Advertisement

Probabilistic Tsunami Hazard Assessment for a Site in Eastern Canada

  • Vikram Kulkarni
  • Maria E. M. Arcos
  • Trajce Alcinov
  • Alexis Lavine
  • Robert Youngs
  • Patrick Roussel
  • Derek Mullin
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

Unlike probabilistic seismic hazard analysis (PSHA), there is not a well-established methodology for probabilistic tsunami hazard analysis (PTHA). The PTHA methodology presented is similar to the widely used PSHA methodology for ground motion, and incorporates both aleatory and epistemic uncertainty in calculating the probability of exceeding runup and drawdown values produced by tsunamigenic sources. Evaluating tsunami hazard is more difficult in locations such as the eastern coastline of Canada because of low tsunami recurrence rates and few historical examples. In this study, we evaluated the hazard from local and far-field earthquake and landslide tsunamigenic sources at a site on the Bay of Fundy in New Brunswick, Canada. These sources included local faults, the Puerto Rico subduction zone, fault sources in the Azores-Gibraltar plate boundary region, and landslides on the Canadian continental slope and in the Canary Islands. Using a new PTHA methodology that is closely linked to well-established PSHA methodology combined with tide stage probability, we calculated that the return period for a wave runup exceeding the tidal range of +4 m level above mean sea level (highest astronomical tide) is approximately 14,500 years.

Keywords

Tsunami Atlantic Canada probabilistic hazard modelling PTHA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadie, S. M., Harris, J. C., Grilli, S. T., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands), Tsunami source and near field effects. Journal of Geophysical Research, 117, C05030. doi: 10.1029/2011JC007646.CrossRefGoogle Scholar
  2. Abrahamson, N. A., Somerville, P. G., & Cornell, C. A. (1990). Uncertainty in numerical strong ground motion predictions. In Proceedings of the Fourth U.S. National Conference on Earthquake Engineering, Palm Springs, CA (Vol. 1, pp. 407–416).Google Scholar
  3. Amante, C., & Eakins, B. W. (2009). ETOPO1 1 Arc-Minute Global Relief Model, Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. Accessed 2012.Google Scholar
  4. Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., & Shuto, N. (2007). Logic-tree Approach for Probabilistic Tsunami Hazard Analysis and its Applications to the Japanese Coasts. Pure and Applied Geophysics, 164, 577–592.CrossRefGoogle Scholar
  5. Apotsos, A., Buckley, M., Gelfenbaum, G., Jaffe, B., & Vatvani, D. (2011). Nearshore Tsunami Inundation Model Validation: Toward Sediment Transport Applications. Pure and Applied Geophysics, 168(11):2097–2119CrossRefGoogle Scholar
  6. Atlantic and Gulf of Mexico Tsunami Hazard Assessment Group (AGMTHAG). (2008). “Evaluation of tsunami sources with the potential to impact the U.S. Atlantic and Gulf coasts”, a report to the Nuclear Regulatory Commission, U.S. Geological Survey Administrative Report, p. 300.Google Scholar
  7. Baptista, M. A., Miranda, J. M., & Luis, J. F. (2006). In search of the 31 March 1761 earthquake and tsunami source. Bulletin of the Seismological Society of America, 96, 713–721.CrossRefGoogle Scholar
  8. Barkan, R., ten Brink, U., & Lin, J. (2009). Far field tsunami simulations of the 1755 Lisbon earthquake, implications for tsunami hazard to the U.S. east coast and the Caribbean. Marine Geology, 264, 109–122.CrossRefGoogle Scholar
  9. Booth, J. S., O’Leary, D. W., Popenoe, P., & Danforth, W. W. (1993). U.S. Atlantic slope landslides, their distribution, general attributes, and implications. In W.C. Schwab, H.J. Lee & D.C. Twichell (Eds.), Submarine landslides, selected studies in the U.S. Exclusive Economic Zone (pp. 14–22) USGS Bulletin 2002.Google Scholar
  10. British Oceanographic Data Centre (BODC). (2014). General Bathymetric Chart of the Oceans (GEBCO_08), http://www.gebco.net/about_us/news_and_events/gebco_08_release.html. Accessed 11 June 2014.
  11. Buforn, E., Udias, A., & Mezcua, J. (1988). Seismicity and focal mechanism in south Spain. Bulletin of the Seismological Society of America, 88, 2008–2224.Google Scholar
  12. Burke, K.B.S. & Stringer, P. (1993). A search for neotectonic features in the Passamaquoddy Bay region, southwestern New Brunswick. Current Research, Part D, Eastern Canada and National and General Programs, Geological Survey of Canada, Paper 93-1D, pp. 93–102Google Scholar
  13. Calais, E., DeMets, C., & Nocquet, J. M. (2003). Evidence for a post-3.16-Ma change in Nubia-Eurasia-North America plate motions? Earth and Planetary Science Letters, 6825, 1–12.Google Scholar
  14. Calais, E., Mazabraud, Y., Mercier de Lepinay, B., Mann, P., Mattioli, G., & Jansma, P. (2002). Strain partitioning and fault slip rates in the northeastern Caribbean from GPS measurements. Geophysical Research Letters, 29, 3-1–3-4.CrossRefGoogle Scholar
  15. Chaytor, J., ten Brink, U. S., Solow, A. R., & Andrews, B. D. (2009). Size distribution of submarine landslides along the U.S. Atlantic Margin. Marine Geology, 264, 16–27.CrossRefGoogle Scholar
  16. Chaytor, J. D., Twichell, D., & ten Brink, U. S. (2012). Reevaluation of the Munson–Nygren–Retriever submarine landslide complex, Georges Bank Lower Slope, Western North Atlantic. In Y. Yamada, K. Kawamura, K. Ikehara, Y. Ogawa, R. Urgeles, D. Mosher, J. Chaytor, M. Strasser (Eds.), Submarine Mass Movements and their Consequences, Advances in Natural and Technological Hazards Research (Vol. 31, pp. 131–145).Google Scholar
  17. Chen, Q. (2006). Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132, 220–230.CrossRefGoogle Scholar
  18. Cornell, C.A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.Google Scholar
  19. Cornell, C. A. (1971). Probabilistic analysis of damage to structures under seismic loads. In Dynamic Waves in Civil Engineering. London: Wiley.Google Scholar
  20. Day, S. J., Watts, P., Grilli, S. T., & Kirby, J. T. (2005). Mechanical models of the 1975 Kalapana, Hawaii earthquake and tsunami. Marine Geology, 215, 59–92.CrossRefGoogle Scholar
  21. DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181, 1–80.CrossRefGoogle Scholar
  22. DeMets, C., Gordon, R., Argus, D., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101, 425–478.CrossRefGoogle Scholar
  23. Dolan, J.F., & Wald, D. (1998). The 1943-1953 north-central Caribbean earthquakes: active tectonic setting, seismic hazards, and implications for Caribbean-North America plate motions. In Dolan, J. & Mann, P. (Eds.), Active strike-slip and collisional tectonics of the Northern Caribbean Plate Boundary Zone. Geological Society of America Special Paper 326, Boulder, Colorado, pp. 143–169.Google Scholar
  24. Electric Power Research Institute (EPRI), U.S. Department of Energy, and U.S. Nuclear Regulatory Commission. (2012). Technical Report, Central and Eastern United States Seismic Source Characterization for Nuclear Facilities.Google Scholar
  25. Enet, F., & Grilli, S. T. (2005). Tsunami Landslide Generation: Modelling and Experiments. In Proc. 5th Intl. on Ocean Wave Measurement and Analysis, IAHR Publication, p. 10.Google Scholar
  26. Enet, F., & Grilli, S. T. (2007). Experimental study of tsunami generation by three-dimensional rigid underwater landslides. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133, 442–454.CrossRefGoogle Scholar
  27. Enet, F, Grilli, S. T., & Watts, P. (2003), Laboratory experiments for tsunamis generated by underwater landslides: comparison with numerical modeling. In Proc. 13th Offshore and Polar Engineering Conference (pp. 372–379).Google Scholar
  28. Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E., & Kulikov, E. A. (2005). The Grand Banks landslide-generated tsunami of November 18, 1929, preliminary analysis and numerical modeling. Marine Geology, 45–57.CrossRefGoogle Scholar
  29. Fukao, Y. (1973). Thrust faulting at a lithospheric plate boundary, the Portugal earthquake of 1969. Earth and Planetary Science Letters, 18, 205–216.CrossRefGoogle Scholar
  30. Gates, O. (1989). The geology and geophysics of the Passamaquoddy Bay area, Maine and New Brunswick, and their bearing on local subsidence. In W. A. Anderson & H. W. Borns (Eds.), Neotectonics of Maine (Vol. 40, pp. 11–24), Maine Geological Survey.Google Scholar
  31. Geist, E. L., Lynett, P. J., & Chaytor, J. D. (2009). Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology, 264, 41–52.CrossRefGoogle Scholar
  32. Geist, E. L., & Parsons, T. (2009). Assessment of source probabilities for potential tsunamis affecting the U.S. Atlantic coast. Marine Geology, 264, 98–108. doi: 10.1016/j.margeo.2008.08.005.CrossRefGoogle Scholar
  33. Gica, E., Spillane, M., Titove, V. V., Chamberline, C.D., & Newman, J.C. (2008). Development of the Forecast Propagation Database for Noaa’s Short-Term Inundation Forecast for Tsunamis (SIFT), NOAA Technical Memorandum OAR PMEL-139, p. 89.Google Scholar
  34. Giles, M. K., Mosher, D. C., Piper, D. J. W., & Wach, G. D. (2010). Mass transport deposits on the southwestern newfoundland slope, submarine mass movements and their consequences. In D.C. Mosher, R.C. Shipp, L. Moscardelli, J.D. Chaytor, C.D.P. Baxter, H.J. Lee, R. Urgeles (Eds.), Advances in Natural and Technological Hazards Research (Vol. 28, pp. 657–665).Google Scholar
  35. González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., Titov, V. V., Arcas D., Bellomo, D., Carlton, D., Horning, T., Johnson,J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., Wong, F., & Yalciner, A. (2009) Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research, 114(C11), 1978–2012. doi: 10.1029/2008JC005132.
  36. Gràcia, E., Vizcaino, A., Escutia, C., Asioli, A., Rodés, A., Garcia-Orellano, J., et al. (2010). Holocene earthquake record offshore Portugal (SW Iberia), testing turbidite paleoseismology in a slow-convergence margin. Quaternary Science Reviews, 29, 1156–1172.CrossRefGoogle Scholar
  37. Grilli, S. T. (1997). Fully nonlinear potential flow models used for long wave runup prediction. In H. Yeh, P. Liu, & C. Synolakis (Eds.), Long-Wave Runup Models (pp. 116–180). Singapore: World Scientific Publishing.Google Scholar
  38. Grilli, S. T., Dubosq, S., Pophet, N., Pérignon, Y., Kirby, J. T., & Shi, F. (2010). Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Natural Hazards Earth Systems Science., 10, 2109–2125.CrossRefGoogle Scholar
  39. Grilli, A.R., & Grilli, S. T. (2013a). Modeling of Tsunami Generation, propagation and regional impact along the upper U.S. east coast from the Azores Convergence Zone. Draft report to NTHMP, p. 13.Google Scholar
  40. Grilli, A. R., & Grilli, S. T. (2013b). Far-field tsunami impact on the US East Coast from an extreme flank collapse of the Cumbre Vieja volcano (Canary Islands). Draft report to NTHMP, p. 13.Google Scholar
  41. Grilli, S. T., Harris, J.C., & Bakhsh, T. T. (2011). Literature review of tsunami sources affecting tsunami hazard along the US East Coast. Research Report No. CACR-11-08, p. 60.Google Scholar
  42. Grilli, S.T., O’Reilly, C., & Bakhsh, T. T. (2013). Modeling of SMF tsunami generation and regional impact along the upper U.S. East Coast. Research Report No. CACR-13-05, p. 46.Google Scholar
  43. Grilli, S. T., O’Reilly, C., Harris, J. C., Bakhsh, T. T., Tehranirad, B., Banihashemi, S., et al. (2015). Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact around Ocean City, MD. Natural Hazards. doi: 10.1007/s11069-014-1522-8.CrossRefGoogle Scholar
  44. Grilli, S. T., Taylor, O. S., Baxter, C. D. P., & Maretzki, S. (2009). A probabilistic approach for determining submarine landslide tsunami hazard along the upper east coast of the United States. Marine Geology, 264, 74–97.CrossRefGoogle Scholar
  45. Grilli, S. T., Vogelmann, S., & Watts, P. (2002). Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 264, 301–313.CrossRefGoogle Scholar
  46. Grilli, S. T., & Watts, P. (1999). Modeling of waves generated by a moving submerged body, Applications to underwater landslides. Engineering Analysis with Boundary Elements, 23, 645–656.CrossRefGoogle Scholar
  47. Grilli, S. T., & Watts, P. (2005). Tsunami generation by submarine mass failure part I, modeling, experimental validation, and sensitivity analysis. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131, 283–297.CrossRefGoogle Scholar
  48. Grilli, S. T, Ioualalen, M., Asavanant, J., Shi, F., Kirby, J. T., & Watts, P. (2007) Source Constraints and Model Simulation of the December 26, 2004, Indian Ocean Tsunami. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(6), 414–428CrossRefGoogle Scholar
  49. Grimison, N. L., & Chen, W. (1986). The Azores-Gibraltar plate boundary, focal mechanisms, depth of earthquakes and their tectonic implications. Journal of Geophysical Research, 91, 2029–2047.CrossRefGoogle Scholar
  50. Gutscher, M.-A., Baptista, M. A., & Miranda, J. M. (2006). The Gibraltar Arc seismogenic zone (part 2), constraints on a shallow east dipping fault plane source for the 1755 Lisbon earthquake provided by tsunami modeling and seismic intensity, Tectonophysics, 426, 153–166, doi: 10.1016/j.tecto.2006.02.025.CrossRefGoogle Scholar
  51. Harris, J. C., Grilli, S. T., Abadie, S., & Bakhsh, T. T. (2012). Near- and far-field tsunami hazard from the potential flank collapse of the Cumbre Vieja Volcano. In Proceedings of the twenty-second International Offshore and Polar Engineering Conference (p. 242).Google Scholar
  52. Hayward, N., Watts, A. B., Westbrook, G. K., & Collier, J. S. (1999). A seismic reflection and GLORIA study of compressional deformation in the Gorringe Bank region, eastern North Atlantic. Geophysical Journal International., 138, 831–850.CrossRefGoogle Scholar
  53. Horillo, J., Grilli, S. T., Nicolsky, D., Roeber, V., & Zhang, J. (2014). Performance benchmarking tsunami models for NTHMP’s inundation mapping activities. Pure and Applied Geophysics. doi: 10.1007/s00024014-0891.
  54. Hunt, J. E. (2012). Determining the provenance, recurrence, magnitudes and failure mechanisms of submarine landslides from the Moroccan Margin and Canary Islands using distal turbidite records. Dissertation, University of South Hampton. p. 374.Google Scholar
  55. Hunt, J. E., Talling, P. J., Clare, M. A., Jarvis, I., & Wynn, R. B. (2014). Long-term (17 Ma) turbidite record of the timing and frequency of large flank collapses of the Canary Islands. Geochemistry, Geophysics, Geosystems, 15, 3322–3345.CrossRefGoogle Scholar
  56. Hunt, J. E., Wynn, R.B., Talling, P. J., & Masson, D. G. (2013). Multistage collapse of eight Western Canary Island landslides in the last 1.5 Ma, sedimentological and geochemical evidence from subunits in submarine flow deposits. Geochemistry, Geophysics, Geosystems, 14, 2159–2181. doi: 10.1002/ggge.20138.CrossRefGoogle Scholar
  57. Huppertz, T. J., Piper, D. J. W., Mosher, D. C., & Jenner, K. (2010). The significance of mass-transport deposits for the evolution of a proglacial continental slope. In Mosher, D. C., Shipp, R. C., Moscardelli, L., Chaytor, J. D., Baxter, C. D. P., Lee, H. J., & Urgeles, R. (Eds.), Submarine mass movements and their consequences. Advances in natural and technological hazards research (Vol. 28, pp. 631–641). Netherlands: Springer.Google Scholar
  58. Ioualalen, M., Asavanant, J., Kaewbanjak, N., Grilli, S. T., Kirby, J.T., & Watts, P. (2007). Modeling the 26 December 2004 Indian Ocean tsunami, case study of impact in Thailand. Journal of Geophysical Research, 112, C07024. doi: 10.1029/2006JC03850.
  59. Jansma, P., Mattioli, G. S., Lopez, A., DeMets, C., Dixon, T. H., Mann, P., et al. (2000). Neotectonics of Puerto Rico and the Virgin Islands, northeastern Caribbean, from GPS Geodesy. Tectonics., 19, 1021–1037.CrossRefGoogle Scholar
  60. Johnston, A. C. (1996). Seismic movement assessment of earthquakes in stable continental regions; III, New Madrid 1811-1812, Charleston 1886 and Lisbon 1755. Geophysical Journal International, 126, 314–344.CrossRefGoogle Scholar
  61. Kirby, J. T., Shi, F., Tehranirad, B., Harris, J. C., & Grilli, S. T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modeling, 62, 39–55.CrossRefGoogle Scholar
  62. Krentz, S. (2009). Potentially tsunamigenic layer in late Holocene Great South Bay, Long Island, New York, constraints on origins, processes, and effects. Master’s Thesis, Vanderbilt University, p. 77.Google Scholar
  63. Kulkarni, R. B., Youngs, R. R., & Coppersmith, K. J. (1984). Assessment of confidence intervals for results of seismic hazard analysis. In Proceedings of the Eighth World Conference on Earthquake Engineering, San Francisco, California (Vol. 1, pp. 263–270).Google Scholar
  64. LaForge, R. C., & McCann, W. R. (2005). A seismic source model for Puerto Rico, for use in probabilistic ground motion hazard analyses. In P. Mann (Ed.), Active tectonics and seismic hazards of Puerto Rico, the Virgin Islands, and offshore areas (pp. 223–248). Geological Society of America Special Paper 385.Google Scholar
  65. Lee, H. J. (2009). Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Marine Geology, 264, 53–64.CrossRefGoogle Scholar
  66. Leonard, L. J., Rogers, G. C., & Mazzotti, S. (2012). A preliminary tsunami hazard assessment of the Canadian coastline. Geological Survey of Canada, Open File 7201, p. 126.Google Scholar
  67. Locat, J., Lee, H., ten Brink, U., Twichell, D. C., Geist, E. L., & Sansoucy, M. (2009). Geomorphology, stability and mobility of the Currituck slide. Marine Geology., 264, 28–40.CrossRefGoogle Scholar
  68. Locat, J., ten Brink, U. S., & Chaytor, J. D. (2013). A geomorphological analysis of the Veatch slide complex off Massachusetts, U.S.A. In S. Krastel, J.-H. Behrmann, D. Völker, M. Stipp, C. Berndt, R. Urgeles, J. Chaytor, K. Huhn, M. Strasser, & C.B. Harbitz (Eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research (Vol. 37, pp. 371–380).Google Scholar
  69. Løvholt, F., Pedersen, G., & Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research, 113, C09026. doi: 10.1029/2007JC004603.
  70. Luque, L., Lario, J., Civis, J., Silva, P. G., Zazo, C., Goy, J. L., et al. (2002). Sedimentary record of a tsunami during Roman times, Bay of Cadiz, Spain. Journal of Quaternary Science, 17, 623–631.CrossRefGoogle Scholar
  71. Mader, C. L. (2001). Modeling the La Palma landslide tsunami. Science of Tsunami Hazards, 19, 150–170.Google Scholar
  72. Maretzki, S., Grilli, S., & Baxter, C. D. P. (2007). Probabilistic SMF tsunami hazard assessment for the upper East Coast of the United States. In V. Lykousis, D. Sakellariou, & J. Locat (Eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research (Vol. 27, pp. 377–385).CrossRefGoogle Scholar
  73. Masson, D. G., Watts, A. B., Gee, M. J. R., Urgeles, R., Mitchell, N. C., Le Bas, T. P., et al. (2002). Slope failures on the flanks of the western Canary Islands. Earth Science Reviews, 57, 1–35.CrossRefGoogle Scholar
  74. Matthews, M., Ellsworth, W., & Reasenberg, P. (2002). A Brownian model for recurrent earthquakes. Bulletin of the Seismological Society of America., 92, 2233–2250.CrossRefGoogle Scholar
  75. McAdoo, B. G., Pratson, L. F., & Orange, D. L. (2000). Submarine landslide geomorphology, US continental slope. Marine Geology, 169, 103–136.CrossRefGoogle Scholar
  76. McCann, W. R. (1985). On the earthquake hazard of Puerto Rico and the Virgin Islands. Bulletin of the Seismological Society of America, 75, 251–262.Google Scholar
  77. McGuire, R. K. (2004). Seismic hazard and risk analysis, Earthquake Engineering Research Institute, Second Monograph Series, MNO-10, p. 239.Google Scholar
  78. Moore, A. L., McAdoo, B. G., & Ruffman, A. (2007). Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sedimentary Geology, 200, 336–346.CrossRefGoogle Scholar
  79. Morales, J. A., Borrego, J., San Miguel, E. G., López-González, N., & Carro, B. (2008). Sedimentary record of recent tsunamis in the Huelva Estuary (southwestern Spain). Quaternary Science Reviews, 27, 734–746.CrossRefGoogle Scholar
  80. Mosher, D. C., & Campbell, D. C. (2011). The Barrington Submarine Mass-Transport Deposit, Western Scotian Slope, Canada. Mass-Transport Deposits in Deepwater Settings, Society of Economic Paleontologists and Mineralogists, Special Publications 96, pp. 151–159.Google Scholar
  81. Mosher, D. C., & Piper, D. J. W. (2007). Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 Grand Banks landslide area. In V. Lykousis, D. Sakellariou, & J. Locat (Eds.), Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research (pp. 77–88).CrossRefGoogle Scholar
  82. Mosher, D. C., & Piper, D. J. W. (2007). Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 Grand Banks landslide area. In V. Lykousis, D. Sakellariou, & J. Locat (Eds.), Submarine Mass Movements and Their Consequences (pp. 77–88).CrossRefGoogle Scholar
  83. Mueller, C. S., Frankel, A. D., Petersen, M. D., & Leyendecker, E. V. (2003). Documentation for the 2003 USGS Seismic Hazard Maps for Puerto Rico and the U.S. Virgin Islands. USGS Open File Report 03-379, p. 12.Google Scholar
  84. Muir-Wood, R., & Mignan, A. (2009). A phenomenological reconstruction of the Mw 9 November 1st 1755 earthquake source. In L.A. Mendes-Victor, C.S. Olivera, J. Azevedo, & A. Ribeiro (Eds.) The 1755 Lisbon earthquake, revisited, Geotechnical, Geological, and Earthquake Engineering (Vol. 7, pp. 121–146).Google Scholar
  85. National Center for Environmental Information (NCEI). (2014). National Geophysical Data Center, www.ngdc.noaa.gov Accessed 13 Oct 2014.
  86. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.Google Scholar
  87. Pacific Gas & Electric Company (PGEC). (2010). Methodology for Probabilistic Tsunami Hazard Analysis, Trial Application for the Diablo Canyon Power Plant Site. Submitted to the PEER Workshop on Tsunami Hazard Analyses for Engineering Design Parameters, Berkeley, CA, p. 197.Google Scholar
  88. Pararas-Carayannis, G. (2002). Evaluation of the threat of mega tsunami generation from postulated massive slope failures of island stratovolcanoes on La Palma, Canary Islands, and on the island of Hawaii. Science of Tsunami Hazards, 20, 251–277.Google Scholar
  89. Piper, D.J.W., Mosher, D.C., Gaulry, B.-J., Jenner, K., & Campbell, D.C. (2003). The Chronology and Recurrence of Submarine Mass Movements on the Continental Slope off Southeastern Canada. Locat, J. and Mienert, J. (editors), Submarine Mass Movements and Their Consequences, pp. 299–306 CrossRefGoogle Scholar
  90. Piper, D. J. W., Mosher, D. C., & Campbell, D. C. (2012). Controls on the distribution of major types of submarine landslides. In J. J. Clague & D. Stead (Eds.), Landslides, Types, Mechanisms and Modeling (pp. 95–107). Cambridge University Press.Google Scholar
  91. Rikitake, T., & Aida, I. (1988). Tsunami Hazard probability in Japan. Bulletin of the Seismological Society of America., 78, 1268–1278.Google Scholar
  92. Roworth, E., & Signell, R. (1999). Construction of digital bathymetry for the Gulf of Maine. USGS Open File Report, 98-801.Google Scholar
  93. Ruffman, A. (1997). Tsunami runup mapping as an emergency preparedness planning tool: the 1929 tsunami in St. Lawrence, Newfoundland, Geomarine Associates. Contract Report for Emergency Preparedness Canada, Ottawa, Ontario (Vol. 1, p. 107).Google Scholar
  94. Ruffman, A. (2006). Documentation of the farfield parameters of the November 1, 1755 “Lisbon” tsunami along the shores of the western Atlantic Ocean, Program and Abstracts, International Tsunami Society Third Tsunami Symposium.Google Scholar
  95. Scheffers, A., & Kelletat, D. (2005). Tsunami relics on the coastal landscape west of Lisbon, Portugal. Science of Tsunami Hazards, 23, 3–16.Google Scholar
  96. Service New Brunswick. (2014). GeoNB DEM Data Catalogue, http://www.snb.ca/geonb1/e/DC/catalogue-E.asp.
  97. Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., & Grilli, S. T. (2012a). A high-order adaptivetime-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44, 36–51.CrossRefGoogle Scholar
  98. Shi, F., Kirby, J. T., & Tehranirad, B. (2012b). Tsunami benchmark results for spherical coordinate. Center for Applied Coastal Research Report, CACR 2012-02, University of Delaware, Newark, Delaware.Google Scholar
  99. Stelling, G. S., & Duinmeijer, S. P. A. (2003). A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. International Journal Numerical Methods in Fluids, 43, 1329–1354.CrossRefGoogle Scholar
  100. Stelling, G. S. & Leendertse, J. J. (1992). Approximation of convective processes by cyclic AOI methods. In M. L. Spaulding, K. Bedford, & A. Blumberg (Eds.) Estuarine and coastal modeling, Proceedings 2nd Conference on Estuarine and Coastal Modelling (pp. 771–782). Tampa: ASCE.Google Scholar
  101. Sykes, L., McCann, W., & Kafka, A. (1982). Motion of Caribbean plate during last seven million years and implications for earlier Cenozoic movements. Journal of Geophysical Research, 87, 10656–10676.CrossRefGoogle Scholar
  102. Tappin, D. R., Watts, P., & Grilli, S. T. (2008). The Papua New Guinea tsunami of 1998, anatomy of a catastrophic event. Natural Hazards and Earth System Sciences., 8, 243–266.CrossRefGoogle Scholar
  103. Tehranirad, B., Harris, J. C., Grilli, A. R., Grilli, S. T., Abadie, S., Kirby, J. T., et al. (2015). Far-field tsunami hazard on the western European and US east coast from a large scale flank collapse of the Cumbre Vieja volcano, La Palma. Pure and Applied Geophysics, 172, 3589–3616.CrossRefGoogle Scholar
  104. Tehranirad, B., Shi, F., & Kirby, J. T. (2012). Tsunami benchmark results for spherical coordinate, Center for Applied Coastal Research Report, CACR 2013-10, University of Delaware, Newark, Delaware.Google Scholar
  105. Tehranirad, B., Shi, F., Kirby, J. T., Harris, J. C., & Grilli, S. (2013). Tsunami benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD, Version 2.1. Research Report No. CACR-13-10, Center for Applied Coastal Research, University of Delaware.Google Scholar
  106. ten Brink, U. S., Chaytor, J. D., Geist, E. L., Brothers, D. S., & Andrews, B. D. (2014). Assessment of tsunami hazard to the U.S. Atlantic margin. Marine Geology, 353, 31–54.CrossRefGoogle Scholar
  107. ten Brink, U. S., Lee, H. J., Geist, E. L., & Twichell, D. (2009). Assessment of tsunami hazard to the US East Coast using relationships between submarine landslides and earthquakes. Marine Geology, 264, 65–73.CrossRefGoogle Scholar
  108. Thiebot, E., & Gutscher, M.-A. (2006). The Gibraltar Arc seismogenic zone (part 1), constraints on a shallow east dipping fault plane source for the 1755 Lisbon earthquake provided by seismic data, gravity and thermal modeling. Tectonophysics., 426, 135–152.CrossRefGoogle Scholar
  109. Thio, H. K., Somerville, P., & Polet, J. (2010). Probabilistic Tsunami Hazard in California, Pacific Earthquake Engineering Research Center (PEER), College of Engineering, University of California, Berkeley, PEER Report 2010/108.Google Scholar
  110. Thomson, R. E., Rabinovich, A. B., & Krassovski, M. V. (2007). Double jeopardy, Concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada. Geophysical Research Letters, 34, L15607. doi: 10.1029/2007GL030685.
  111. Tuttle, M. P., Mahani, A. B., Dyer-Williams, K., MacKay, A. S., & Busch, T. A. (2014). Paleoseismology project in the region of the Lepreau Nuclear Generating Station, prepared for the New Brunswick Power Nuclear Corporation, p. 290.Google Scholar
  112. Tuttle, M. P., Ruffman, A., Anderson, T., & Jeter, H. (2004). Distinguishing tsunami deposits from storm deposits along the coast of northeastern North America: Lessons learned from the 1929 Grand Banks tsunami and the 1991 Halloween storm. Seismological Research Letters, 75, 117–131.CrossRefGoogle Scholar
  113. Vatvani, D. (2005). Hindcast of tsunami flooding in Aceh-Sumatra. In Proceedings of the Fifth International Symposium on Ocean Wave Measurement and Analysis-Waves.Google Scholar
  114. Van Veen B.A.D, Vatvani D., Zijl F., (2014) Tsunami flood modelling for Aceh & west Sumatra and its application for an early warning system. Continental Shelf Research, 79, 46–53CrossRefGoogle Scholar
  115. Ward, S. N., & Day, S. (2001). Cumbre Vieja Volcano—potential collapse and tsunami at La Palma, Canary Islands. Geophysical Research Letters, 28, 3397–3400.CrossRefGoogle Scholar
  116. Watts, P., & Grilli, S. T. (2003). Underwater landslide shape, motion, deformation, and tsunami generation. In Proc., 13th Offshore and Polar Engineering Conf., International Society of Offshore and Polar Engineers, Cupertino, CA (Vol. 3, pp. 364–371).Google Scholar
  117. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth Systems Science, 3, 391–402.CrossRefGoogle Scholar
  118. Watts, P., Grilli, S., Tappin, D., & Fryer, G. (2005). Tsunami generation by submarine mass failure, II, predictive equations and case studies. Journal of Waterway, Port, Coastal, and Ocean Engineering, 131, 298–310.CrossRefGoogle Scholar
  119. Wynn, R. B., & Masson, D. G. (2003). Canary Islands landslides and tsunami generation, can we use turbidite deposits to interpret landslide processes. In J. Locat, & J. Mienert (Eds.), Submarine Mass Movements and their Consequences, Advances in Natural and Technological Hazards Research (Vol. 19, pp. 325–332).CrossRefGoogle Scholar
  120. Youngs, R. R., & Coppersmith, K. J. (1985). Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bulletin of the Seismological Society of America, 75, 939–964.Google Scholar
  121. Zitellini, N., Mendes, L. A., Cordoba, D., Danobeitia, J., Nicolich, R., Pellis, G., et al. (2001). Source of 1755 Lisbon earthquake and tsunami investigated. Eos Transactions, 82, 285–291.Google Scholar
  122. Zitellini, N., Rovere, M., Terrinha, P., Chierici, F., Matias, L., Medes-Victor, L., et al. (2004). Neogene through quaternary tectonic reactivation of SW Iberian passive margin. Pure and Applied Geophysics, 161, 565–587.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Amec Foster WheelerOaklandUSA
  2. 2.Amec Foster WheelerDartmouthCanada
  3. 3.NB PowerLepreauCanada

Personalised recommendations