Advertisement

Bioresorbable Scaffold Stability and Mechanical Properties

  • Hui Ying Ang
  • Heerajnarain Bulluck
  • Philip Wong
  • Soo Teik Lim
  • Subbu S. Venkatraman
  • Yingying Huang
  • Nicolas Foin
Chapter

Abstract

Bioresorbable scaffolds (BRSs), lauded as the fourth revolution in interventional cardiology, were introduced to address the drawbacks of current metallic drug-eluting stents (DESs), including late in-stent restenosis and permanent caging of the vessel. The concept of the BRS is to provide temporal support to the vessel during healing before being degraded and resorbed by the body, allowing vessel vasomotion to be restored. However, although BRSs have many promising advantages over metallic stents, limitations such as insufficient radial strength of the bioresorbable material and large strut profile of the device need to be overcome to enhance their performance. Thick struts affect the deliverability of the device and may cause flow disturbance, which could increase the incidence of acute thrombotic events. This chapter compares the mechanical differences between metallic DESs and BRSs and explores how factors such as crystallinity and processing influence the mechanical properties of BRSs, giving an insight into technologies that can be used to improve BRS radial strength. The bioresorption process, mechanical properties, and clinical outcomes of poly-l-lactide (PLLA)-based and magnesium-based BRSs are examined.

Keywords

Bioresorbable stents Coronary artery disease Coronary stents 

References

  1. 1.
    Kraak RP, Grundeken MJ, Koch KT, et al. Bioresorbable scaffolds for the treatment of coronary artery disease: current status and future perspective. Expert Rev Med Devices. 2014;11(5):467–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Navarese EP, Kowalewski M, Kandzari D, et al. First-generation versus second-generation drug-eluting stents in current clinical practice: updated evidence from a comprehensive meta-analysis of randomised clinical trials comprising 31 379 patients. Open Heart. 2014;1(1):e000064.  https://doi.org/10.1136/openhrt-2014-000064. eCollection 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Colombo A, Drzewiecki J, Banning A, et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation. 2003;108(7):788–94.CrossRefPubMedGoogle Scholar
  4. 4.
    Serruys PW, Ong AT, Piek JJ, et al. A randomized comparison of a durable polymer Everolimus-eluting stent with a bare metal coronary stent: the SPIRIT first trial. Euro Interven. 2005;1(1):58–65.Google Scholar
  5. 5.
    Gonzalo N, Macaya C. Absorbable stent: focus on clinical applications and benefits. Vasc Health Risk Manag. 2012;8:125–32.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wiebe J, Nef HM, Hamm CW. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J Am Coll Cardiol. 2014;64(23):2541–51.CrossRefPubMedGoogle Scholar
  7. 7.
    Takayama T, Hiro T, Hirayama A. Stent thrombosis and drug-eluting stents. J Cardiol. 2011;58(2):92–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Kawaguchi R, Angiolillo DJ, Futamatsu H, et al. Stent thrombosis in the era of drug eluting stents. Minerva Cardioangiol. 2007;55(2):199–211.PubMedGoogle Scholar
  9. 9.
    Joner M, Finn AV, Farb A, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol. 2006;48(1):193–202.CrossRefPubMedGoogle Scholar
  10. 10.
    Felix C, Everaert B, Diletti R, et al. Current status of clinically available bioresorbable scaffolds in percutaneous coronary interventions. Neth Hear J. 2015;23(3):153–60.CrossRefGoogle Scholar
  11. 11.
    Onuma Y, Ormiston J, Serruys PW. Bioresorbable scaffold technologies. Circ J. 2011;75(3):509–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Natsuaki M, Morimoto T, Furukawa Y, et al. Late adverse events after implantation of sirolimus-eluting stent and bare-metal stent: long-term (5-7 years) follow-up of the Coronary Revascularization Demonstrating Outcome study-Kyoto registry Cohort-2. Circ Cardiovasc Interv. 2014;7(2):168–79.CrossRefPubMedGoogle Scholar
  13. 13.
    Sharkawi T, Cornhill F, Lafont A, et al. Intravascular bioresorbable polymeric stents: a potential alternative to current drug eluting metal stents. J Pharm Sci. 2007;96(11):2829–37.CrossRefPubMedGoogle Scholar
  14. 14.
    Serruys PW, Garcia-Garcia HM, Onuma Y. From metallic cages to transient bioresorbable scaffolds: change in paradigm of coronary revascularization in the upcoming decade? Eur Heart J. 2012;33(1):16–25b.CrossRefPubMedGoogle Scholar
  15. 15.
    Alfonso Lelasi MT. Current status and future perspectives on drug-eluting bioresorbable coronary scaffolds: will the paradigm of PCI shfit? EMJ Int Cardiol. 2014;1:81–90.Google Scholar
  16. 16.
    Spuentrup E, Ruebben A, Mahnken A, et al. Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a New, Metallic, Coronary Magnetic Resonance Imaging Stent. Circulation. 2005;111(8):1019–26.CrossRefPubMedGoogle Scholar
  17. 17.
    Lesiak M, Araszkiewicz A. “Leaving nothing behind”: is the bioresorbable vascular scaffold a new hope for patients with coronary artery disease? Postepy Kardiol Interwencyjnej. 2014;10(4):283–8.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Stefanini GG, Taniwaki M, Windecker S. Coronary stents: novel developments. Heart. 2014;100(13):1051–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Kohn J, Zeltinger J. Degradable, drug-eluting stents: a new frontier for the treatment of coronary artery disease. Expert Rev Med Devices. 2005;2(6):667–71.CrossRefPubMedGoogle Scholar
  20. 20.
    Waksman R, Pakala R. Biodegradable and bioabsorbable stents. Curr Pharm Des. 2010;16(36):4041–51.CrossRefPubMedGoogle Scholar
  21. 21.
    Foin N, Lee RD, Torii R, et al. Impact of stent strut design in metallic stents and biodegradable scaffolds. Int J Cardiol. 2014;177(3):800–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Bartkowiak-Jowsa M, Będziński R, Kozłowska A, et al. Mechanical, rheological, fatigue, and degradation behavior of PLLA, PGLA and PDGLA as materials for vascular implants. Meccanica. 2013;48(3):721–31.CrossRefGoogle Scholar
  23. 23.
    Mattesini A, Pighi M, Konstantinidis N, et al. Optical coherence tomography in bioabsorbable stents: mechanism of vascular response and guidance of stent implantation. Minerva Cardioangiol. 2014;62(1):71–82.PubMedGoogle Scholar
  24. 24.
    Poncin P, Millet C, Chevy J, et al. Comparing and optimizing Co–Cr tubing for stent applications. In: Proceeding materials and processes for medical devices conference, 25–27 August. St Paul: ASM International; 2004. p. 279–83.Google Scholar
  25. 25.
    Berglund J, Guo Y, Wilcox JN. Challenges related to development of bioabsorbable vascular stents. Euro Interven. 2009;5(Suppl F):F72–9.Google Scholar
  26. 26.
    Garcia-Garcia HM, Serruys PW, Campos CM, et al. Assessing bioresorbable coronary devices: methods and parameters. JACC Cardiovasc Imaging. 2014;7(11):1130–48.CrossRefPubMedGoogle Scholar
  27. 27.
    AL-Mangour Bandar RM, Yue S. Coronary stents fracture: an engineering approach (review). Mater Sci Appl. 2013;4:606–21.Google Scholar
  28. 28.
    Foin N, Torii R, Mattesini A, et al. Biodegradable vascular scaffold: is optimal expansion the key to minimising flow disturbances and risk of adverse events? EuroIntervention. 2015 Feb;10(10):1139–42.CrossRefPubMedGoogle Scholar
  29. 29.
    Ormiston JA, De Vroey F, Serruys PW, et al. Bioresorbable polymeric vascular scaffolds: a cautionary tale. Circ Cardiovasc Interv. 2011;4(5):535–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Stone GW, Abizaid A, Onuma Y, Seth A, Gao R, Ormiston J, Kimura T, Chevalier B, Ben-Yehuda O, Dressler O, McAndrew T, Ellis SG, Kereiakes DJ, Serruys PW. Effect of Technique on Outcomes Following Bioresorbable Vascular Scaffold Implantation: Analysis From the ABSORB Trials. J Am Coll Cardiol. 2017;70(23):2863–74. https://www.ncbi.nlm.nih.gov/pubmed/29100704.
  31. 31.
    Mochizuki M, Hirami M. Structural effects on the biodegradation of aliphatic polyesters. Polym Adv Technol. 1997;8(4):203–9.CrossRefGoogle Scholar
  32. 32.
    Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymer. 2011;3(3):1377–97.CrossRefGoogle Scholar
  33. 33.
    Vroman I, Tighzert L. Biodegradable polymers. Materials. 2009;2(2):307–44.CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Meijer HEH, Govaert LE. Mechanical performance of polymer systems: the relation between structure and properties. Prog Polym Sci. 2005;30(8–9):915–38.CrossRefGoogle Scholar
  35. 35.
    Nielson LE. Mechanical properties of polymers and composites. New York: Marcel Dekker Inc.; 1974.Google Scholar
  36. 36.
    Nunes RW, Martin JR, Johnson JF. Influence of molecular weight and molecular weight distribution on mechanical properties of polymers. Polym Eng Sci. 1982;22(4):205–28.CrossRefGoogle Scholar
  37. 37.
    Seitz JT. The estimation of mechanical properties of polymers from molecular structure. J Appl Polym Sci. 1993;49(8):1331–51.CrossRefGoogle Scholar
  38. 38.
    Su W-F. Polymer size and polymer solutions. In: Principles of polymer design and synthesis. Lecture motes in chemistry. 82. Berlin Heidelberg: Springer; 2013. p. 9–26.CrossRefGoogle Scholar
  39. 39.
    Liu G, Zhang X, Wang D. Tailoring crystallization: towards high-performance poly(lactic acid). Adv Mater. 2014;26(40):6905–11.CrossRefPubMedGoogle Scholar
  40. 40.
    Sarasua JR, Arraiza AL, Balerdi P, et al. Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym Eng Sci. 2005;45(5):745–53.CrossRefGoogle Scholar
  41. 41.
    Cocca M, Lorenzo MLD, Malinconico M, et al. Influence of crystal polymorphism on mechanical and barrier properties of poly (l-lactic acid). Eur Polym J. 2011;47(5):1073–80.CrossRefGoogle Scholar
  42. 42.
    Perego G, Cella GD, Bastioli C. Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci. 1996;59(1):37–43.CrossRefGoogle Scholar
  43. 43.
    Lim JY, Kim SH, Lim S, et al. Improvement of flexural strengths of poly (L-lactic acid) by solid-state extrusion, 2. Extrusion through rectangular die. Macromol Mater Eng. 2003;288(1):50–7.CrossRefGoogle Scholar
  44. 44.
    Brandau O. Material basics. In: Brandau O, editor. Stretch blow molding. 2nd ed. Oxford: William Andrew Publishing; 2012. p. 5–25.CrossRefGoogle Scholar
  45. 45.
    Bower DI, Bower DI. Oriented polymers I – production and characterisation An Introduction to Polymer Physics. Cambridge: Cambridge University Press; 2002.Google Scholar
  46. 46.
    Garcia-Jejon A. Advances in blow moulding process optimization. Rapra Review Report 82. Shawbury: Rapra Technology; 1995.Google Scholar
  47. 47.
    Kukureka SN, Craggs G, Ward IM. Analysis and modelling of the die drawing of polymers. J Mater Sci. 1992;27(12):3379–88.CrossRefGoogle Scholar
  48. 48.
    Fischer EW. Effect of annealing and temperature on the morphological structure of polymers. Pure and Applied Chemistry1972. p. 113.Google Scholar
  49. 49.
    Hobbs SY, Pratt CF. The effect of skin-core morphology on the impact fracture of poly(butyline terephthalate). J Appl Polym Sci. 1975;19(6):1701–22.CrossRefGoogle Scholar
  50. 50.
    Neamtu I, Chiriac AP, Diaconu A, et al. Current concepts on cardiovascular stent devices. Mini-Rev Med Chem. 2014;14(6):505–36.CrossRefPubMedGoogle Scholar
  51. 51.
    Kwon DY, Kim JI, Kim DY, et al. Biodegradable stent. J Biomed Sci Eng. 2012;5(4):9.CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Bourantas CV, Farooq V, et al. Bioresorbable scaffolds in the treatment of coronary artery disease. Med Devices (Auckl). 2013;6:37–48.Google Scholar
  53. 53.
    Oberhauser J, Hossainy S, Rapoza R. Design principles and performance of bioresorbable polymeric vascular scaffolds. Euro Intervention. 2009;5(F):F15–22.PubMedGoogle Scholar
  54. 54.
    Gajjar RC, King WM. Degradation Process. Resorbable Fiber-Forming Polymers for Biotextile Applications: Springer Briefs in Materials. Berlin, New York, Heidelberg: Springer International Publishing; 2014. p. 7–10.Google Scholar
  55. 55.
    Onuma Y, Serruys PW. Bioresorbable scaffold: The advent of a New Era in percutaneous coronary and peripheral revascularization? Circulation. 2011;123(7):779–97.CrossRefPubMedGoogle Scholar
  56. 56.
    Ormiston JA, Serruys PW, Regar E, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet. 2008;371(9616):899–907.CrossRefPubMedGoogle Scholar
  57. 57.
    Ormiston JA, Webber B, Ben Ubod B, et al. An independent bench comparison of two bioresorbable drug-eluting coronary scaffolds (Absorb and DESolve) with a durable metallic drug-eluting stent (ML8/Xpedition). Euro Inter. 2015;11(1):60–7. publishedGoogle Scholar
  58. 58.
    Sotomi Y, Ishibashi Y, Suwannasom P, et al. Acute gain in minimal lumen area following implantation of everolimus-eluting ABSORB biodegradable vascular scaffolds or xience metallic stentsIntravascular ultrasound assessment from the ABSORB II trial. JACC Cardiovasc Interven. 2016;9(12):1216–27.CrossRefGoogle Scholar
  59. 59.
    Foin N, Lee R, Bourantas CV, et al. Bioabsorbable vascular scaffold radial expansion and conformation compared to a metallic platform: insights from in-vitro expansion in a coronary artery lesion model. Euro Interven. 2016;12(7):834–44.Google Scholar
  60. 60.
    Rizik DG, Hermiller JB, Kereiakes DJ. The ABSORB bioresorbable vascular scaffold: a novel, fully resorbable drug-eluting stent: current concepts and overview of clinical evidence. Catheter Cardiovasc Interv. 2015;86(4):664–77.CrossRefPubMedGoogle Scholar
  61. 61.
    Ellis SG, Kereiakes DJ, Metzger DC, et al. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. New Engl J Med. 2015;373(20):1905–15.CrossRefPubMedGoogle Scholar
  62. 62.
    Gao R, Yang Y, Han Y, et al. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery diseaseABSORB China trial. J Am Coll Cardiol. 2015;66(21):2298–309.CrossRefPubMedGoogle Scholar
  63. 63.
    Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus-eluting Absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur Heart J. 2015;36(47):3332–42.CrossRefPubMedGoogle Scholar
  64. 64.
    Serruys PW, Chevalier B, Dudek D, et al. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015;3(385(9962)):43–54.CrossRefGoogle Scholar
  65. 65.
    Suwannasom P, Sotomi Y, Ishibashi Y, et al. The impact of post-procedural asymmetry, expansion, and eccentricity of bioresorbable everolimus-eluting scaffold and metallic everolimus-eluting stent on clinical outcomes in the ABSORB II trial. JACC Cardiovasc Interv. 2016;9(12):1231–42.CrossRefPubMedGoogle Scholar
  66. 66.
    Dalos D, Gangl C, Roth C, et al. Mechanical properties of the everolimus-eluting bioresorbable vascular scaffold compared to the metallic everolimus-eluting stent. BMC Cardiovasc Disord. 2016;16(1):1–7.CrossRefGoogle Scholar
  67. 67.
    Brugaletta S, Gomez-Lara J, Diletti R, et al. Comparison of in vivo eccentricity and symmetry indices between metallic stents and bioresorbable vascular scaffolds: insights from the ABSORB and SPIRIT trials. Catheter Cardiovasc Interv. 2012;79(2):219–28.CrossRefPubMedGoogle Scholar
  68. 68.
    Panoulas VF, Miyazaki T, Sato K, et al. Procedural outcomes of patients with calcified lesions treated with bioresorbable vascular scaffolds. Euro Interven. 2016;11(12):1355–62.Google Scholar
  69. 69.
    Mattesini A, Secco GG, Dall’Ara G, et al. ABSORB biodegradable stents versus second-generation metal stents: a comparison study of 100 complex lesions treated under OCT guidance. JACC Cardiovasc Interv. 2014;7(7):741–50.PubMedGoogle Scholar
  70. 70.
    Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet. 2016;387(10025):1277–89.CrossRefPubMedGoogle Scholar
  71. 71.
    Cassese S, Byrne RA, Ndrepepa G, et al. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet. 2016;387(10018):537–44.CrossRefPubMedGoogle Scholar
  72. 72.
    Capodanno D, Gori T, Nef H, et al. Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. Euro Interven. 2015;10(10):1144–53.Google Scholar
  73. 73.
    Serruys PW, Chevalier B, Sotomi Y, et al. Comparison of an everolimus-eluting bioresorbable scaffold with an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II): a 3 year, randomised, controlled, single-blind, multicentre clinical trial. Lancet. 2016;388(10059):2479–91.CrossRefPubMedGoogle Scholar
  74. 74.
    Chevalier B, Cequier A, Dudek D, et al. Four-year follow-up of the randomised comparison between an everolimus-eluting bioresorbable scaffold and an everolimus-eluting metallic stent for the treatment of coronary artery stenosis (ABSORB II trial). Euro Interven. 2017;13(13):1561–64.CrossRefPubMedGoogle Scholar
  75. 75.
    Ellis GWS SG. Everolimus-eluting bioresorbable vascular scaffolds in patients with coronary artery disease: ABSORB III trial 2-year results. Florida: ACC; 2017.Google Scholar
  76. 76.
    Kereiakes DJ, Ellis SG, Metzger C, et al. 3-year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds: the ABSORB III trial. J Am Coll Cardiol. 2017;70(23):2852–62.Google Scholar
  77. 77.
    Puricel S, Cuculi F, Weissner M, et al. Bioresorbable coronary scaffold thrombosis: multicenter comprehensive analysis of clinical presentation, mechanisms, and predictors. J Am Coll Cardiol. 2016;67(8):921–31.CrossRefPubMedGoogle Scholar
  78. 78.
    Serruys PW, Ormiston J, van Geuns R-J, et al. A polylactide bioresorbable scaffold eluting everolimus for treatment of coronary stenosis 5-year follow-up. J Am Coll Cardiol. 2016;67(7):766–76.CrossRefPubMedGoogle Scholar
  79. 79.
    Campos CM, Muramatsu T, Iqbal J, et al. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease. Int J Mol Sci. 2013;14(12):24492–500.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Alexy RD, Levi DS. Materials and manufacturing technologies available for production of a pediatric bioabsorbable stent. Biomed Res Int. 2013;2013:11.CrossRefGoogle Scholar
  81. 81.
    Huang Y, Ng HC, Ng XW, et al. Drug-eluting biostable and erodible stents. J Control Release. 2014;193:188–201.CrossRefPubMedGoogle Scholar
  82. 82.
    Serruys PW, Onuma Y, García-García HM, et al. Dynamics of vessel wall changes following the implantation of the Absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. Euro Interven. 2014;9(11):1271–84.Google Scholar
  83. 83.
    Haude M, Ince H, Abizaid A, et al. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet. 2016;387(10013):31–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Fedel M, Tessarolo F, Ferrari P, et al. Functional properties and performance of new and reprocessed coronary angioplasty balloon catheters. JJ Biomed Mater Res Part B Appl Biomater. 2006;78B(2):364–72.CrossRefGoogle Scholar
  85. 85.
    Mullins CE. Balloon dilation procedures – general. In: Cardiac Catheterization in Congenital Heart Disease: Pediatric and Adult. Oxford: Blackwell Publishing; 2007. p. 410–29.Google Scholar
  86. 86.
    Mortier P, De Beule M, Carlier SG, et al. Numerical study of the uniformity of balloon-expandable stent deployment. J Biomech Eng. 2008;130(2):021018.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hui Ying Ang
    • 1
  • Heerajnarain Bulluck
    • 1
  • Philip Wong
    • 1
    • 2
  • Soo Teik Lim
    • 3
  • Subbu S. Venkatraman
    • 4
  • Yingying Huang
    • 4
  • Nicolas Foin
    • 1
    • 2
  1. 1.National Heart Research Institute, National Heart Centre SingaporeSingaporeSingapore
  2. 2.Duke-NUS Medical SchoolSingaporeSingapore
  3. 3.Department of CardiologyNational Heart Centre Singapore, Duke-NUS Medical SchoolSingaporeSingapore
  4. 4.School of Materials Science and Engineering, Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations