Cardiovascular X-ray Imaging: Physics, Equipment, and Techniques

  • Arnold R. CowenEmail author


Interventionists performing catheter-based procedures on the cardiovascular system should be familiar with the basic operations and functions of the employed X-ray imaging equipment. Although palpable differences in X-ray technology between manufacturers exist, the principles and modes of operation are identical across the board. In this chapter, the basic physical and technical principles of X-ray machines dedicated to cardiovascular interventional imaging are reviewed.



► Section 11.12 of this chapter, titled «Technique Considerations,» was written by Peter Lanzer, MD, Health Care Center, Bitterfeld-Wolfen, Germany.

The author gratefully acknowledges many helpful discussions during the preparation of this chapter with his colleagues Amber Gislason and Andrew Davies (at the University of Leeds) and Professor Mohan Sivananthan (of the Yorkshire Heart Centre, LGI Leeds).

Amber Gislason kindly provided the X-ray spectra shown in ◘ Figs. 11.1 and 11.13. Mr. Davies and Professor Sivananthan kindly provided the images used in ◘ Figs. 11.20 and 11.21. The images used in ◘ Figs. 11.11, 11.15, 11.16, 11.18, 11.22, 11.23, and 11.24 are reproduced courtesy of Dr. Eric A. von Reth, senior director of Clinical Sciences at Philips Healthcare (Best, the Netherlands).


  1. 1.
    Bushberg JT, Siebert JA, Boone JM, Leidtholdt EM. The essential physics of medical imaging. 2nd ed. Williams & Wilkins, Philadelphia: Lippincott; 2002.Google Scholar
  2. 2.
    Dowsett DJ, Kenny PA, Johnston RE. The physics of diagnostic imaging. 2nd ed. London: Hodder Arnold; 2006.Google Scholar
  3. 3.
    Momose A, Takeda T, Itai Y. Blood vessels: depiction at phase contrast X-ray imaging with contrast agents in the mouse and rat—feasibility study. Radiology. 2000;217:593–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Partridge MJ, McGahan G, Causton S, Bowers M, Mason M, Dalby M, Mitchell A. Radiation dose reduction without compromise of image quality in cardiac angiography and intervention with the use of a flat panel detector without an antiscatter grid. Heart. 2006;92:507–10.PubMedCrossRefGoogle Scholar
  5. 5.
    Boone JM, Seibert JA. A figure of merit comparison between bremsstrahlung and monoenergetic X-ray sources for angiography. J Xray Sci Technol. 1994;4:334–45.PubMedGoogle Scholar
  6. 6.
    Gislason AJ, Davies AG, Cowen AR. Dose optimization in paediatric cardiac X-ray imaging. Med Phys. 2010;37(10):5258–69.PubMedCrossRefGoogle Scholar
  7. 7.
    Lin PJ. Technical advances of interventional and flat panel image receptor. Health Phys. 2008;95(5):650–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Seibert JA. Flat-panel detectors: how much better are they? Pediatr Radiol. 2006;36(Suppl 2):173–81.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Holmes DR, Laskey WK, Wondrow MA, Cusma JT. Flat-panel detectors in the cardiac catheterization laboratory: revolution or evolution—what are the issues? Catheter Cardiovasc Interv. 2004;63:324–30.PubMedCrossRefGoogle Scholar
  10. 10.
    Balter S. Interventional fluoroscopy: physics, technology and safety. New York: Wiley-Liss; 2001.Google Scholar
  11. 11.
    Mistretta CA, Crummy AB. Diagnosis of cardiovascular disease by digital subtraction angiography. Science. 1981;214:761–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Mistretta CA, Kruger RA, Ergun DL, Shaw CG, Crummy AB, Strother CM, Sackett JF, Myerowitz PD, Turnipseed WD, Zarnstorff WC, van Lysel MS, Lancaster JC, Ruzicka FF. Digital vascular imaging. Medicamundi. 1981;26(1):1–10.Google Scholar
  13. 13.
    Ludwig JW, Verhoeven LHJ, Engels PHC. Digital video subtraction angiography (DVSA) equipment: angiographic technique in comparison with conventional angiography in different in different vascular areas. Br J Radiol. 1982;55:545–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Verhoeven LAJ. DSA imaging: some physical and technical aspects. Medicamundi. 1985;30:46–55.Google Scholar
  15. 15.
    Brody WR. Hybrid subtraction for improved arteriography. Radiology. 1981;141:828–31.PubMedCrossRefGoogle Scholar
  16. 16.
    Hoff DJ, Wallace MC, ter Brugge KG, Gentili F. Rotational angiography assessment of cerebral aneurysms. AJNR Am J Neuroradiol. 1994;15(10):1945–8.PubMedGoogle Scholar
  17. 17.
    Tu RT, Cohen WA, Maravilla KR, Bush WH, Patel NH, Eskridge J, Winn HR. Digital subtraction rotational angiography for aneurysms of the intracranial anterior circulation: injection method and optimization. AJNR Am J Neuroradiol. 1996;17:1127–36.PubMedGoogle Scholar
  18. 18.
    Seymour HR, Matson MB, Belli A-M, Morgan R, Kyriou J, Patel U. Rotational digital subtraction angiography of the renal arteries: technique and evaluation in the study of native and transplant renal arteries. Br J Radiol. 2001;74:134–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Maddux JT, Wink O, Messenger JC, Groves BM, Liao R, Strzelczyk J, Chen S-YJ, Carroll JD. Randomized study of the safety and clinical utility of rotational angiography versus standard angiography in the diagnosis of coronary artery disease. Catheter Cardiovasc Interv. 2004;62:167–74.PubMedCrossRefGoogle Scholar
  20. 20.
    Raman SV, Morford R, Neff M, Attar TT, Kukielka G, Magorien RD, Bush CA. Rotational X-ray coronary angiography. Catheter Cardiovasc Interv. 2004;63:201–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Akhtar M, Vakharia KT, Mishell J, Gera A, Ports TA, Yeghiazarians Y, Michaels AD. Randomized study of the safety and clinical utility of rotational vs standard coronary angiography using a flat-panel detector. Catheter Cardiovasc Interv. 2005;66:43–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Moret J, Kemkers R, Op de Beek J, Koppe R, Klotz E, Grass M. 2D rotational angiography: clinical value in endovascular treatment. Medicamundi. 1998;42(3):8–14.Google Scholar
  23. 23.
    Hochmuth A, Spetzger U, Schumacher M. Comparison of three dimensional rotational angiography with digital subtraction angiography in the assessment of ruptured cerebral aneurysms. AJNR Am J Neuroradiol. 2002;23:1199–205.PubMedGoogle Scholar
  24. 24.
    Feldkamp LA, Davis LC, Kress JW. Practical cone beam algorithm. J Opt Soc Am. 1984;A1(6):612–9.CrossRefGoogle Scholar
  25. 25.
    Scott D, Davies AG, Cowen AR, Workman A. Technique for 3D reconstruction of arteries from angiographic projections. In: Lemke HU, Inamura K, Jaffe CC, Felix R, editors. Proceedings computer assisted radiology. Berlin: Springer; 1993. p. 541–6.Google Scholar
  26. 26.
    Grass M, Koppe R, Klotz PR, Kuhn MH, Aerts H, Op de Beek J, Kemkers R. Three-dimensional reconstruction of high contrast objects using C-arm image intensifier projection data. Comput Med Imaging Graph. 1999;23:311–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Siewerdsen JH, Jaffrey DA. Cone-beam computed tomography with a flat-panel imager: magnitude and effects of scatter. Med Phys. 2004;28:22–3.Google Scholar
  28. 28.
    Muijderman EA, Roelandse CD, Vetter A, Schreiber P. A diagnostic X-ray tube with spiral-groove bearings. Philips Tech Rev. 1989;44(11/12):357–63.Google Scholar
  29. 29.
    Schmidt T, Behling R. MRC: a successful platform for future X-ray tube development. Medicamundi. 2000;44(2):50–5.Google Scholar
  30. 30.
    Hahn H, Farber D, Allmendinger H, Brendler J. Grid-controlled fluoroscopy in pediatric radiology. Medicamundi. 1997;41(1):12–7.Google Scholar
  31. 31.
    Hernandez RJ, Goodsitt MM. Reduction of radiation dose in pediatric patients using pulsed fluoroscopy. Am J Roentgenol. 1996;167(5):1247–53.CrossRefGoogle Scholar
  32. 32.
    Sobol WT. High frequency X-ray generator basics. Med Phys. 2002;29(2):132–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Den Boer AD, de Feyter PJ, Hummel WA, Keane D, Roelandt JRTC. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel X-ray tube technology extra beam filtering. Circulation. 1994;89:2710–4.CrossRefGoogle Scholar
  34. 34.
    Gagne RM, Quinn PW. X-ray spectral considerations in fluoroscopy. In: Balter S, Shope TB, editors. RSNA categorical course in physics. Oak Brook: RSNA; 1995. p. 49–58.Google Scholar
  35. 35.
    Baldazzi G, Corazza I, Rossi PL, Testoni G, Bernardi T, Zannoli R. In vivo effectiveness of gadolinium filter for paediatric cardiac angiography in terms of image quality and radiation exposure. Phys Med. 2002;28:109–13.Google Scholar
  36. 36.
    Rossi PL, Mariselli M, Corazza I, Bianchini D, Biffi M, Martignani C, Zannoli R, Boriani G. Decrease in patient radiation exposure by a tantalum filter during electrophysiological procedures. Pacing Clin Electrophysiol. 2009;32(Suppl 1):S109–12.PubMedCrossRefGoogle Scholar
  37. 37.
    Geise RA. Fluoroscopy: recording of fluoroscopic images and automatic exposure control. Radiographics. 2001;21:227–36.PubMedCrossRefGoogle Scholar
  38. 38.
    Lin PP. The operation logic of automatic dose control of fluoroscopy system in conjunction with spectral filters. Med Phys. 2007;34:3169–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Krohmer JS. Radiography and fluoroscopy, 1920 to the present. Radiographics. 1989;9:1129–53.PubMedCrossRefGoogle Scholar
  40. 40.
    Schueler BA. General overview of fluoroscopic imaging. Radiographics. 2000;20:1115–26.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang J, Blackburn TJ. X-ray image intensifiers for fluoroscopy. Radiographics. 2000;20:1471–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Van Lysel MS. Fluoroscopy: optical coupling and the video system. Radiographics. 2000;20:1769–86.PubMedCrossRefGoogle Scholar
  43. 43.
    Snoeren RM, ten Caat RB, Dillen BGM, Gieles P, van der Veen JCT. Solid state image sensor in X-ray television. Medicamundi. 1991;36:203–11.Google Scholar
  44. 44.
    Pooley RA, McKinney JM, Miller DA. Digital fluoroscopy. Radiographics. 2001;21:521–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Neitzel U. Recent technological developments and their influence. Radiat Prot Dosim. 2000;90(1–2):15–20.CrossRefGoogle Scholar
  46. 46.
    Powell A, Katzen B. First experiences with a CCD system in interventional radiology: the Integris V5000. Medicamundi. 1999;43(4):38–44.Google Scholar
  47. 47.
    Cowen AR, Kengyelics SM, Davies AG. Solid-state flat-panel digital radiography detectors and their physical imaging characteristics. Clin Radiol. 2008;63:487–98.PubMedCrossRefGoogle Scholar
  48. 48.
    Schiebel U, Conrads N, Jung N, Weibrecht M, Wieczorek H, Zaengel T. Fluoroscopic X-ray imaging with amorphous silicon thin-film arrays. SPIE Proc Phys Med Imaging. 1994;2162:129–40.Google Scholar
  49. 49.
    Antonuk LE, Yorkston J, Huang W, Siewerdsen JH, Boudry JM, El-Mohri Y. A real-time, flat-panel amorphous silicon digital X-ray imager. Radiographics. 1995;15:993–1000.PubMedCrossRefGoogle Scholar
  50. 50.
    Chabbal J, Chaussat T, Ducourant T, Fritsch L, Michailos J, Spinnler V, Vieux G, Arques M, Hahm G, Hoheisel M, Horbaschek H, Schulz RF, Spahn MF. Amorphous silicon X-ray image sensor. SPIE Proc Phys Med Imaging. 1996;2708:499–510.Google Scholar
  51. 51.
    Colbeth RE, Allen MJ, Day DJ, Gilblom DL, Klaus Meijer-Brown ME, Pavkovich J, Seppi EJ, Shapiro EG. Characterisation of an amorphous silicon fluoroscopic imager. SPIE Proc Phys Med Imaging. 1997;3032:42–51.Google Scholar
  52. 52.
    Colbeth RE, Allen MJ, Day DJ, Gilblom DL, Harris R, Job ID, Klausmeier-Brown ME, Pavkovich JM, Seppi EJ, Shapiro EG, Wright MD, Yu J. Flat panel imaging system for fluoroscopy applications. SPIE Proc Phys Med Imaging. 1998;3336:376–87.Google Scholar
  53. 53.
    Bruijns TJ, Alving PL, Baker EL, Bury RF, Cowen AR, Jung N, Luijendijk HA, Meulenbrugge HJ, Stouten HJ. Technical and clinical results of an experimental flat dynamic (digital) X-ray image detector (FDXD) systems with real-time correction. SPIE Proc Phys Med Imaging. 1998;3336:33–44.Google Scholar
  54. 54.
    Bury RF, Cowen AR, Davies AG, Baker EL, Hawkridge P, Bruijns AJC, Reitsma H. Technical report: initial experiences with an experimental solid-state universal digital X-ray detector. Clin Radiol. 1998;53:923–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Bruijns AJC, Bury R, Busse F, Davies AG, Cowen AR, Rutten W, Reitsma H. Technical and clinical assessments of an experimental flat dynamic X-ray image detector system. SPIE Proc Phys Med Imaging. 1999;3659:324–35.Google Scholar
  56. 56.
    Jung N, Alving PL, Busse F, Conrads N, Meulenbrugge HM, Rutten W, Schiebel UW, Weibrecht M, Wieczorek HK. Dynamic X-ray imaging based on an amorphous silicon thin-film array. SPIE Proc Phys Med Imaging. 1998;3336:974–85.Google Scholar
  57. 57.
    Busse F, Rutten W, Sandkamp B, Alving PL, Bastiaens RJM, Ducourant T. Design and performance of a high quality cardiac flat panel detector. SPIE Proc Phys Med Imaging. 2002;4682:819–27.Google Scholar
  58. 58.
    Granfors PR, Aufrichtig R, Netel H, Brunst G, Boudry JM, Luo D, Albagli D, Tkaczyk JE. Performance of a flat cardiac detector. SPIE Proc Phys Med Imaging. 2001;4320:77–86.Google Scholar
  59. 59.
    Sivananthan UM, Moore J, Cowan JC, Pepper CB, Hunter S, Cowen AR, Davies AG, Kengyelics SM. A flat-detector cardiac cath lab system in clinical practice. Medicamundi. 2004;48:4–12.Google Scholar
  60. 60.
    Granfors PR, Aufrichtig R, Possin GE, Giambattista BW, Huang ZS, Liu J, Ma B. Performance of a 41 × 41 cm2 amorphous silicon flat panel X-ray detector designed for angiographic and R&F imaging applications. Med Phys. 2003;30:2715–26.PubMedCrossRefGoogle Scholar
  61. 61.
    Ducourant T, Couder D, Wirth T, Trochet JC, Bastiaens R, Bruijns T, Luijendijk HA, Sandkamp B, Davies AG, Didier D, Gonzalez A, Terraz S, Ruefenacht D, et al. Image quality of digital subtraction angiography using flat detector technology. SPIE Proc Phys Med Imaging. 2003;5030:203–14.Google Scholar
  62. 62.
    Bruijns AJC, Bastiaens R, Hoornaert B, von Reth E, Busse F, Heer VK, Ducourant T, Cowen AR, Davies AG, Terrier F. Image quality of a large-area dynamic flat detector: comparison with a state-of-the-art IITV system. SPIE Proc Phys Med Imaging. 2002;4682:332–43.Google Scholar
  63. 63.
    Colbeth RE, Boyce S, Fong R, Gray K, Harris R, Job ID, Mollov IP, Nepo B, Pakovich JM, Taie-Nobarie N, Seppi EJ, Shapiro EG, Wright MD, Webb C, Yu JM. 40 × 30 cm2 flat imager for angiography, R&F and cone-beam CT applications. SPIE Proc Phys Med Imaging. 2001;4320:94–102.Google Scholar
  64. 64.
    Choquette M, Demers Y, Shukri Z, Tousignant O, Aoki K, Honda M, Takahashi A, Tsukamoto A. Real time performance of a selenium based detector for fluoroscopy. SPIE Proc Phys Med Imaging. 2001;4320:501–8.Google Scholar
  65. 65.
    Tousignant O, Demers Y, Laperriere L, Nishiki M, Nagai S, Tomisaki T, Takahashi A, Aoki K. Clinical performances of a 14″ × 14″ real time amorphous selenium flat panel detector. SPIE Proc Phys Med Imaging. 2003;5030:71–6.Google Scholar
  66. 66.
    Asahina H. Selenium-based flat panel X-ray detector for digital fluoroscopy and radiography. Toshiba Med Rev. 1999;69:1–7.Google Scholar
  67. 67.
    Tousignant O, Demers Y, Lapierre L, Marcovici S. (2007). A-Se flat panel detectors for medical applications. Sensors applications symposium IEEE, San Diego, California USA.Google Scholar
  68. 68.
    Spahn M. Flat detectors and their clinical applications. Eur Radiol. 2005;15:1934–47.PubMedCrossRefGoogle Scholar
  69. 69.
    Nikoloff EL. Survey of modern fluoroscopy imaging: flat-panel detectors versus image intensifiers and more. Radiographics. 2011;31:591–602.CrossRefGoogle Scholar
  70. 70.
    Roos PG, Colbeth RE, Mollov I, Munro P, Pavkovich J, Seppi EJ, Shapiro EG, Tognina CA, Virshup GF, Yu M, Zentai G, Kaissi W, Matsinos A, Richters J, Riehm H. Multiple-gain-ranging readout method to extend the dynamic range of amorphous silicon flat-panel imagers. SPIE Proc Phys Med Imaging. 2004;5368:139–49.Google Scholar
  71. 71.
    Boyce SJ, Chawla A, Samei E. Physical evaluation of a high frame rate, extended dynamic range flat panel detector for real-time cone beam computed tomography applications. SPIE Proc Phys Med Imaging. 2005;5745:591–9.Google Scholar
  72. 72.
    Fahrig R, Wen Z, Ganguly A, DeCrescenzo G, Rowlands JA, Stevens GM, Saunders RF, Pelc NJ. Performance of a static-anode/flat-panel X-ray fluoroscopy system in a diagnostic strength magnetic field: truly hybrid X-ray/MR imaging system. Med Phys. 2005;32:1775–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Achenbach S, Ropers D, Holle J, Muschol G, Daniel WG, Moshage W. In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology. 2000;216:457–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhao W, DeCresenzo G, Rowlands JA. Investigation of lag and ghosting in amorphous selenium flat-panel X-ray detectors. SPIE Proc Phys Med Imaging. 2003;4682:9–20.Google Scholar
  75. 75.
    Siewerdsen JH, Jaffray DA. A ghost story: spatio-temporal response characteristics of an indirect-detection flat-panel imager. Med Phys. 1999;26:1624–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Overdick M, Solf T, Wischmann H-A. Temporal artefacts in flat dynamic X-ray detectors. SPIE Proc Phys Med Imaging. 2001;4320:47–58.Google Scholar
  77. 77.
    Ducourant T, Michel M, Vieux G, Peppler T, Trochet JC, Schulz RF, Bastiaens RJM, Busse F. Optimization of key building blocks for a large area radiographic and fluoroscopic dynamic X-ray detector based on a-Si:H/CsI:Tl flat panel technology. SPIE Proc Phys Med Imaging. 2000;3977:14–25.Google Scholar
  78. 78.
    Dainty JC, Shaw R. Image science. London: Academic Press; 1975.Google Scholar
  79. 79.
    Tognina CA, Mollov I, Yu JM, Webb C, Roos PG, Batts M, Trinh D, Fong R, Taie-Nobriae N, Nepo B, Job IS, Gray K, Boyce S, Colbeth RE. Design and performance of a new a-Si flat panel imager for use in cardiovascular and mobile C-arm imaging systems. SPIE Proc Phys Med Imaging. 2004;5368:648–56.Google Scholar
  80. 80.
    Davies AG, Cowen AR, Kengyelics SM, Bury RF, Bruijns TJ. Threshold contrast detail detectability measurement of the fluoroscopic image quality of a dynamic solid-state digital X-ray image detector. Med Phys. 2001;28:11–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Spekowius G, Boerner H, Eckenbach W, Quadflieg P, Laurenssen GJ. Simulation of the imaging performance of X-ray image intensifier TV camera chains. SPIE Proc Phys Med Imaging. 1995;2432:12–23.Google Scholar
  82. 82.
    Baker EL, Cowen AR, Kemner R, Bastiaens R. A physical evaluation of a CCD-based X-ray II fluorography system for cardiac applications. SPIE Proc Phys Med Imaging. 1998;3336:430–41.Google Scholar
  83. 83.
    Vano E, Geiger B, Schreiner A, Back C, Beissel J. Dynamic flat panel detector versus image intensifier in cardiac: dose and image quality. Phys Med Biol. 2005;50:5731–42.PubMedCrossRefGoogle Scholar
  84. 84.
    Davies AG, Cowen AR, Kengyelics SM, Moore J, Pepper C, Cowen C, Sivananthan UM. X-ray dose reduction in fluoroscopically guided electrophysiology procedures. Pacing Clin Electrophysiol. 2006;29:262–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Prasan AM, Ison G, Rees DM. Radiation exposure during elective coronary angioplasty: the effect of flat-panel detection. Heart Lung Circ. 2008;17:215–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Trianni A, Bernardi G, Padovani R. Are new technologies always reducing patient doses in cardiac procedures. Radiat Prot Dosim. 2005;117:97–101.CrossRefGoogle Scholar
  87. 87.
    Tsapaki V, Kottou S, Kollaros N, Dafnomili P, Kyriakidis Z, Neofotistou V. Dose performance evaluation of charge coupled device and a flat-panel digital fluoroscopy system recently installed in an interventional cardiology laboratory. Radiat Prot Dosim. 2004;111(3):297–304.CrossRefGoogle Scholar
  88. 88.
    Davies AG, Cowen AR, Kengyelics SM, Moore J, Sivananthan MU. Do flat detector cardiac X-ray systems convey advantages over image intensifier-based systems? Study comparing X-ray dose and image quality. Eur Radiol. 2007;17:1787–94.PubMedCrossRefGoogle Scholar
  89. 89.
    Nikoloff EL, Lu ZF, Dutta A, So J, Balter S, Moses J. Influence of flat-panel fluoroscopic equipment variables on cardiac radiation doses. Cardiovasc Intervent Radiol. 2007;30:169–76.CrossRefGoogle Scholar
  90. 90.
    Cowen AR. Image processing in digital radiography. Imaging. 1994;6:77–99.Google Scholar
  91. 91.
    Cowen AR, Hartley PJ, Workman A. The computer enhancement of digital grey-scale fluorography images. Br J Radiol. 1988;61(726):492–500.PubMedCrossRefGoogle Scholar
  92. 92.
    Aach T, Mayntz C, Rongen P, Schmitz G, Stegehuis H. Spatiotemporal multiscale vessel enhancement for coronary angiograms. SPIE Proc Phys Med Imaging. 2002;4684:1010–21.Google Scholar
  93. 93.
    Wu Z, Fang M, Qian J, Schramm H. A multi-scale adaptive method for blood vessel enhancement in X-ray angiography. SPIE Proc Phys Med Imaging. 1997;3036:326–35.Google Scholar
  94. 94.
    Koolen JJ, Van Het Veer M, Hanekamp CEE. Stentboost image enhancement: first clinical experience. Medicamundi. 2005;49(2):4–8.Google Scholar
  95. 95.
    Mishell JM, Vakharia KT, Ports TA, Yeghiazians Y, Michaels AD. Determination of adequate coronary stent expansion using stentboost, a novel fluoroscopic image processing technique. Catheter Cardiovasc Interv. 2007;69:84–93.PubMedCrossRefGoogle Scholar
  96. 96.
    Sivananthan UM, Blackburn M, Cowan JC, Mclenachan J, Pepper CB, Hunter S, Moore J, Cowen AR, Davies AG, Kengyelics SM. Cardiac cath lab upgrade improves efficiency and reduces dose. Medicamundi. 2006;50(2):1–9.Google Scholar
  97. 97.
    Agostini P, Verheye S. Bifurcation stenting with dedicated biolimus-eluting stent: X-ray visual enhancement of the angiographic result with “StentBoost”. Catheter Cardiovasc Interv. 2007;70:233–6.CrossRefGoogle Scholar
  98. 98.
    Eng MH, Klein AP, Wink O, Hansgen A, Carroll JD, Garcia JA. Enhanced stent visualization: a case series demonstrating practical applications during PCI. Int J Cardiol. 2010;141(1):e8–e16.PubMedCrossRefGoogle Scholar
  99. 99.
    Schoonenberg G, Florent R. Advanced visibility enhancement for stents and other devices: image processing aspects. Cardiol Clin. 2009;27:477–90.PubMedCrossRefGoogle Scholar
  100. 100.
    Fahrig R, Fox AJ, Lownie S, Holdsworth DW. Use of a C-arm system to generate true three-dimensional computed rotational angiograms: preliminary in vitro and in vivo results. AJNR Am J Neuroradiol. 1997;18:1507–14.PubMedGoogle Scholar
  101. 101.
    Fahrig R, Moreau M, Holdsworth DW. Three dimensional computed tomographic reconstruction using C-arm mounted XRII: correction of image intensifier distortion. Med Phys. 1997;24:1097–106.PubMedCrossRefGoogle Scholar
  102. 102.
    Baba R, Konno Y, Ueda K, Ikeda S. Comparison of flat-panel detector and image intensifier detector for cone-beam CT. Comput Med Imaging Graph. 2002;6:153–8.CrossRefGoogle Scholar
  103. 103.
    Hirota S, Nakao N, Yamamoto S, Kobayashi K, Maeda H, Ishikura R, Miura K, Sakamoto K, Ueda K, Baba R. Cone-beam CT with flat-panel detector digital angiography system: early experiences in abdominal interventional procedures. Cardiovasc Intervent Radiol. 2006;29:1034–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Hirai T, Korogi Y, Ono K, Yamura M, Uemara S, Yamashita Y. Pseudostenosis phenomenon at volume-rendered three-dimensional digital angiography of intracranial arteries: frequency, location and effect on image evaluation. Radiology. 2004;232:882–7.PubMedCrossRefGoogle Scholar
  105. 105.
    Kakeda S, Korogi Y, Ohnari N, Hatakeyama Y, Moriya J, Oda N, Nishino K, Miyamoto W. 3D digital subtraction angiography of intracranial aneurysms: comparison of flat panel detector with conventional IITV system using a vascular phantom. AJNR Am J Neuroradiol. 2007;28:839–43.PubMedCrossRefGoogle Scholar
  106. 106.
    Sugahara T, Korogi Y, Nakashima K, Hamatake S, Honda S, Takahashi M. Comparison of 2D and 3D digital subtraction angiography in evaluation of intracranial aneurysms. AJNR Am J Neuroradiol. 2002;23:1545–52.PubMedGoogle Scholar
  107. 107.
    Hatakeyama Y, Kakeda S, Korogi Y, Ohnari N, Moriya J, Oda N, Nishino K, Miyamoto W. Intracranial 2D and 3D DSA with flat panel detector of the direct conversion type: initial experience. Eur Radiol. 2006;16:2594–602.PubMedCrossRefGoogle Scholar
  108. 108.
    Schueler BA, Kallmes DF, Cloft HJ. 3D cerebral angiography: radiation dose comparison with digital subtraction angiography. AJNR Am J Neuroradiol. 2005;26:1898–901.PubMedGoogle Scholar
  109. 109.
    Bridcut RR, Murphy E, Workman A, Flynn P, Winder RJ. Patient dose from 3D rotational neurovascular studies. Br J Radiol. 2007;80:362–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Tsapaki V, Vano E, Mavrikou I, Neofotistou V, Gallego JJ, Fernandez JM, Santos E, Mendez J. Comparison of patient dose in two-dimensional carotid arteriography and three-dimensional rotational angiography. Cardiovasc Intervent Radiol. 2008;31:477–82.PubMedCrossRefGoogle Scholar
  111. 111.
    Gupta R, Cheung AC, Bartling SH, Lisauskas J, Grasruck M, Leidecker C, Schmidt B, Flohr T, Brady TJ. Flat-panel CT: fundamental principles, technology & applications. Radiographics. 2008;28:2009–22.PubMedCrossRefGoogle Scholar
  112. 112.
    Smyth JM, Sutton DG, Houston JG. Evaluation of the quality of CT-like images obtained using a commercial flat panel detector system. Biomed Imaging Interv J. 2006;2(4):e48.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wallace MJ, Kuo M, Glaiberman C, Binkert CA, Orh RC, Soulez G. Three dimensional C-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol. 2008;19:799–813.PubMedCrossRefGoogle Scholar
  114. 114.
    Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol. 2009;30:1088–95.PubMedCrossRefGoogle Scholar
  115. 115.
    Orth RC, Wallace MJ, Kuo MD. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol. 2008;19:814–21.PubMedCrossRefGoogle Scholar
  116. 116.
    Struffert T, Eyopglu IY, Huttner HB, Engelhorn T, Doelken M, Saake M, Ganslandt O, Doerfler A. Clinical evaluation of flat-panel detector compared with multi-slice computed tomography in 65 patients with acute intracranial haemorrhage: initial results. J Neurosurg. 2010;113:901–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Heran NS, Song JK, Mamba K, Smith W, Niimi Y, Berenstein A. The utility of DynaCT in neurovascular procedures. AJNR Am J Neuroradiol. 2006;27:330–2.PubMedGoogle Scholar
  118. 118.
    Kamran M, Nagaraja S, Byrne JV. C-arm flat detector computed tomography: the technique and its application in interventional neuro-radiology. Neuroradiology. 2010;52:319–27.PubMedCrossRefGoogle Scholar
  119. 119.
    Kyriakou Y, Richter DA, Kalendar WA. Neuroradiologic applications with routine C-arm flat panel detector CT: evaluation of patient dose measurements. AJNR Am J Neuroradiol. 2008;29:1930–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Soderman M, Babic D, Homan R, Andersson T. 3D roadmap in neuroangiography: technique and clinical interest. Neuroradiology. 2005;47:735–40.PubMedCrossRefGoogle Scholar
  121. 121.
    Wilhelm K, Babic D. 3D angiography in the interventional clinical routine. Medicamundi. 2006;50:24–31.Google Scholar
  122. 122.
    Turski PA, Stieghorst MF, Strother CM, Crummy AB, Lieberman RP, Mistretta CA. Digital subtraction angiography “road map”. Am J Roentgenol. 1982;139:1233–4.CrossRefGoogle Scholar
  123. 123.
    Racadio JM, Babic D, Homan R, Rampton JW, Patel MN, Racadio JM, Johnson ND. Live 3D guidance in the interventional radiology suite. Am J Roentgenol. 2007;189:357–64.CrossRefGoogle Scholar
  124. 124.
    Badano A. AAPM/RSNA tutorial on equipment selection: PACS equipment overview. Display systems. Radiographics. 2004;24(3):879–89.PubMedCrossRefGoogle Scholar
  125. 125.
    The Royal College of Radiologists. (2008). Picture archiving and communication systems (PACS) and guidelines on diagnostic display devices. This guidance is only available electronically from: (Accessed March 2012).
  126. 126.
    Drost MM. Evaluation of a recently developed 56″ monitor in CV interventions. Medicamundi. 2009;53(3):24–8.Google Scholar
  127. 127.
    Gurley JC. Flat detectors and new safety aspects of radiation safety. Cardiol Clin. 2009;27:385–94.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Medical Physics, LIGHTUniversity of LeedsLeedsUK

Personalised recommendations