Probabilistic Hazard of Tsunamis Generated by Submarine Landslides in the Cook Strait Canyon (New Zealand)

  • Emily M. LaneEmail author
  • Joshu J. Mountjoy
  • William L. Power
  • Christof Mueller
Part of the Pageoph Topical Volumes book series (PTV)


Cook Strait Canyon is a submarine canyon that lies within ten kilometres of Wellington, the capital city of New Zealand. The canyon walls are covered with scars from previous landslides which could have caused local tsunamis. Palaeotsunami evidence also points to past tsunamis in the Wellington region. Furthermore, the canyon’s location in Cook Strait means that there is inhabited land in the path of both forward- and backward-propagating waves. Tsunamis induced by these submarine landslides pose hazard to coastal communities and infrastructure but major events are very uncommon and the historical record is not extensive enough to quantify this hazard. The combination of infrequent but potentially very consequential events makes realistic assessment of the hazard challenging. However, information on both magnitude and frequency is very important for land use planning and civil defence purposes. We use a multidisciplinary approach bringing together geological information with modelling to construct a Probabilistic Tsunami Hazard Assessment of submarine landslide-generated tsunami. Although there are many simplifying assumptions used in this assessment, it suggests that the Cook Strait open coast is exposed to considerable hazard due to submarine landslide-generated tsunamis. We emphasise the uncertainties involved and present opportunities for future research.


Probabilistic tsunami submarine landslides Cook Strait 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abadie, S. M., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. Journal of Geophysical Research-Oceans, 117, C05030. doi: 10.1029/2011JC007646.CrossRefGoogle Scholar
  2. Adams, L. M., LeVeque, R. J., & Gonzalez, F. I. (2015). The pattern method for incorporating tidal uncertainty into probabilistic tsunami hazard assessment (PTHA). Natural Hazards, 76(1), 19–39.CrossRefGoogle Scholar
  3. Agbaglah, G., Delaux, S., Fuster, D., Hoepffner, J., Josserand, C., Popinet, S., et al. (2011). Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. Comptes Rendus Méc, 339(2–3), 194–207.CrossRefGoogle Scholar
  4. Anonymous (1908). Miramar relics, Evening Post, Vol. v. LXXVI issue 108: Wellington.Google Scholar
  5. Beavan, J., Tregoning, P., Bevis, M., Kato, T., & Meertens, C. (2002) Motion and rigidity of the Pacific plate and implications for plate boundary deformation. Journal of Geophysical Research-Solid Earth, v. 107, no. B10.CrossRefGoogle Scholar
  6. Bondevik, S., Løvholt, F., Harbitz, C. B., Mangerud, J., Dawson, A., & Svendsen, J. I. (2005). The Storegga Slide tsunami comparing field observations with numerical simulations. Marine and Petroleum Geology, 22(1–2), 195–208.CrossRefGoogle Scholar
  7. Clark, K. J., Hayward, B. W., Cochran, U. A., Wallace, L. M., Power, W. L., & Sabaa, A. T. (2015). Evidence for Past Subduction Earthquakes at a Plate Boundary with Widespread Upper Plate Faulting: Southern Hikurangi Margin. New Zealand: Bulletin of the Seismological Society of America, 105(3), 1661–1690.Google Scholar
  8. Downes, G. (2014) New Zealand Tsunami Database: Historical and Modern Records. Accessed 17 May 2015.
  9. Enet, F., & Grilli, S. T. (2007) Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of Waterway Port Coastal and Ocean Engineering-ASCE 133(6), 442–454.CrossRefGoogle Scholar
  10. Enet, F., Grilli, S. T., & Watts, P. (2003) Laboratory experiments for tsunamis generated by underwater landslide: comparison with numerical modeling. In Proceedings of the thirteenth (2003) International offshore and polar engineering conference (pp. 372–379).Google Scholar
  11. Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E., & Kulikov, E. A. (2005). The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Marine Geology, 215(1–2), 45–57.CrossRefGoogle Scholar
  12. Geist, E. L., & Lynett, P. J. (2014). Source Processes for the Probabilistic Assessment of Tsunami Hazards. Oceanography, 27(2), 86–93.CrossRefGoogle Scholar
  13. Geist, E. L., Lynett, P. J., & Chaytor, J. D. (2009). Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology, 264(1–2), 41–52.CrossRefGoogle Scholar
  14. Geist, E., & ten Brink, U. S. (2012) NRC/USGS Workshop Report: Landslide Tsunami Probability.Google Scholar
  15. Gisler, G., Weaver, R., & Gittings, M. (2006). SAGE calculations of the tsunami threat from La Palma. Science of Tsunami Hazards, 24, 288–301.Google Scholar
  16. Glimsdal, S., Pedersen, G. K., Harbitz, C. B., & Løvholt, F. (2013). Dispersion of tsunamis: does it really matter?. Natural Hazards and Earth System Sciences, 13(6), 1507–1526.CrossRefGoogle Scholar
  17. Goff, J. R., & Chague-Goff, C. (2009). Brief communication: cetaceans and tsunamis—whatever remains, however improbable, must be the truth? Natural Hazards and Earth System Sciences, v, 9(3), 855–857.CrossRefGoogle Scholar
  18. Goff, J. R., & Chague-Goff, C. (2012). A review of palaeo-tsunamis for the Christchurch region, New Zealand, Quaternary Science Reviews, 57, 136–156.CrossRefGoogle Scholar
  19. Goff, J. R., Nichol, S., & Kennedy, D. M. (2010). Development of a palaeotsunami database for New Zealand. Natural Hazards, 54(2), 193–208.CrossRefGoogle Scholar
  20. Gonzalez, F. I., Geist, E. L., Jaffe, B., Kanoglu, U., Mofjeld, H., Synolakis, C. E., Titov, V. V., Arcas, D., Bellomo, D., Carlton, D., Horning, T., Johnson, J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., Wong, F., & Yalciner, A. (2009). Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research-Oceans, 114, C11023. doi: 10.1029/2008JC005132.CrossRefGoogle Scholar
  21. Grezio, A., Marzocchi, W., Sandri, L., & Gasparini, P. (2010). A Bayesian procedure for Probabilistic Tsunami Hazard Assessment. Natural Hazards, 53(1), 159–174.CrossRefGoogle Scholar
  22. Grezio, A., Sandri, L., Marzocchi, W., Argnani, A., Gasparini, P., & Selva, J. (2012). Probabilistic tsunami hazard assessment for Messina Strait Area (Sicily, Italy). Natural Hazards, 64(1), 329–358.CrossRefGoogle Scholar
  23. Grilli, S. T., Taylor, O.-D. S., Baxter, C. D. P., & Maretzki, S. (2009). A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the United States. Marine Geology, 264(1–2), 74–97.CrossRefGoogle Scholar
  24. Harbitz, C. B., Løvholt, F., & Bungum, H. (2014). Submarine landslide tsunamis: how extreme and how likely? Natural Hazards, 72(3), 1341–1374.CrossRefGoogle Scholar
  25. Harbitz, C. B., Løvholt, F., Pedersen, G., & Masson, D. G. (2006). Mechanisms of tsunami generation by submarine landslides: a short review. Norwegian Journal of Geology, 86(3), 255–264.Google Scholar
  26. Imran, J., Parker, G., Locat, J., & Lee, H. (2001). 1D numerical model of muddy subaqueous and subaerial debris flows. Journal of Hydraulic Engineering-Asce, 127(11), 959–968.CrossRefGoogle Scholar
  27. Kajiura, K. (1963). The leading wave of the tsunami: Bulletin of the Earthquake Research Institute Vol. 41, pp. 535–571.Google Scholar
  28. Kawamura, K., Laberg, J. S., & Kanamatsu, T. (2014). Potential tsunamigenic submarine landslides in active margins. Marine Geology, 356, 44–49.CrossRefGoogle Scholar
  29. King, D. N., & Goff, J. R. (2010). Benefitting from differences in knowledge, practice and belief: Maori oral traditions and natural hazards science. Natural Hazards and Earth System Sciences, 10(9), 1927–1940.CrossRefGoogle Scholar
  30. Lane, E. M., Gillibrand, P. A., Wang, X., & Power, W. (2013). A probabilistic tsunami hazard study of the Auckland Region, Part II: inundation modelling and hazard assessment. Pure and Applied Geophysics170, 1635. doi: 10.1007/s00024-012-0538-9.CrossRefGoogle Scholar
  31. Lane, E. M., Mountjoy, J. J., Power, W. L., & Popinet, S. (2016). Initialising landslide-generated tsunamis for probabilistic tsunami hazard assessment in Cook Strait. The International Journal of Ocean and Climate Systems, 4–13. doi: 10.1177/1759313115623162.CrossRefGoogle Scholar
  32. Leonard, L. J., Rogers, G. C., & Mazzotti, S. (2014). Tsunami hazard assessment of Canada. Natural Hazards, 70(1), 237–274.CrossRefGoogle Scholar
  33. Lewis, K. B., Carter, L., & Davey, F. J. (1994). The opening of Cook Strait: interglacial tidal scour and aligning basins at a subduction to transform plate edge. Marine Geology, 116(3–4), 293–312.CrossRefGoogle Scholar
  34. Liu, P. L.-F., Wu, T.-R., Raichlen, F., Synolakis, C., & Borrero, J. C. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics, 536, 107–144.CrossRefGoogle Scholar
  35. Løvholt, F., Lynett, P., & Pedersen, G. (2013). Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities. Nonlinear Processes in Geophysics, 20(3), 379–395.CrossRefGoogle Scholar
  36. Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S., & Kim, J. (2015) On the characteristics of landslide tsunamis. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 373, 20140376. doi: 10.1098/rsta.2014.0376.CrossRefGoogle Scholar
  37. Ma, G. F., Kirby, J. T., & Shi, F. Y. (2013). Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Modelling, 69, 146–165.CrossRefGoogle Scholar
  38. Madsen, P. A., Bingham, H. B., & Schaffer, H. A. (2003). Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 459(2033), 1075–1104.CrossRefGoogle Scholar
  39. McFadgen, B. G., & Goff, J. R. (2007). Tsunamis in the New Zealand archaeological record. Sedimentary Geology, 200(3–4), 263–274.CrossRefGoogle Scholar
  40. Micallef, A., Mountjoy, J. J., Canals, M., & Lastras, G. (2012). Deep-seated bedrock landslides and submarine canyon evolution in an active tectonic margin: Cook Strait, New Zealand. In Y. Yamada, K. Kawamura, K. Ikehara, Y. Ogawa, R. Urgeles, D. Mosher, J. Chaytor, & M. Strasser (Eds.), Submarine mass movements and their consequences (Vol. 31, pp. 201–212). Netherlands: Springer.CrossRefGoogle Scholar
  41. Mountjoy, J. J., Barnes, P. M., & Pettinga, J. R. (2009). Morphostructure and evolution of submarine canyons across an active margin: Cook Strait sector of the Hikurangi Margin, New Zealand. Marine Geology, 260(1–4), 45–68.CrossRefGoogle Scholar
  42. Mountjoy, J. J., Micallef, A., Stevens, C. L., & Stirling, M. W. (2014). Holocene sedimentary activity in a non-terrestrially coupled submarine canyon: Cook Strait Canyon system. New Zealand: Deep Sea Research Part II: Topical Studies in Oceanography, 104, 120–133.CrossRefGoogle Scholar
  43. Mueller, C., Mountjoy, J. J., Power, W. L., Lane, E. M., & Wang, X. (2016) Towards a spatial probabilistic submarine landslide hazard model for submarine canyons. In G. Lamarche, J. Mountjoy, S. Bull, T. Hubble, S. Krastel, E. Lane, A. Micallef, L. Moscardelli, C. Mueller, I. Pecher & S. Woelz, (eds.) Submarine mass movements and their consequences, Vol. 41 (pp. 589–597). Springer, Berlin.Google Scholar
  44. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.Google Scholar
  45. Okal, E. A. (2003). Normal mode energetics for far-field tsunamis generated by dislocations and landslides. Pure and Applied Geophysics, 160(10–11), 2189–2221.CrossRefGoogle Scholar
  46. Okal, E. A., & Synolakis, C. E. (2003). A theoretical comparison of tsunamis from dislocations and landslides. Pure and Applied Geophysics, 160(10–11), 2177–2188.CrossRefGoogle Scholar
  47. Okal, E. A., & Synolakis, C. E. (2004). Source discriminants for near-field tsunamis. Geophysical Journal International, 158(3), 899–912.CrossRefGoogle Scholar
  48. Pampell-Manis, A., Horrillo, J., Shigihara, Y., & Parambath, L. (2016). Probabilistic assessment of landslide tsunami hazard for the northern Gulf of Mexico. Journal of Geophysical Research-Oceans, 121(1), 1009–1027.CrossRefGoogle Scholar
  49. Pedersen, G. (2008). Modeling runup with depth integrated equation models. In P. L. F. Liu, H. Yeh, C. Synolakis (Ed.), Advanced Numerical Models for Simulating Tsunami Waves and Runup. Advances in Coastal and Ocean Engineering (Vol. 10, pp. 3–41). Singapore: World Scientific.Google Scholar
  50. Popinet, S. (2003). Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. Journal of Computational Physics, 190(2), 572–600.CrossRefGoogle Scholar
  51. Popinet, S. (2011). Quadtree-adaptive tsunami modelling. Ocean Dynamics, v, 61(9), 1261–1285.CrossRefGoogle Scholar
  52. Popinet, S. (2012). Adaptive modelling of long-distance wave propagation and fine-scale flooding during the Tohoku tsunami. Natural Hazards and Earth System Sciences, v. 12(4), 1213–1227.CrossRefGoogle Scholar
  53. Popinet, S., & Rickard, G. (2007). A tree-based solver for adaptive ocean modelling. Ocean Modelling, 16(3–4), 224–249.CrossRefGoogle Scholar
  54. Power, W. L. (2013). Review of Tsunami Hazard in New Zealand (2013 Update), GNS Science Consultancy Report 2013/131.Google Scholar
  55. Proctor, R., & Carter, L. (1989). Tidal and sedimentary response to the late Quaternary closure and opening of Cook Strait, New Zealand: results from numerical modeling. Paleoceanography, 4(2), 167–180.CrossRefGoogle Scholar
  56. Savage, S. B., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.CrossRefGoogle Scholar
  57. Stirling, M., McVerry, G., Gerstenberger, M., Litchfield, N., Van Dissen, R., Berryman, K., et al. (2012). National seismic hazard model for New Zealand: 2010 Update. Bulletin of the Seismological Society of America, 102(4), 1514–1542.CrossRefGoogle Scholar
  58. Strasser, M., Koelling, M., Ferreira, C. d. S., Fink, H. G., Fujiwara, T., Henkel, S., Ikehara, K., Kanamatsu, T., Kawamura, K., Kodaira, S., Roemer, M., Wefer, G., SO219A, R. V. S. C., & scientists, J. C. M.-E. (2013). A slump in the trench: tracking the impact of the 2011 Tohoku-Oki earthquake, Geology, v. 41(8), 935–938.CrossRefGoogle Scholar
  59. Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T., Kirby, J. T., et al. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344–361.CrossRefGoogle Scholar
  60. Tappin, D. R., Watts, P., and Grilli, S. T. (2008). The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event, Natural Hazards and Earth System Sciences, 8(2), 243–266.CrossRefGoogle Scholar
  61. ten Brink, U. S., Chaytor, J. D., Geist, E. L., Brothers, D. S., and Andrews, B. D. (2014). Assessment of tsunami hazard to the US Atlantic margin. Marine Geology, 353, 31–54.CrossRefGoogle Scholar
  62. ten Brink, U. S., Geist, E. L., & Andrews, B. D. (2006). Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophysical Research Letters, 33, L11307. doi: 10.1029/2006GL026125.CrossRefGoogle Scholar
  63. ten Brink, U. S., Lee, H. J., Geist, E. L., & Twichell, D. (2009). Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Marine Geology, 264(1–2), 65–73.CrossRefGoogle Scholar
  64. Voellmy, A. (1955). Über die Zerstörungskraft von Lawinen: Schweizerische Bauzeitung, 73(12,15,17,19), 159–165, 212–217, 246–249, 280–285.Google Scholar
  65. Walters, R. A., Gillibrand, P. A., Bell, R. G., & Lane, E. M. (2010). A study of tides and currents in Cook Strait, New Zealand. Ocean Dynamics, 60(6), 1559–1580.CrossRefGoogle Scholar
  66. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences, 3(5), 391–402.CrossRefGoogle Scholar
  67. Watts, P., Grilli, S. T., Tappin, D. R., & Fryer, G. J. (2005). Tsunami generation by submarine mass failure. II: predictive equations and case studies. Journal of Waterway Port Coastal and Ocean Engineering-ASCE. 131(6), 298–310. doi: 10.1061/(ASCE)0733-950X(2005)131:6(298).CrossRefGoogle Scholar
  68. WREMO (2015). Tsunami evacuation zone maps. Wellington Region Emergency Management Office. Accessed 28 Apr 2016.

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Emily M. Lane
    • 1
    Email author
  • Joshu J. Mountjoy
    • 2
  • William L. Power
    • 3
  • Christof Mueller
    • 3
  1. 1.NIWARiccartonNew Zealand
  2. 2.NIWAKilbirnieNew Zealand
  3. 3.GNS ScienceLower HuttNew Zealand

Personalised recommendations