  19. Fink C, Ergun S, Kralisch D, Remmers U, Weil J, Eschenhagen T (2000) Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J 14:669–679PubMedGoogle Scholar
  20. Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T, Chonabayashi K, Nishikawa M, Takei I, Oishi A, Narita M et al (2016) Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 6:19111PubMedPubMedCentralGoogle Scholar
  21. Godier-Furnemont AF, Tiburcy M, Wagner E, Dewenter M, Lammle S, El-Armouche A, Lehnart SE, Vunjak-Novakovic G, Zimmermann WH (2015) Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials 60:82–91PubMedPubMedCentralGoogle Scholar
  22. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67PubMedPubMedCentralGoogle Scholar
  23. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA et al (2012) Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308:2369–2379PubMedPubMedCentralGoogle Scholar
  24. Hirt MN, Boeddinghaus J, Mitchell A, Schaaf S, Bornchen C, Muller C, Schulz H, Hubner N, Stenzig J, Stoehr A et al (2014) Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol 74:151–161PubMedGoogle Scholar
  25. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Hertenstein B, Ganser A, Knapp WH, Drexler H (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202PubMedPubMedCentralGoogle Scholar
  26. Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, Yeung AC, Johnstone BH, Yock PG, March KL (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112:I150–I156PubMedPubMedCentralGoogle Scholar
  27. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T et al (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:S29–S37PubMedPubMedCentralGoogle Scholar
  28. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22:1282–1289PubMedGoogle Scholar
  29. Kemp CD, Conte JV (2012) The pathophysiology of heart failure. Cardiovasc Pathol 21:365–371PubMedGoogle Scholar
  30. Kensah G, Roa Lara A, Dahlmann J, Zweigerdt R, Schwanke K, Hegermann J, Skvorc D, Gawol A, Azizian A, Wagner S et al (2013) Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 34:1134–1146PubMedGoogle Scholar
  31. Kim K, Lerou P, Yabuuchi A, Lengerke C, Ng K, West J, Kirby A, Daly MJ, Daley GQ (2007) Histocompatible embryonic stem cells by parthenogenesis. Science 315:482–486PubMedGoogle Scholar
  32. Koyanagi-Aoi M, Ohnuki M, Takahashi K, Okita K, Noma H, Sawamura Y, Teramoto I, Narita M, Sato Y, Ichisaka T et al (2013) Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc Natl Acad Sci U S A 110:20569–20574PubMedPubMedCentralGoogle Scholar
  33. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024PubMedPubMedCentralGoogle Scholar
  34. Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335PubMedPubMedCentralGoogle Scholar
  35. Lammerding J, Kamm RD, Lee RT (2004) Mechanotransduction in cardiac myocytes. Ann N Y Acad Sci 1015:53–70PubMedGoogle Scholar
  36. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S (2000) Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102:III56–III61PubMedGoogle Scholar
  37. Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, Petnehazy O, Landa N, Feinberg MS, Konen E et al (2009) Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in Swine. J Am Coll Cardiol 54:1014–1023PubMedGoogle Scholar
  38. Lesman A, Habib M, Caspi O, Gepstein A, Arbel G, Levenberg S, Gepstein L (2010) Transplantation of a tissue-engineered human vascularized cardiac muscle. Tissue Eng Part A 16:115–125PubMedGoogle Scholar
  39. Liaw NY, Zimmermann WH (2015) Mechanical stimulation in the engineering of heart muscle. Adv Drug Deliv Rev 96:156–160PubMedGoogle Scholar
  40. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O'Malley R, Castanon R, Klugman S et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73PubMedPubMedCentralGoogle Scholar
  41. Long EF, Swain GW, Mangi AA (2014) Comparative survival and cost-effectiveness of advanced therapies for end-stage heart failure. Circ Heart Fail 7:470–478PubMedGoogle Scholar
  42. Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Goldfarb S, Levvey BJ, Meiser B, Rossano JW, Yusen RD et al (2015) The Registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report--2015; focus theme: early graft failure. J Heart Lung Transplant 34:1244–1254PubMedPubMedCentralGoogle Scholar
  43. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L, Mendizabal A, Johnston PV et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904PubMedPubMedCentralGoogle Scholar
  44. Mann DL, Lee RJ, Coats AJ, Neagoe G, Dragomir D, Pusineri E, Piredda M, Bettari L, Kirwan BA, Dowling R et al (2016) One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure. Eur J Heart Fail 18:314–325PubMedGoogle Scholar
  45. Menasche P (2008) Skeletal myoblasts and cardiac repair. J Mol Cell Cardiol 45:545–553PubMedGoogle Scholar
  46. Menasche P, Vanneaux V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tachdjian G, Tosca L et al (2015) Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 36:2011–2017Google Scholar
  47. Miyagawa S, Saito A, Sakaguchi T, Yoshikawa Y, Yamauchi T, Imanishi Y, Kawaguchi N, Teramoto N, Matsuura N, Iida H et al (2010) Impaired myocardium regeneration with skeletal cell sheets--a preclinical trial for tissue-engineered regeneration therapy. Transplantation 90:364–372PubMedGoogle Scholar
  48. Montgomery JR, Berger JC, Warren DS, James NT, Montgomery RA, Segev DL (2012) Outcomes of ABO-incompatible kidney transplantation in the United States. Transplantation 93:603–609PubMedPubMedCentralGoogle Scholar
  49. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ et al (2015) Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 131:e29–322PubMedGoogle Scholar
  50. Müller-Ehmsen J, Whittaker P, Kloner RA, Dow JS, Sakoda T, Long TI, Laird PW, Kedes L (2002) Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 34:107–116PubMedGoogle Scholar
  51. Naito H, Melnychenko I, Didie M, Schneiderbanger K, Schubert P, Rosenkranz S, Eschenhagen T, Zimmermann WH (2006) Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation 114:I72–I78PubMedGoogle Scholar
  52. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120:408–416PubMedPubMedCentralGoogle Scholar
  53. Nguyen PK, Rhee JW, Wu JC (2016) Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol 1:831–841PubMedPubMedCentralGoogle Scholar
  54. Nichols M, Townsend N, Scarborough P, Rayner M (2014) Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J 35:2950–2959PubMedPubMedCentralGoogle Scholar
  55. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K et al (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412PubMedGoogle Scholar
  56. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA et al (2016) Revisiting cardiac cellular composition. Circ Res 118:400–409PubMedGoogle Scholar
  57. Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G (2008) Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc 3:719–738PubMedPubMedCentralGoogle Scholar
  58. Radisic M, Park H, Gerecht S, Cannizzaro C, Langer R, Vunjak-Novakovic G (2007) Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc Lond Ser B Biol Sci 362:1357–1368Google Scholar
  59. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101:18129–18134PubMedPubMedCentralGoogle Scholar
  60. Revazova ES, Turovets NA, Kochetkova OD, Agapova LS, Sebastian JL, Pryzhkova MV, Smolnikova VI, Kuzmichev LN, Janus JD (2008) HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 10:11–24PubMedGoogle Scholar
  61. Riegler J, Tiburcy M, Ebert A, Tzatzalos E, Raaz U, Abilez OJ, Shen Q, Kooreman NG, Neofytou E, Chen VC et al (2015) Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ Res 117:720–730PubMedPubMedCentralGoogle Scholar
  62. Roger VL (2010) The heart failure epidemic. Int J Environ Res Public Health 7:1807–1830PubMedPubMedCentralGoogle Scholar
  63. Sanchez PL, Fernandez-Santos ME, Costanza S, Climent AM, Moscoso I, Gonzalez-Nicolas MA, Sanz-Ruiz R, Rodriguez H, Kren SM, Garrido G et al (2015) Acellular human heart matrix: a critical step toward whole heart grafts. Biomaterials 61:279–289PubMedGoogle Scholar
  64. Sawa Y, Yoshikawa Y, Toda K, Fukushima S, Yamazaki K, Ono M, Sakata Y, Hagiwara N, Kinugawa K, Miyagawa S (2015) Safety and efficacy of autologous skeletal myoblast sheets (TCD-51073) for the treatment of severe chronic heart failure due to ischemic heart disease. Circ J 79:991–999PubMedGoogle Scholar
  65. Schachinger V, Assmus B, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Yu J, Corti R, Mathey DG, Hamm CW et al (2009) Intracoronary infusion of bone marrow-derived mononuclear cells abrogates adverse left ventricular remodelling post-acute myocardial infarction: insights from the reinfusion of enriched progenitor cells and infarct remodelling in acute myocardial infarction (REPAIR-AMI) trial. Eur J Heart Fail 11:973–979PubMedGoogle Scholar
  66. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355:1210–1221PubMedPubMedCentralGoogle Scholar
  67. Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489:322–325PubMedPubMedCentralGoogle Scholar
  68. Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K et al (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538:388–391PubMedGoogle Scholar
  69. Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T (2006) Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20:708–710PubMedGoogle Scholar
  70. Shimko VF, Claycomb WC (2008) Effect of mechanical loading on three-dimensional cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng Part A 14:49–58PubMedPubMedCentralGoogle Scholar
  71. Shirasaka T, Miyagawa S, Fukushima S, Kawaguchi N, Nakatani S, Daimon T, Okita Y, Sawa Y (2016) Skeletal myoblast cell sheet implantation ameliorates both systolic and diastolic cardiac performance in canine dilated cardiomyopathy model. Transplantation 100:295–302PubMedPubMedCentralGoogle Scholar
  72. Soong PL, Tiburcy M, Zimmermann WH (2012) Cardiac differentiation of human embryonic stem cells and their assembly into engineered heart muscle. Curr Protoc Cell Biol. doi: 10.1002/0471143030.cb2308s55 CrossRefPubMedGoogle Scholar
  73. Streckfuss-Bomeke K, Wolf F, Azizian A, Stauske M, Tiburcy M, Wagner S, Hubscher D, Dressel R, Chen S, Jende J et al (2013) Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J 34:2618–2629PubMedGoogle Scholar
  74. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872Google Scholar
  75. Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, Radisic M, Vunjak-Novakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4:155–173PubMedPubMedCentralGoogle Scholar
  76. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11:147–152Google Scholar
  77. Thorpe SJ, Hunt B, Yacoub M (1991) Expression of ABH blood group antigens in human heart tissue and its relevance to cardiac transplantation. Transplantation 51:1290–1295PubMedGoogle Scholar
  78. Tiburcy M, Meyer T, Soong PL, Zimmermann WH (2014) Collagen-based engineered heart muscle. Methods Mol Biol 1181:167–176PubMedGoogle Scholar
  79. Tiburcy M, Zimmermann WH (2014) Modeling myocardial growth and hypertrophy in engineered heart muscle. Trends Cardiovasc Med 24:7–13PubMedGoogle Scholar
  80. Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T et al (2017) Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair. Circulation 135:1832–1847PubMedPubMedCentralGoogle Scholar
  81. Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118:1021–1040PubMedPubMedCentralGoogle Scholar
  82. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109:47–59PubMedPubMedCentralGoogle Scholar
  83. van Laake LW, Passier R, Monshouwer-Kloots J, Verkleij AJ, Lips DJ, Freund C, den Ouden K, Ward-van Oostwaard D, Korving J, Tertoolen LG et al (2007) Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res 1:9–24PubMedGoogle Scholar
  84. Vandenburgh HH, Solerssi R, Shansky J, Adams JW, Henderson SA (1996) Mechanical stimulation of organogenic cardiomyocyte growth in vitro. Am J Phys 270:C1284–C1292Google Scholar
  85. Wassenaar JW, Gaetani R, Garcia JJ, Braden RL, Luo CG, Huang D, DeMaria AN, Omens JH, Christman KL (2016) Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. J Am Coll Cardiol 67:1074–1086PubMedPubMedCentralGoogle Scholar
  86. Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S, Zhu W, Fajardo G, Noseda M, Nakamura K et al (2015) Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525:479–485PubMedPubMedCentralGoogle Scholar
  87. Weinberger F, Breckwoldt K, Pecha S, Kelly A, Geertz B, Starbatty J, Yorgan T, Cheng KH, Lessmann K, Stolen T et al (2016) Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci Transl Med 8(363):363ra148–363ra148PubMedGoogle Scholar
  88. Wijngaard PL, de Bresser JM, de Groot PG, Gmelig-Meyling FH, Schuurman HJ, Jambroes G, Borleffs JC (1991) Endothelial and smooth muscle cells in the heart allograft response: isolation procedure and immunocytochemical features. J Heart Lung Transplant 10:416–423PubMedGoogle Scholar
  89. Xiong Q, Hill KL, Li Q, Suntharalingam P, Mansoor A, Wang X, Jameel MN, Zhang P, Swingen C, Kaufman DS et al (2011) A fibrin patch-based enhanced delivery of human embryonic stem cell-derived vascular cell transplantation in a porcine model of postinfarction left ventricular remodeling. Stem Cells 29:367–375PubMedPubMedCentralGoogle Scholar
  90. Ye L, Chang YH, Xiong Q, Zhang P, Zhang L, Somasundaram P, Lepley M, Swingen C, Su L, Wendel JS et al (2014) Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 15:750–761PubMedPubMedCentralGoogle Scholar
  91. Ye L, Zimmermann WH, Garry DJ, Zhang J (2013) Patching the heart: cardiac repair from within and outside. Circ Res 113:922–932PubMedGoogle Scholar
  92. Zhang Q, Cecka JM, Gjertson DW, Ge P, Rose ML, Patel JK, Ardehali A, Kobashigawa JA, Fishbein MC, Reed EF (2011) HLA and MICA: targets of antibody-mediated rejection in heart transplantation. Transplantation 91:1153–1158PubMedPubMedCentralGoogle Scholar
  93. Zhang G, Nakamura Y, Wang X, Hu Q, Suggs LJ, Zhang J (2007) Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Eng 13:2063–2071PubMedGoogle Scholar
  94. Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N (2013) Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34:5813–5820PubMedPubMedCentralGoogle Scholar
  95. Zhao T, Zhang ZN, Westenskow PD, Todorova D, Hu Z, Lin T, Rong Z, Kim J, He J, Wang M et al (2015) Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell 17:353–359PubMedGoogle Scholar
  96. Zimmermann WH (2009) Remuscularizing failing hearts with tissue engineered myocardium. Antioxid Redox Signal 11:2011–2023PubMedGoogle Scholar
  97. Zimmermann WH, Didie M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T (2002a) Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106:I151–I157PubMedGoogle Scholar
  98. Zimmermann WH, Eschenhagen T (2003) Cardiac tissue engineering for replacement therapy. Heart Fail Rev 8:259–269PubMedGoogle Scholar
  99. Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T (2000) Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 68:106–114PubMedGoogle Scholar
  100. Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458Google Scholar
  101. Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T (2002b) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90:223–230PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Buntaro Fujita
    • 1
    • 2
    • 3
  • Malte Tiburcy
    • 4
    • 2
  • Stephan Ensminger
    • 3
  • Wolfram-Hubertus Zimmermann
    • 4
    • 2
    Email author
  1. 1.Institute of Pharmacology and ToxicologyUniversity Medical Center GöttingenGöttingenGermany
  2. 2.DZHK (German Center for Cardiovascular Research), Partner Site GöttingenGöttingenGermany
  3. 3.Department of Thoracic and Cardiovascular SurgeryHeart and Diabetes Center NRW, Ruhr-University BochumBad OeynhausenGermany
  4. 4.Institute of Pharmacology and ToxicologyUniversity Medical Center Göttingen, Georg-August UniversityGöttingenGermany

Personalised recommendations