Interventional Peripheral Angiography

  • Frank VermassenEmail author


While magnetic resonance angiography (MRA) and computed tomography angiography (CTA) play an increasing role in the diagnostic imaging of peripheral vessels, catheter angiography remains unchallenged for peri-interventional imaging and when noninvasive techniques are not possible or do not provide information of sufficient quality or reliability. The equipment that is available, as well as the materials and contrast media that are used, have undergone a tremendous evolution during recent decades, enabling us to obtain images of higher quality with less contrast, less radiation exposure, and fewer complications. The complication rate can be significantly reduced by using an appropriate, cautious, and meticulous technique, as described in this chapter, and by paying attention to the indication for the examination and the questions that need to be answered by the examination.


  1. 1.
    Dos Santos R, Lama AC, Pereira-Caldas J. Arteriografia da aorta e dos vasos abdominalis. Med Contemp. 1929;47:93.Google Scholar
  2. 2.
    Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953;39:368–76.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher LA, Fowkes FGR, Hamburg NM, Kinlay S, Lookstein R, Misra S, Mureebe L, Olin JW, Patel RAG, Regensteiner JG, Schanzer A, Shishehbor MH, Stewart KJ, Treat-Jacobson D, Walsh ME. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2016;135:e726–79. Scholar
  4. 4.
    Wang Y, Alkasab TK, Narin O, Nazarian RM, Kaewlai R, Kay J, Abujudeh HH. Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology. 2011;260:105–11.CrossRefPubMedGoogle Scholar
  5. 5.
    Rofsky NM, Adelman MA. MR angiography in the evaluation of atherosclerotic peripheral vascular disease. Radiology. 2000;214:325–38.CrossRefPubMedGoogle Scholar
  6. 6.
    Nelemans PJ, Leiner T, de Vet HC, et al. Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. Radiology. 2000;217:105–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Willmann JK, Wildermuth S, Pfammatter T, et al. Aortoiliac and renal arteries: prospective intraindividual comparison of contrast-enhanced three-dimensional MR angiography and multi-detector row CT angiography. Radiology. 2003;226:798–811.CrossRefPubMedGoogle Scholar
  8. 8.
    Heijenbrok-Kal MH, Kock Marc CJM, Hunink MGM. Lower extremity arterial disease: multidetector CT angiography—meta-analysis. Radiology. 2007;245:433–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Schernthaner R, Fleischmann D, Stadler A, et al. Value of MDCT angiography in developing treatment strategies for critical limb ischemia. Am J Roentgenol. 2009;192:1416–24.CrossRefGoogle Scholar
  10. 10.
    Kock MCJM, Adriaensen MEAPM, Pattynama PMT, et al. DSA versus multi-detector row CT angiography in peripheral arterial disease: randomized controlled trial. Radiology. 2005;237:727–37.CrossRefPubMedGoogle Scholar
  11. 11.
    Gutzeit A, Schoch E, Reischauer C, et al. Comparison of a 21G micropuncture needle and a regular 19G access needle for antegrade arterial access into the superficial femoral artery. Cardiovasc Intervent Radiol. 2014;37:343–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Sobolev M, Slovut DP, Chang AL, et al. Ultrasound-guided catheterization of the femoral artery: a systematic review and meta-analysis of randomized controlled trials. J Invasive Cardiol. 2015;27:318–23.PubMedGoogle Scholar
  13. 13.
    Roy AK, Garot P, Louvard Y, et al. Comparison of transradial vs transfemoral access for aortoiliac and femoropopliteal interventions: a single-center experience. J Endovasc Ther. 2016;23:880–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Jaff MR, Macneill BD, Rosenfield K. Angiography of the aorta and peripheral arteries. In: Baim DS, Grossman W, editors. Cardiac catheterization, angiography and intervention. 7th ed. Philadelphia: Lippincott, Williams, and Wilkins; 2006. p. 257–8.Google Scholar
  15. 15.
    Bertrand ME, Esplugas E, Piessens J, et al. Influence of a non-ionic, iso-osmolar contrast medium (iodixanol) versus an ionic, low-osmolar contrast medium (ioxaglate) on major adverse cardiac events in patients undergoing percutaneous transluminal coronary angioplasty. Circulation. 2000;101:131–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Huber PR, Leimbach ME, Lewis WL, et al. CO2 angiography. Catheter Cardiovasc Interv. 2002;55:398–403.CrossRefPubMedGoogle Scholar
  17. 17.
    Das R, Ahmed K, Athanasiou T, Morgan RA, Belli AM. Arterial closure devices versus manual compression for femoral haemostasis in interventional radiological procedures: a systematic review and meta-analysis. Cardiovasc Intervent Radiol. 2011;34:723–38.CrossRefPubMedGoogle Scholar
  18. 18.
    Moll FL, Powell JT, Fraedrich G, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 2011;41:S1–S58.CrossRefPubMedGoogle Scholar
  19. 19.
    Sueyoshi E, Sakamoto I, Matsuoka Y, et al. Aortoiliac and lower extremity arteries: comparison of three-dimensional dynamic contrast-enhanced subtraction MR angiography and conventional angiography. Radiology. 1999;210:683–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Jung JW, Choi YH, Park CM, et al. Outcomes of corticosteroid prophylaxis for hypersensitivity reactions to low osmolar contrast media in high-risk patients. Ann Allergy Asthma Immunol. 2016;117:304–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Aspelin P, Aubry P, Fransson SG, et al. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Hoste EA, De Waele JJ, Gevaert SA, Uchino S, Kellum JA. Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol Dial Transplant. 2010;25(3):747.CrossRefPubMedGoogle Scholar
  23. 23.
    Solomon R, Gordon P, Manoukian SV, Abbott JD, Kereiakes DJ, Jeremias A, Kim M, Dauerman HL, On behalf the BOSS Trial Investigators. Randomized trial of bicarbonate or saline study for the prevention of contrast-induced nephropathy in patients with CKD. Clin J Am Soc Nephrol. 2015;10(9):1519–24.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Xu R, Tao A, Bai Y, Deng Y, Chen G. Effectiveness of N-acetylcysteine for the prevention of contrast-induced nephropathy: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016;5:e003968. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Vascular and Thoracic SurgeryGhent University HospitalGhentBelgium

Personalised recommendations