Possible worst-case tsunami scenarios around the Marmara Sea from combined earthquake and landslide sources

  • Panon LatcharoteEmail author
  • Anawat Suppasri
  • Fumihiko Imamura
  • Betul Aytore
  • Ahmet Cevdet Yalciner
Part of the Pageoph Topical Volumes book series (PTV)


This study evaluates tsunami hazards in the Marmara Sea from possible worst-case tsunami scenarios that are from submarine earthquakes and landslides. In terms of fault-generated tsunamis, seismic ruptures can propagate along the North Anatolian Fault (NAF), which has produced historical tsunamis in the Marmara Sea. Based on the past studies, which consider fault-generated tsunamis and landslide-generated tsunamis individually, future scenarios are expected to generate tsunamis, and submarine landslides could be triggered by seismic motion. In addition to these past studies, numerical modeling has been applied to tsunami generation and propagation from combined earthquake and landslide sources. In this study, tsunami hazards are evaluated from both individual and combined cases of submarine earthquakes and landslides through numerical tsunami simulations with a grid size of 90 m for bathymetry and topography data for the entire Marmara Sea region and validated with historical observations from the 1509 and 1894 earthquakes. This study implements TUNAMI model with a two-layer model to conduct numerical tsunami simulations, and the numerical results show that the maximum tsunami height could reach 4.0 m along Istanbul shores for a full submarine rupture of the NAF, with a fault slip of 5.0 m in the eastern and western basins of the Marmara Sea. The maximum tsunami height for landslide-generated tsunamis from small, medium, and large of initial landslide volumes (0.15, 0.6, and 1.5 km3, respectively) could reach 3.5, 6.0, and 8.0 m, respectively, along Istanbul shores. Possible tsunamis from submarine landslides could be significantly higher than those from earthquakes, depending on the landslide volume significantly. These combined earthquake and landslide sources only result in higher tsunami amplitudes for small volumes significantly because of amplification within the same tsunami amplitude scale (3.0–4.0 m). Waveforms from all the coasts around the Marmara Sea indicate that other residential areas might have had a high risk of tsunami hazards from submarine landslides, which can generate higher tsunami amplitudes and shorter arrival times, compared to Istanbul.


Marmara Sea tsunami hazards combined earthquake and landslide numerical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpar, B., & Yaltirak, C. (2002). Characteristic features of the North Anatolian Fault in the eastern Marmara region and its tectonic evolution. Marine Geology, 190, 329–350.CrossRefGoogle Scholar
  2. Altinok, Y., & Alpar, B. (2006). Marmara Island earthquakes of 1265 and 1935 Turkey. Natural Hazards and Earth System Sciences, 6, 999–1006.CrossRefGoogle Scholar
  3. Altinok, Y., Ersoy, S., Yalciner, C. A., Alpar, B., & Kuran, U. (2001a). Historical tsunamis in the Sea of Marmara. ITS Proceedings, session 4, vol. 4-2.Google Scholar
  4. Altinok, Y., Tinti, S., Alpar, B., Yalciner, C. A., Ersoy, S., Bortolucci, E., et al. (2001b). The tsunami of August 17, 1999 in Izmit Bay, Turkey. Natural Hazards, 24, 133–146.CrossRefGoogle Scholar
  5. Armijo, R., Meyer, B., Navarro, S., King, G., & Barka, A. (2002). Asymmetric slip partitioning in the Sea of Marmara pull-apart: A clue to propagation processes of the North Anatolian Fault. Terra Nova, 14(2), 80–86.CrossRefGoogle Scholar
  6. Armijo, R., Pondard, N., Meyer, B., Ucarkus, G., Mercier de Lepinay, B., Malavieille, J., et al. (2005). Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): Implications for seismic hazard in Istanbul. Geochemistry, Geophysics, Geosystems, 6(6), 1–29.CrossRefGoogle Scholar
  7. Cagatay, M. N., Erel, L., Bellucci, L. G., Polonia, A., Gasperini, L., Eris, K. K., et al. (2012). Sedimentary earthquake records in the Izmit Gulf, Sea of Marmara, Turkey. Sedimentary Geology, 282, 347–359.CrossRefGoogle Scholar
  8. Drab, L., Ferrari, H. A., Schmidt, S., & Martinez, L. (2012). The earthquake sedimentary record in the western part of the Sea of Marmara, Turkey. Natural Hazards and Earth System Sciences., 12, 1235–1254.CrossRefGoogle Scholar
  9. Erdik, M., Demircioglu, M., Sesetyan, K., Durukal, E., & Siyahi, B. (2004). Earthquake hazard in Marmara region, Turkey. Soil Dynamics and Earthquake Engineering, 24, 605–631.CrossRefGoogle Scholar
  10. Ergintav, S., Reilinger, R. E., Cakmak, R., Floyd, M., Cakir, Z., Dogan, U., et al. (2014). Istanbul’s earthquake hot spots: Geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophysical Research Letters, 41, 5783–5788.CrossRefGoogle Scholar
  11. Gasperini, L., Polonia, A., Bortoluzzi, G., Henry, P., Pichon, L. X., Tryon, M., et al. (2011a). How far did the surface rupture of the 1999 Izmit earthquake reach in Sea of Marmara. Tectonics, 30(TC1010), 1–11.Google Scholar
  12. Gasperini, L., Polonia, A., Cagatay, N., Bortoluzzi, G., & Ferrante, V. (2011b). Geological slip rates along the North Anatolian Fault in the Marmara region. Tectonics, 30(TC6001), 1–14.Google Scholar
  13. Gazioglu, C., Yucel, Z. Y., & Dogan, E. (2005). Morphological features of major submarine landslides of Marmara Sea using multibean data. Journal of Coastal Research, 21(4), 664–673.CrossRefGoogle Scholar
  14. Hebert, H., Schindele, F., Altinok, Y., Alpar, B., & Gazioglu, C. (2005). Tsunami hazard in the Marmara Sea (Turkey): A numerical approach to discuss active faulting and impact on the Istanbul coastal areas. Marine Geology, 215, 23–43.CrossRefGoogle Scholar
  15. Heidarzadeh, M., Pirooz, M. D., & Zaker, N. H. (2009). Modeling the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Engineering, 36(5), 368–376.CrossRefGoogle Scholar
  16. Heidarzadeh, M., Pirooz, D. M., Zaker, H. N., & Synolakis, E. C. (2008). Evaluating tsunami hazard in the Northwestern Indian Ocean. Pure and Applied Geophysics, 165, 2045–2058.CrossRefGoogle Scholar
  17. Heidarzadeh, M., & Satake, K. (2014). New insights into the source of the Makran tsunami of 27 November 1945 from tsunami waveforms and coastal deformation data. Pure and Applied Geophysics, 172(3), 621–640.Google Scholar
  18. Hergert, T., Heidbach, O., Becel, A., & Laigle, M. (2011). Geomechanical model of the Marmara Sea region—I. 3-D contemporary kinematics. Geophysical Journal International, 185, 1073–1089.CrossRefGoogle Scholar
  19. Imamura, F., & Imteaz, M. A. (1995). Long waves in two-layers: governing equations and numerical model. Science of Tsunami Hazards, 13(1), 3–24.Google Scholar
  20. Karimi, B., McQuarrie, N., Lin, J. S., & Harbert, W. (2014). Determining the geometry of the North Anatolian Fault East of the Marmara Sea through integrated stress modeling and remote sensing techniques. Tectonophysics, 623(2), 14–22.CrossRefGoogle Scholar
  21. Leonard, M. (2010). Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, moment release. The Bulletin of the Seismological Society of America, 100(5A), 1971–1988.CrossRefGoogle Scholar
  22. McHugh, M. G. C., Seeber, L., Cormier, M. H., & Hornbach, M. (2014). Submarine paleoseismology along populated transform boundaries: The Enriquillo-Plantain-Garden Fault, Marmara Sea, Turkey. Oceanography, 27(2), 118–131.CrossRefGoogle Scholar
  23. Necmioglu, O. (2016). Design and challenges for a tsunami early warning system in the Marmara Sea. Earth, Planets and Space, 68(13), 1–9.Google Scholar
  24. Necmioglu, O., & Meral Ozel, N. (2015). Earthquake scenario-based tsunami wave heights in the Eastern Mediterranean and connected seas. Pure and Applied Geophysics, 172, 3617–3638.CrossRefGoogle Scholar
  25. Oglesby, D. D., & Mai, P. M. (2012). Fault geometry, rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara. Geophysical Journal International, 188, 1071–1087.CrossRefGoogle Scholar
  26. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. The Bulletin of the Seismological Society of America, 75, 1135–1154.Google Scholar
  27. Ozeren, S. M., Cagatay, N. M., Postacioglu, N., Semgor, A. M. C., Gorur, N., & Eris, K. (2010). Mathematical modelling of a potential tsunami associated with a late glacial submarine landslide in the Sea of Marmara. Geo-Marine Letters, 30, 523–539.CrossRefGoogle Scholar
  28. Pichon, L. X., Chamot-Rooke, N., Rangin, C., & Sengor, A. M. C. (2003). The North Anatolian Fault in the Sea of Marmara. Journal of Geophysical Research, 108(B4), 2179.CrossRefGoogle Scholar
  29. Pichon, L. X., Imren, C., Rangin, C., Sengor, A. M. C., & Siyako, M. (2014). The South Marmara Fault. International Journal of Earth Sciences (Geol Rundsch), 103, 219–231.CrossRefGoogle Scholar
  30. Pichon, L. X., Sengor, A. M. C., Demirbag, E., Rangin, C., Imren, C., Armijo, R., et al. (2001). The active Main Marmara Fault. Earth and Planetary Science Letters, 192, 595–616.CrossRefGoogle Scholar
  31. Pondard, N., Armijo, R., King, C. P. G., Meyer, B., & Flerit, F. (2007). Fault interactions in the Sea of Marmara pull-apart (North Anatolian Fault): Earthquake clustering and propagating earthquake sequences. Geophysical Journal International, 171, 1185–1197.CrossRefGoogle Scholar
  32. Stramondo, S., Cinti, F. R., Dragoni, M., Salvi, S., & Santini, S. (2002). The August 17, 1999 Izmit, Turkey, earthquake: Slip distribution from dislocation modeling of DlnSAR and surface offset. Annals of Geophysics, 45(3/4), 527–536.Google Scholar
  33. Tinti, S., Armigliato, A., Manucci, A., Pagnoni, G., Zaniboni, F., Yalciner, A. C., et al. (2006). The generating mechanisms of the August 17, 1999 Izmit bay (Turkey) tsunami: Regional (tectonic) and local (mass instabilities) causes. Marine Geology, 225, 311–330.CrossRefGoogle Scholar
  34. Utkucu, M., Kanbur, Z., Alptekin, O., & Sunbul, F. (2009). Seismic behavior of the North Anatolian Fault beneath the Sea of Marmara (NW Turkey): Implications for earthquake recurrence times and future seismic hazard. Natural Hazards, 50, 45–71.CrossRefGoogle Scholar
  35. Well, L. D., & Coppersmith, J. K. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. The Bulletin of the Seismological Society of America, 84(4), 974–1002.Google Scholar
  36. Yalciner, C. A., Alpar, B., Altinok, Y., Ozbay, I., & Imamura, F. (2002). Tsunamis in the Sea of Marmara: Historical documents for the past, models for the future. Marine Geology, 190, 445–463.CrossRefGoogle Scholar
  37. Yaltirak, C. (2002). Tectonic evolution of the Marmara Sea and its surroundings. Marine Geology, 190, 493–529.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.International Research Institute of Disaster ScienceTohoku UniversitySendaiJapan
  2. 2.Ocean Engineering Research CenterMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations