Advertisement

Impact of Hellenic Arc Tsunamis on Corsica (France)

  • Audrey Gailler
  • F. Schindelé
  • H. Hébert
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

In the historical period, the Eastern Mediterranean has been devastated by several tsunamis, the two most damaging were those of AD 365 and AD 1303, generated by great earthquakes of magnitude >8 at the Hellenic plate boundary. Recently, events of 6–7 magnitude have occurred in this region. As the French tsunami warning center has to ensure the warning for the French coastlines, the question has raised the possibility for a major tsunami triggered along the Hellenic arc to impact the French coasts. The focus is on the Corsica coasts especially, to estimate what would be the expected wave heights, and from which threshold of magnitude it would be necessary to put the population under cover. This study shows that a magnitude 8.0 earthquake nucleated along the Hellenic arc could induce in some cases a tsunami that would be observed along the Corsica coasts, and for events of 8.5 magnitude amplitudes exceeding 50 cm can be expected, which would be dangerous in harbors and beach areas especially. The main contribution of these results is the establishment of specific thresholds of magnitude for the tsunami warning along the French coasts, 7.8 for the advisory level (coastal marine threat with harbors and beaches evacuation), and 8.3 for the watch level (inland inundation threat) for tsunamis generated along the Hellenic arc.

Keywords

Tsunami hazard assessment warning system amplification law Mediterranean basin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

  1. Bijwaard, H., Spakman, W., & Engdahl, E. R. (1998). Closing the gap between regional and global travel time tomography. Journal of Geophysical Research: Solid Earth, 103(12), 30055–30078.CrossRefGoogle Scholar
  2. Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth,86, 2825–2852. doi:.CrossRefGoogle Scholar
  3. Ekström, G., Nettles, M., & Dziewonski, A. M. (2012). The global CMT project 2004-2010: centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors,200–201, 1–9. doi:.CrossRefGoogle Scholar
  4. Ganas, A., & Parsons, T. (2009). Three dimensional model of Hellenic Arc deformation and origin of the Cretan uplift. Journal of Geophysical Research: Solid Earth (1978–2012), 114(B6).Google Scholar
  5. Gesret, A., Laigle, M., Diaz, J., Sachpazi, M., Charalampakis, M., & Hirn, A. (2011). Slab top dips resolved by teleseismic converted waves in the Hellenic subduction zone. Geophysical Research Letters, 38(20).CrossRefGoogle Scholar
  6. Green, G. (1837). On the motion of waves in a variable canal of small depth and width. Transactions of the Cambridge Philosophical Society,6, 457–462.Google Scholar
  7. Hébert, H., Heinrich, P., Schindelé, F., & Piatanesi, A. (2001). Far-field simulation of tsunami propagation in the Pacific Ocean: impact on the Marquesas Islands (French Polynesia). Journal of Geophysical Research: Oceans,106(C5), 9161–9177.CrossRefGoogle Scholar
  8. Hébert, H., Reymond, D., Krien, Y., Vergoz, J., Schindelé, F., Roger, J., & Loevenbruck, A. (2009). The 15 August 2007 Peru earthquake and tsunami: influence of the source characteristics on the tsunami heights. Pure and Applied Geophysics,166(1–2), 211–232.CrossRefGoogle Scholar
  9. Hébert, H., Sladen, A., & Schindelé, F. (2007). Numerical modeling of the great 2004 Indian Ocean tsunami: focus on the Mascarene Islands. Bulletin of the Seismological Society of America,97(1A), S208–S222.CrossRefGoogle Scholar
  10. England, P.H., Howell, A., Jaskson, J. & Synolakis, C. (2015). Palaeotsunamis and tsunami hazards in the Eastern Mediterranean. Phil. Trans. R. Soc. A273:20140374. doi:.Google Scholar
  11. IOC, IHO and BODC. (2003). Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, UK.Google Scholar
  12. Jackson, J., & McKenzie, D. (1988). The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophysical Journal International,93(1), 45–73.CrossRefGoogle Scholar
  13. Laigle, M., Hirn, A., Sachpazi, M., & Clément, C. (2002). Seismic coupling and structure of the Hellenic subduction zone in the Ionian Islands region. Earth and Planetary Science Letters,200(3), 243–253.CrossRefGoogle Scholar
  14. Mascle, J., & Chaumillon, E. (1998). An overview of Mediterranean Ridge collisional accretionary complex as deduced from multichannel seismic data. Geo-Marine Letters,18(2), 81–89.CrossRefGoogle Scholar
  15. McClusky, S., Reilinger, R., Mahmoud, S., Sari, D. B., & Tealeb, A. (2003). GPS constraints on Africa (Nubia) and Arabia plate motions. Geophysical Journal International,155(1), 126–138.CrossRefGoogle Scholar
  16. Meier, T., Rische, M., Endrun, B., Vafidis, A., & Harjes, H. P. (2004). Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tectonophysics,383(3), 149–169.CrossRefGoogle Scholar
  17. Meijer, P. T., & Wortel, M. J. R. (1996). Temporal variation in the stress field of the Aegean region. Geophysical Research Letters,23(5), 439–442.CrossRefGoogle Scholar
  18. Necmioglu, O., & Özel, N. M. (2015). Earthquake Scenario-Based Tsunami Wave Heights in the Eastern Mediterranean and Connected Seas. Pure and Applied Geophysics, 172(12), 3617–3638.CrossRefGoogle Scholar
  19. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am, 75, 1135–1154.Google Scholar
  20. Papadimitriou, E. E., & Karakostas, V. G. (2008). Rupture model of the great AD 365 Crete earthquake in the southwestern part of the Hellenic Arc. Acta Geophysica,56(2), 293–312.CrossRefGoogle Scholar
  21. Papadopoulos, G. A. (2003). Tsunami hazard in the Eastern Mediterranean: strong earthquakes and tsunamis in the Corinth Gulf, Central Greece. Natural Hazards,29(3), 437–464.CrossRefGoogle Scholar
  22. Papadopoulos, G. (2015). Tsunamis in the European-Mediterranean region: from historical record to risk mitigation. Elsevier.Google Scholar
  23. Papadopoulos, G. A., Daskalaki, E., Fokaefs, A., & Giraleas, N. (2007). Tsunami hazards in the Eastern Mediterranean: strong earthquakes and tsunamis in the East Hellenic Arc and Trench system. Natural Hazards and Earth System Science,7(1), 57–64.CrossRefGoogle Scholar
  24. Papazachos, B. C., & Comninakis, P. E. (1971). Geophysical and tectonic features of the Aegean Arc. Geophysical Journal International,76, 8517–8533.CrossRefGoogle Scholar
  25. Papazachos, B. C., Karakostas, V. G., Papazachos, C. B., & Scordilis, E. M. (2000). The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophysics,319(4), 275–300.CrossRefGoogle Scholar
  26. Reilinger, R., McClusky, S., Paradissis, D., Ergintav, S., & Vernant, P. (2010). Geodetic constraints on the tectonic evolution of the Aegean region and strain accumulation along the Hellenic subduction zone. Tectonophysics,488(1), 22–30.CrossRefGoogle Scholar
  27. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., & Karam, G. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth (1978–2012), 111(B5).CrossRefGoogle Scholar
  28. Reymond, D., Okal, E. A., Hébert, H., & Bourdet, M. (2012). Rapid forecast of tsunami wave heights from a database of precomputed simulations, and application during the 2011 Tohoku tsunami in French Polynesia. Geophysical Research Letters, 39, L11603. doi:.Google Scholar
  29. Salamon, A., Rockwell, T., Ward, S. N., Guidoboni, E., & Comastri, A. (2007). Tsunami hazard evaluation of the eastern Mediterranean: historical analysis and selected modeling. Bulletin of the Seismological Society of America,97(3), 705–724.CrossRefGoogle Scholar
  30. Schindelé, F., Gailler, A., Hébert, H., Loevenbruck, A., Gutierrez, E., Monnier, A., et al. (2015). Implementation and challenges of the Tsunami Warning System in the Western Mediterranean. Pure and Applied Geophysics,172(3–4), 821–833.CrossRefGoogle Scholar
  31. Scholz, C. H., & Campos, J. (1995). On the mechanism of seismic decoupling and back arc spreading at subduction zones. Journal of Geophysical Research: Solid Earth(1978–2012), 100(B11), 22103–22115.CrossRefGoogle Scholar
  32. Shaw, B., Ambraseys, N. N., England, P. C., Floyd, M. A., Gorman, G. J., Higham, T. F. G., et al. (2008). Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nature Geoscience,1(4), 268–276.CrossRefGoogle Scholar
  33. Shaw, B., & Jackson, J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone. Geophysical Journal International,181(2), 966–984.Google Scholar
  34. Spakman, W., Wortel, M. J. R., & Vlaar, N. J. (1988). The Hellenic subduction zone: a tomographic image and its geodynamic implications. Geophysical Research Letters,15(1), 60–63.CrossRefGoogle Scholar
  35. Stiros, S. C. (2010). The 8.5+ magnitude, AD365 earthquake in Crete: coastal uplift, topography changes, archaeological and historical signature. Quaternary International,216(1), 54–63.CrossRefGoogle Scholar
  36. Tanioka, Y., Nishimura, Y., Hirakawa, K., Imamura, F., Abe, I., Abe, Y., et al. (2004). Tsunami run-up heights of the 2003 Tokachi-oki earthquake. Earth, Planets and Space,56(3), 359–365.CrossRefGoogle Scholar
  37. Taymaz, T., Jackson, J., & Westaway, R. (1990). Earthquake mechanisms in the Hellenic Trench near Crete. Geophysical Journal International,102(3), 695–731.CrossRefGoogle Scholar
  38. Tichelaar, B. W., & Ruff, L. J. (1993). Depth of seismic coupling along subduction zones. Journal of Geophysical Research: Solid Earth (1978–2012), 98(B2), 2017–2037.CrossRefGoogle Scholar
  39. Tinti, S., Armigliato, A., Pagnoni, G., & Zaniboni, F. (2005). Scenarios of giant tsunamis of tectonic origin in the Mediterranean. ISET Journal of Earthquake Technology,42(4), 171–188.Google Scholar
  40. Vernant, P., Reilinger, R., & McClusky, S. (2014). Geodetic evidence for low coupling on the Hellenic subduction plate interface. Earth and Planetary Science Letters,385, 122–129.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.CEA, DAM, DIFArpajon CedexFrance

Personalised recommendations