The Effects on Tsunami Hazard Assessment in Chile of Assuming Earthquake Scenarios with Spatially Uniform Slip

  • Matías CarvajalEmail author
  • Alejandra Gubler
Part of the Pageoph Topical Volumes book series (PTV)


We investigated the effect that along-dip slip distribution has on the near-shore tsunami amplitudes and on coastal land-level changes in the region of central Chile (29°–37°S). Here and all along the Chilean megathrust, the seismogenic zone extends beneath dry land, and thus, tsunami generation and propagation is limited to its seaward portion, where the sensitivity of the initial tsunami waveform to dislocation model inputs, such as slip distribution, is greater. We considered four distributions of earthquake slip in the dip direction, including a spatially uniform slip source and three others with typical bell-shaped slip patterns that differ in the depth range of slip concentration. We found that a uniform slip scenario predicts much lower tsunami amplitudes and generally less coastal subsidence than scenarios that assume bell-shaped distributions of slip. Although the finding that uniform slip scenarios underestimate tsunami amplitudes is not new, it has been largely ignored for tsunami hazard assessment in Chile. Our simulations results also suggest that uniform slip scenarios tend to predict later arrival times of the leading wave than bell-shaped sources. The time occurrence of the largest wave at a specific site is also dependent on how the slip is distributed in the dip direction; however, other factors, such as local bathymetric configurations and standing edge waves, are also expected to play a role. Arrival time differences are especially critical in Chile, where tsunamis arrive earlier than elsewhere. We believe that the results of this study will be useful to both public and private organizations for mapping tsunami hazard in coastal areas along the Chilean coast, and, therefore, help reduce the risk of loss and damage caused by future tsunamis.


Tsunami modeling along-dip slip distribution tsunami amplitude sensitivity coastal land-level change sensitivity tsunami hazard assessment Chile arrival times tsunami waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aránguiz, R., González, G., González, J., Catalán, P., Cienfuegos, R., Yagi, Y., Okuwaki, R., Urra, L., Contreras, K., Del Rio, I., and Rojas, C. (2016), The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives. Pure Appl. Geophys., 173 (2), 333–348.Google Scholar
  2. Barrientos, S. (2007), Earthquakes in Chile. In Moreno, T. and Gibbons, W. Ed, The Geology of Chile. Geological Society of London, 2007, p. 263–287.Google Scholar
  3. Beck, S., Barrientos, S., and Kausel, E. (1998), Source characteristics of historic earthquakes along the central Chile subduction zone, J. S. Am. Earth Sci., 11(2), 115–129.Google Scholar
  4. Bletery, Q., Sladen, A., Delouis, B., Vallée, M., Nocquet, J.M., Rolland, L., and Jiang, J. (2014), A detailed source model for the Mw9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records, J. Geophys. Res. Solid Earth, 119. doi: 10.1002/2014JB011261.Google Scholar
  5. Carvajal, M., and Gorigoitía, N. (2015), Size of the unusual 1730 central Chile earthquake, constrained by written records and tsunami deposits. XIV Congreso geológico Chileno, La Serena, Chile, p 344–347.Google Scholar
  6. Freund, L.B., and Barnett, D.M. (1976), A two-dimensional analysis of surface deformation due to dip-slip faulting: Bull. Seismol. Soc. Am., v. 66, p. 667–675.Google Scholar
  7. Geist, E. L., and Dmowska, R. (1999), Local tsunamis and distributed slip at the source, Pure Appl. Geophys. 154, 485–512.CrossRefGoogle Scholar
  8. Geist, E. (2002), Complex earthquake rupture and local tsunamis, J. Geophys. Res., 107(B5), ESE 2–1–ESE 2-15. doi: 10.1029/2000JB000139.
  9. Geist, E. L., and Parsons, T. (2006), Probabilistic Analysis of Tsunami Hazards, Nat. Hazards, 37 (3), 277–314.CrossRefGoogle Scholar
  10. Goda, K., Mai, P.M., Yasuda, T., and Mori, N. (2014), Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth Planets Space, 66(1), 1–20.CrossRefGoogle Scholar
  11. González, F.I., Geist, E.L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C.E., Titov, V.V., Arcas, D., Bellomo, D., Carlton, D., Horning, T., Johnson, J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., Wong, F., and Yalciner A. (2009), Probabilistic tsunami hazard assessment at Seaside, Oregon for near-and far-field sources. J. Geophys. Res., 114, C11023.Google Scholar
  12. Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., and Synolakis, C.E. (2008), Evaluating tsunami hazard in the northwestern Indian Ocean. Pure Appl. Geophys, 165(11–12):2045–2058.CrossRefGoogle Scholar
  13. Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., and Gusman, A.R. (2016), Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data, Geophys. Res. Lett., 43. doi: 10.1002/2015GL067297.CrossRefGoogle Scholar
  14. Hu, Y., and Wang, K. (2008), Coseismic strengthening of the shallow portion of the subduction fault and its effects on wedge taper, J. Geophys. Res., 113, B12411. doi: 10.1029/2008JB005724.
  15. IOC, IHO, BODC. (2003), The Centenary Edition of the GEBCO digital atlas (CD-ROM).Google Scholar
  16. Kajiura, K. (1970), Tsunami source, energy and the directivity of wave radiation. Bull. Earthq. Res. I. Tokyo. University of Tokyo, 48, 835–869.Google Scholar
  17. Kelleher, J.A. (1972), Rupture zones of large South American earthquakes and some predictions. J. geophys. Res., 77(11), 2087–2103.CrossRefGoogle Scholar
  18. Lay, T., Ammon, C. J., Kanamori, H., Koper, K.D., Sufri, O., and Hutko, A.R. (2010), Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake, Geophys. Res. Lett., 37, L13301. doi: 10.1029/2010GL043379.CrossRefGoogle Scholar
  19. Lay, T., Kanamori, H., Ammon, C.J., Koper, K.D., Hutko, A.R., Ye, L., Yue, H., and Rushing, T.M. (2012), Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res.,117, B04311. doi: 10.1029/2011JB009133.CrossRefGoogle Scholar
  20. Lomnitz, C. (1970), Major earthquakes and tsunamis in Chile during the period 1535 to 1955, Geologische Rundschau, 59, 938–960. doi: 10.1007/BF02042278.CrossRefGoogle Scholar
  21. Moreno, M.S., Bolte, J., Klotz, J., and Melnick, D. (2009), Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake, Geophys. Res. Lett., 36, L16310. doi: 10.1029/2009GL039276.
  22. Moreno, M., Melnick, D., Rosenau, M., Báez, J.C., Klotz, J., Oncken, O., Tassara, A., Bataille, K., Chen, J., Socquet, A., Bevis, M., Bolte, J., Vigny, C., Brooks, B., Ryder, I., Grund, V., Smalley, R., Carrizo, D., Bartsch, M., and Hase, H. 2012. Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. E. Earth Planet. Sci. Lett., 321: 152–165.Google Scholar
  23. Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half space, Bull. Seismol. Soc. Am., Vol. 75, No. 4, pp. 1135–1154.Google Scholar
  24. Okal, E. A., Borrero, J. C., and Synolakis, C. E. (2006), Evaluation of tsunami risk from regional earthquakes at Pisco, Peru, B. Seismol. Soc. Am., 96(5), 1634–1648.Google Scholar
  25. Omira, R., Baptista, M.A., and Lisboa, F. (2016), Tsunami Characteristics Along the Peru-Chile trench: Analysis of the 2015 Mw8.3 Illapel, the 2014 Mw8.2 Iquique and the 2010 Mw8.8 Maule Tsunamis in the Near-field, Pure Appl. Geophys., 173, pp. 1063–1077.CrossRefGoogle Scholar
  26. Rabinovich, A. B. (2009), Seiches and harbor oscillations. Handbook of coastal and ocean engineering, 193–236.CrossRefGoogle Scholar
  27. Rosenau, M., Nerlich, R., Brune, S., and Oncken, O. (2010), Experimental insights into the scaling and variability of local tsunamis triggered by giant subduction megathrust earthquakes, J. Geophys. Res., 115.B9, 2156–2202. doi: 10.1029/2009JB007100.
  28. Ruiz, J., Fuentes, M., Riquelme, S., Campos, J., and Cisternas, A. (2015), Numerical simulation of tsunami runup in northern Chile based on non-uniform k  2 slip distribution, Nat. Hazards,1–22. doi: 10.1007/s11069-015-1901-9.CrossRefGoogle Scholar
  29. Satake, K., Fujii, Y., Harada, T., and Namegaya, Y. (2013), Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data, Bull. Seismol. Soc. Am., 103(2B) 1473–1492. doi: 10.1785/0120120122.CrossRefGoogle Scholar
  30. Satake, K. (2014), Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami, Geo. Lett., 1–15. doi: 10.1186/s40562-014-0015-7.
  31. SHOA (2015), Pub. SHOA N° 3204, Instrucciones Oceanográficas N°4, “Especificaciones Técnicas para la Elaboración de Cartas de Inundación por Tsunami (CITSU)” 1ª Edición, 2015.Google Scholar
  32. Shuto, N. (1991), Numerical Simulation of Tsunamis. Its past, present and near future. Nat. Hazards, 4, pp. 171–191.Google Scholar
  33. Tassara, A., and Echaurren, A. (2012), Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models, Geophys. J. Int., 189:161–168.CrossRefGoogle Scholar
  34. Tilmann, F., Zhang, y., Moreno, M., Saul, J., Eckelmann, F., Palo, M., Deng, Z., Babeyko, A., Chen, K., Baez, J.C., Schurr, B., Wang, R., and Dahm, T. (2015), The 2015 Illapel earthquake, central Chile, a type case for a characteristic earthquake?, Geophys. Res. Lett. doi: 10.1002/2015GL066963.CrossRefGoogle Scholar
  35. Yamazaki, Y., Cheung, K. F., and Lay, T. (2013), Modeling of the 2011 Tohoku Near‐Field Tsunami from Finite Fault Inversion of Seismic Waves. Bull. Seismol. Soc. Am, 103(2B), 1444–1455.CrossRefGoogle Scholar
  36. Wang, X. (2009), User manual for COMCOT version 1.7, first draft. Cornell University, 59 pp.Google Scholar
  37. Wang, K., and He, J. (2008), Effects of frictional behavior and geometry of subduction fault on coseismic seafloor deformation, Bull. Seismol. Soc. Am., v. 98, no. 2, p. 571–579. doi: 10.1785/0120070097.CrossRefGoogle Scholar
  38. Wang, P. L., Engelhart, S. E., Wang, K., Hawkes, A. D., Horton, B. P., Nelson, A. R., and Witter, R. C. (2013), Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates. J. Geophys. Res., 118(5), 2460–2473. Google Scholar
  39. Witter, R. C., Zhang, Y. J., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L., English, J. T., and Ferro, P. A. (2013), Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere., 9(6), 1783–1803. doi: 10.1130/GES00899.1.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Escuela Ciencias del MarPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Departamento de Obras CivilesUniversidad Técnica Federico Santa MaríaValparaísoChile

Personalised recommendations