Subcellular Targeting of PDE4 in Cardiac Myocytes and Generation of Signaling Compartments

  • Marco ContiEmail author
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol., volume 3)


Of the 11 families of phosphodiesterases found in the human genome, three decades of pharmacological data have clearly implicated PDE3 in cardiac function. Conversely, much less was known about the PDE4 family of proteins expression and function in the heart. Indeed, PDE4-selective inhibitors were developed with the rationale that they would retain the beneficial properties of a nonselective inhibitor but would be devoid of cardiac effects. Yet in the last decade, a large body of work has been published on the expression and function of PDE4s in the hearts of humans and other mammals. To date, at least seven different PDE4 proteins encoded in the four PDE4 genes have been detected in cardiac cells. These PDE4s are targeted to different subcellular compartments of cardiac myocytes through interaction with several classes of scaffold proteins. This PDE4 sequestration in macromolecular complexes limits their access to cAMP in confined subcellular domains including the dyad, the sarcoplasmic reticulum, and the sarcomere. This molecular organization defines the distinctive role of the different PDE4 proteins in the different aspects of excitation/contraction coupling. In this chapter, the molecular properties and function of PDE4s in the different compartments of the cardiac myocytes will be reviewed.


Compliance with Ethical Standards

Conflict of Interest Statement

The author declares no conflict of interest.


  1. Ahmad F, Shen W, Vandeput F, Szabo-Fresnais N, Krall J, Degerman E, Goetz F, Klussmann E, Movsesian M, Manganiello V (2015) Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem 290(11):6763–6776. doi: 10.1074/jbc.M115.638585 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baillie GS, Sood A, McPhee I, Gall I, Perry SJ, Lefkowitz RJ, Houslay MD (2003) Beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci U S A 100(3):940–945. doi: 10.1073/pnas.262787199 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beca S, Helli PB, Simpson JA, Zhao D, Farman GP, Jones PP, Tian X, Wilson LS, Ahmad F, Chen SR, Movsesian MA, Manganiello V, Maurice DH, Conti M, Backx PH (2011) Phosphodiesterase 4D regulates baseline sarcoplasmic reticulum Ca2+ release and cardiac contractility, independently of L-type Ca2+ current. Circ Res 109(9):1024–1030. doi:CIRCRESAHA.111.250464 [pii]CrossRefGoogle Scholar
  4. Beca S, Ahmad F, Shen W, Liu J, Makary S, Polidovitch N, Sun J, Hockman S, Chung YW, Movsesian M, Murphy E, Manganiello V, Backx PH (2013) Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. Circ Res 112(2):289–297. doi: 10.1161/CIRCRESAHA.111.300003 CrossRefPubMedGoogle Scholar
  5. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49. doi: 10.1146/annurev.physiol.70.113006.100455 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bjorgo E, Solheim SA, Abrahamsen H, Baillie GS, Brown KM, Berge T, Okkenhaug K, Houslay MD, Tasken K (2010) Cross talk between phosphatidylinositol 3-kinase and cyclic AMP (cAMP)-protein kinase a signaling pathways at the level of a protein kinase B/beta-arrestin/cAMP phosphodiesterase 4 complex. Mol Cell Biol 30(7):1660–1672. doi: 10.1128/MCB.00696-09 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Blackman BE, Horner K, Heidmann J, Wang D, Richter W, Rich TC, Conti M (2011) PDE4D and PDE4B function in distinct subcellular compartments in mouse embryonic fibroblasts. J Biol Chem 286(14):12590–12601. doi:M110.203604 [pii]CrossRefGoogle Scholar
  8. Brittsan AG, Kranias EG (2000) Phospholamban and cardiac contractile function. J Mol Cell Cardiol 32(12):2131–2139. doi: 10.1006/jmcc.2000.1270 CrossRefPubMedGoogle Scholar
  9. Brunton LL, Hayes JS, Mayer SE (1979) Hormonally specific phosphorylation of cardiac troponin I and activation of glycogen phosphorylase. Nature 280(5717):78–80CrossRefGoogle Scholar
  10. Calejo AI, Tasken K (2015) Targeting protein-protein interactions in complexes organized by a kinase anchoring proteins. Front Pharmacol 6:192. doi: 10.3389/fphar.2015.00192 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cedervall P, Aulabaugh A, Geoghegan KF, McLellan TJ, Pandit J (2015) Engineered stabilization and structural analysis of the autoinhibited conformation of PDE4. Proc Natl Acad Sci U S A 112(12):E1414–E1422. doi: 10.1073/pnas.1419906112 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Colicelli J, Birchmeier C, Michaeli T, O'Neill K, Riggs M, Wigler M (1989) Isolation and characterization of a mammalian gene encoding a high-affinity cAMP phosphodiesterase. Proc Natl Acad Sci U S A 86:3599–3603CrossRefGoogle Scholar
  13. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511. doi: 10.1146/annurev.biochem.76.060305.150444 CrossRefGoogle Scholar
  14. Conti M, Mika D, Richter W (2014) Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases. J Gen Physiol 143(1):29–38. doi: 10.1085/jgp.201311083 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Corbin JD, Sugden PH, Lincoln TM, Keely SL (1977) Compartmentalization of adenosine 3':5'-monophosphate and adenosine 3':5'-monophosphate-dependent protein kinase in heart tissue. J Biol Chem 252(11):3854–3861PubMedGoogle Scholar
  16. De Arcangelis V, Liu R, Soto D, Xiang Y (2009) Differential association of phosphodiesterase 4D isoforms with beta2-adrenoceptor in cardiac myocytes. J Biol Chem 284(49):33824–33832. doi: 10.1074/jbc.M109.020388 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Diviani D, Dodge-Kafka KL, Li J, Kapiloff MS (2011) A-kinase anchoring proteins: scaffolding proteins in the heart. Am J Phys Heart Circ Phys 301(5):H1742–H1753. doi: 10.1152/ajpheart.00569.2011 CrossRefGoogle Scholar
  18. Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, Houslay MD, Langeberg LK, Scott JD (2001) mAKAP assembles a protein kinase a/PDE4 phosphodiesterase cAMP signaling module. EMBO J 20(8):1921–1930CrossRefGoogle Scholar
  19. Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD (2005) The protein kinase a anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature 437(7058):574–578. doi: 10.1038/nature03966 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Edwards HV, Scott JD, Baillie GS (2012a) The A-kinase-anchoring protein AKAP-Lbc facilitates cardioprotective PKA phosphorylation of Hsp20 on Ser(16). Biochem J 446(3):437–443. doi: 10.1042/BJ20120570 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Edwards HV, Scott JD, Baillie GS (2012b) PKA phosphorylation of the small heat-shock protein Hsp20 enhances its cardioprotective effects. Biochem Soc Trans 40(1):210–214. doi: 10.1042/BST20110673 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Eschenhagen T (2013) PDE4 in the human heart - major player or little helper? Br J Pharmacol 169(3):524–527. doi: 10.1111/bph.12168 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fan GC, Kranias EG (2011) Small heat shock protein 20 (HspB6) in cardiac hypertrophy and failure. J Mol Cell Cardiol 51(4):574–577. doi: 10.1016/j.yjmcc.2010.09.013 CrossRefPubMedGoogle Scholar
  24. Fan GC, Yuan Q, Song G, Wang Y, Chen G, Qian J, Zhou X, Lee YJ, Ashraf M, Kranias EG (2006) Small heat-shock protein Hsp20 attenuates beta-agonist-mediated cardiac remodeling through apoptosis signal-regulating kinase 1. Circ Res 99(11):1233–1242. doi: 10.1161/ CrossRefPubMedGoogle Scholar
  25. Fu Q, Xiang YK (2015) Trafficking of beta-adrenergic receptors: implications in intracellular receptor signaling. Prog Mol Biol Transl Sci 132:151–188. doi: 10.1016/bs.pmbts.2015.03.008 CrossRefPubMedGoogle Scholar
  26. Ghigo A, Perino A, Mehel H, Zahradnikova A Jr, Morello F, Leroy J, Nikolaev VO, Damilano F, Cimino J, De Luca E, Richter W, Westenbroek R, Catterall WA, Zhang J, Yan C, Conti M, Gomez AM, Vandecasteele G, Hirsch E, Fischmeister R (2012) PI3Kgamma protects against catecholamine-induced ventricular arrhythmia through PKA-mediated regulation of distinct phosphodiesterases. Circulation. doi:CIRCULATIONAHA.112.114074 [pii]Google Scholar
  27. Gregg CJ, Steppan J, Gonzalez DR, Champion HC, Phan AC, Nyhan D, Shoukas AA, Hare JM, Barouch LA, Berkowitz DE (2010) beta2-adrenergic receptor-coupled phosphoinositide 3-kinase constrains cAMP-dependent increases in cardiac inotropy through phosphodiesterase 4 activation. Anesth Analg 111(4):870–877. doi: 10.1213/ANE.0b013e3181ee8312 CrossRefPubMedGoogle Scholar
  28. Houslay MD, Baillie GS, Maurice DH (2007) cAMP-specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Circ Res 100(7):950–966. doi: 10.1161/01.RES.0000261934.56938.38 CrossRefPubMedGoogle Scholar
  29. Irannejad R, von Zastrow M (2014) GPCR signaling along the endocytic pathway. Curr Opin Cell Biol 27:109–116. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  30. Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, Rasmussen SG, Sunahara RK, El-Samad H, Huang B, von Zastrow M (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495(7442):534–538. doi: 10.1038/nature12000 CrossRefPubMedGoogle Scholar
  31. Johnson WB, Katugampola S, Able S, Napier C, Harding SE (2012) Profiling of cAMP and cGMP phosphodiesterases in isolated ventricular cardiomyocytes from human hearts: comparison with rat and Guinea pig. Life Sci 90(9–10):328–336. doi: 10.1016/j.lfs.2011.11.016 CrossRefGoogle Scholar
  32. Jurevicius J, Fischmeister R (1996) cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by beta -adrenergic agonists pnas.93.1.295. PNAS 93(1):295–299CrossRefGoogle Scholar
  33. Kapiloff MS, Jackson N, Airhart N (2001) mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci 114(Pt 17):3167–3176PubMedGoogle Scholar
  34. Kerfant BG, Zhao D, Lorenzen-Schmidt I, Wilson LS, Cai S, Chen SR, Maurice DH, Backx PH (2007) PI3Kgamma is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ Res 101(4):400–408. doi: 10.1161/CIRCRESAHA.107.156422 CrossRefPubMedGoogle Scholar
  35. Klussmann E (2016) Protein-protein interactions of PDE4 family members - functions, interactions and therapeutic value. Cell Signal 28(7):713–718. doi: 10.1016/j.cellsig.2015.10.005 CrossRefPubMedGoogle Scholar
  36. Kostic MM, Erdogan S, Rena G, Borchert G, Hoch B, Bartel S, Scotland G, Huston E, Houslay MD, Krause EG (1997) Altered expression of PDE1 and PDE4 cyclic nucleotide phosphodiesterase isoforms in 7-oxo-prostacyclin-preconditioned rat heart. J Mol Cell Cardiol 29(11):3135–3146. doi: 10.1006/jmcc.1997.0544 CrossRefPubMedGoogle Scholar
  37. Kumar P, Francis GS, Tang WH (2009) Phosphodiesterase 5 inhibition in heart failure: mechanisms and clinical implications. Nat Rev Cardiol 6(5):349–355. doi: 10.1038/nrcardio.2009.32 CrossRefPubMedGoogle Scholar
  38. Lehnart SE, Wehrens XH, Reiken S, Warrier S, Belevych AE, Harvey RD, Richter W, Jin SL, Conti M, Marks AR (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123(1):25–35CrossRefGoogle Scholar
  39. Leroy J, Abi-Gerges A, Nikolaev VO, Richter W, Lechene P, Mazet JL, Conti M, Fischmeister R, Vandecasteele G (2008) Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circ Res 102(9):1091–1100. doi:CIRCRESAHA.107.167817 [pii]CrossRefGoogle Scholar
  40. Leroy J, Richter W, Mika D, Castro LR, Abi-Gerges A, Xie M, Scheitrum C, Lefebvre F, Schittl J, Mateo P, Westenbroek R, Catterall WA, Charpentier F, Conti M, Fischmeister R, Vandecasteele G (2011) Phosphodiesterase 4B in the cardiac L-type Ca(2)(+) channel complex regulates Ca(2)(+) current and protects against ventricular arrhythmias in mice. J Clin Invest 121(7):2651–2661CrossRefGoogle Scholar
  41. Liu S, Li Y, Kim S, Fu Q, Parikh D, Sridhar B, Shi Q, Zhang X, Guan Y, Chen X, Xiang YK (2012) Phosphodiesterases coordinate cAMP propagation induced by two stimulatory G protein-coupled receptors in hearts. Proc Natl Acad Sci U S A 109(17):6578–6583CrossRefGoogle Scholar
  42. Lugnier C, Muller B, Le Bec A, Beaudry C, Rousseau E (1993) Characterization of indolidan- and rolipram-sensitive cyclic nucleotide phosphodiesterases in canine and human cardiac microsomal fractions. J Pharmacol Exp Ther 265(3):1142–1151PubMedGoogle Scholar
  43. Lygren B, Carlson CR, Santamaria K, Lissandron V, McSorley T, Litzenberg J, Lorenz D, Wiesner B, Rosenthal W, Zaccolo M, Tasken K, Klussmann E (2007) AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. EMBO Rep 8(11):1061–1067. doi: 10.1038/sj.embor.7401081 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lynch MJ, Baillie GS, Mohamed A, Li X, Maisonneuve C, Klussmann E, van Heeke G, Houslay MD (2005) RNA silencing identifies PDE4D5 as the functionally relevant cAMP phosphodiesterase interacting with beta arrestin to control the protein kinase a/AKAP79-mediated switching of the beta2-adrenergic receptor to activation of ERK in HEK293B2 cells. J Biol Chem 280(39):33178–33189. doi: 10.1074/jbc.M414316200 CrossRefPubMedGoogle Scholar
  45. Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC (2014) Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 13(4):290–314. doi: 10.1038/nrd4228 CrossRefPubMedPubMedCentralGoogle Scholar
  46. McCahill A, Campbell L, McSorley T, Sood A, Lynch MJ, Li X, Yan C, Baillie GS, Houslay MD (2008a) In cardiac myocytes, cAMP elevation triggers the down-regulation of transcripts and promoter activity for cyclic AMP phosphodiesterase-4A10 (PDE4A10). Cell Signal 20(11):2071–2083. doi: 10.1016/j.cellsig.2008.07.017 CrossRefPubMedGoogle Scholar
  47. McCahill AC, Huston E, Li X, Houslay MD (2008b) PDE4 associates with different scaffolding proteins: modulating interactions as treatment for certain diseases. Handb Exp Pharmacol 186:125–166. doi: 10.1007/978-3-540-72843-6_6 CrossRefGoogle Scholar
  48. McSorley T, Stefan E, Henn V, Wiesner B, Baillie GS, Houslay MD, Rosenthal W, Klussmann E (2006) Spatial organisation of AKAP18 and PDE4 isoforms in renal collecting duct principal cells. Eur J Cell Biol 85(7):673–678. doi: 10.1016/j.ejcb.2006.01.005 CrossRefPubMedGoogle Scholar
  49. Mika D, Conti M (2016) PDE4D phosphorylation: a coincidence detector integrating multiple signaling pathways. Cell Signal 28(7):719–724. doi: 10.1016/j.cellsig.2015.11.001 CrossRefPubMedGoogle Scholar
  50. Mika D, Richter W, Westenbroek RE, Catterall WA, Conti M (2014) PDE4B mediates local feedback regulation of beta(1)-adrenergic cAMP signaling in a sarcolemmal compartment of cardiac myocytes. J Cell Sci 127(Pt 5):1033–1042. doi: 10.1242/jcs.140251 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mika D, Richter W, Conti M (2015) A CaMKII/PDE4D negative feedback regulates cAMP signaling. Proc Natl Acad Sci U S A 112(7):2023–2028. doi: 10.1073/pnas.1419992112 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, Chubb JE, Huston E, Baillie GS, Thomson PA, Hill EV, Brandon NJ, Rain JC, Camargo LM, Whiting PJ, Houslay MD, Blackwood DH, Muir WJ, Porteous DJ (2005) DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310 (5751):1187–1191. doi:310/5751/1187 [pii]Google Scholar
  53. Molenaar P, Christ T, Hussain RI, Engel A, Berk E, Gillette KT, Chen L, Galindo-Tovar A, Krobert KA, Ravens U, Levy FO, Kaumann AJ (2013) PDE3, but not PDE4, reduces beta(1) - and beta(2)-adrenoceptor-mediated inotropic and lusitropic effects in failing ventricle from metoprolol-treated patients. Br J Pharmacol 169(3):528–538. doi: 10.1111/bph.12167 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Molina CE, Leroy J, Richter W, Xie M, Scheitrum C, Lee IO, Maack C, Rucker-Martin C, Donzeau-Gouge P, Verde I, Llach A, Hove-Madsen L, Conti M, Vandecasteele G, Fischmeister R (2012) Cyclic adenosine monophosphate phosphodiesterase type 4 protects against atrial arrhythmias. J Am Coll Cardiol 59(24):2182–2190CrossRefGoogle Scholar
  55. Monaco L, Vicini E, Conti M (1994) Structure of two rat genes coding for closely related rolipram-sensitive cAMP-phosphodiesterases. J Biol Chem 269:347–357PubMedGoogle Scholar
  56. Mongillo M, McSorley T, Evellin S, Sood A, Lissandron V, Terrin A, Huston E, Hannawacker A, Lohse MJ, Pozzan T, Houslay MD, Zaccolo M (2004) Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circul Res 95(1):67–75CrossRefGoogle Scholar
  57. Muller B, Stoclet JC, Lugnier C (1992) Cytosolic and membrane-bound cyclic nucleotide phosphodiesterases from Guinea pig cardiac ventricles. Eur J Pharmacol 225(3):263–272CrossRefGoogle Scholar
  58. Nikolaev VO, Bunemann M, Schmitteckert E, Lohse MJ, Engelhardt S (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching {beta}1-adrenergic but locally confined {beta}2-adrenergic receptor-mediated signaling. Circul Res 99(10):1084–1091CrossRefGoogle Scholar
  59. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, Hendrix GH, Bommer WJ, Elkayam U, Kukin ML et al (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE study research group. N Engl J Med 325(21):1468–1475. doi: 10.1056/NEJM199111213252103 CrossRefPubMedGoogle Scholar
  60. Perry SJ, Baillie GS, Kohout TA, McPhee I, Magiera MM, Ang KL, Miller WE, McLean AJ, Conti M, Houslay MD, Lefkowitz RJ (2002) Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 298(5594):834–836CrossRefGoogle Scholar
  61. Raymond DR, Carter RL, Ward CA, Maurice DH (2009) Distinct phosphodiesterase-4D variants integrate into protein kinase A-based signaling complexes in cardiac and vascular myocytes. Am J Phys Heart Circ Phys 296(2):H263–H271. doi: 10.1152/ajpheart.00425.2008 CrossRefGoogle Scholar
  62. Reeves ML, Leigh BK, England PJ (1987) The identification of a new cyclic nucleotide phosphodiesterase activity in human and Guinea-pig cardiac ventricle. Implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem J 241(2):535–541CrossRefGoogle Scholar
  63. Richter W, Conti M (2002) Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs). J Biol Chem 277(43):40212–40221CrossRefGoogle Scholar
  64. Richter W, Conti M (2004) The oligomerization state determines regulatory properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases. J Biol Chem 279(29):30338–30348CrossRefGoogle Scholar
  65. Richter W, Jin SL, Conti M (2005) Splice variants of the cyclic nucleotide phosphodiesterase PDE4D are differentially expressed and regulated in rat tissue. Biochem J 388(Pt 3):803–811CrossRefGoogle Scholar
  66. Richter W, Day P, Agrawal R, Bruss MD, Granier S, Wang YL, Rasmussen SG, Horner K, Wang P, Lei T, Patterson AJ, Kobilka B, Conti M (2008) Signaling from beta1- and beta2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J 27(2):384–393CrossRefGoogle Scholar
  67. Richter W, Xie M, Scheitrum C, Krall J, Movsesian MA, Conti M (2011) Conserved expression and functions of PDE4 in rodent and human heart. Basic Res Cardiol 106(2):249–262. doi: 10.1007/s00395-010-0138-8 CrossRefPubMedGoogle Scholar
  68. Richter W, Mika D, Blanchard E, Day P, Conti M (2013) beta1-adrenergic receptor antagonists signal via PDE4 translocation. EMBO Rep 14(3):276–283. doi: 10.1038/embor.2013.4 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sette C, Conti M (1996) Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem 271:16526–16534CrossRefGoogle Scholar
  70. Sette C, Iona S, Conti M (1994) The short-term activation of a rolipram-sensitive, cAMP-specific phosphodiesterase by thyroid-stimulating hormone in thyroid FRTL- 5 cells is mediated by a cAMP-dependent phosphorylation. J BiolChem 269:9245–9252Google Scholar
  71. Sin YY, Edwards HV, Li X, Day JP, Christian F, Dunlop AJ, Adams DR, Zaccolo M, Houslay MD, Baillie GS (2011) Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the beta-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol 50(5):872–883. doi: 10.1016/j.yjmcc.2011.02.006 CrossRefPubMedGoogle Scholar
  72. Smith FD, Reichow SL, Esseltine JL, Shi D, Langeberg LK, Scott JD, Gonen T (2013) Intrinsic disorder within an AKAP-protein kinase a complex guides local substrate phosphorylation. eLife 2:e01319. doi: 10.7554/eLife.01319
  73. Soejima H, Kawamoto S, Akai J, Miyoshi O, Arai Y, Morohka T, Matsuo S, Niikawa N, Kimura A, Okubo K, Mukai T (2001) Isolation of novel heart-specific genes using the BodyMap database. Genomics 74(1):115–120. doi: 10.1006/geno.2001.6527 CrossRefPubMedGoogle Scholar
  74. Sprenger JU, Perera RK, Steinbrecher JH, Lehnart SE, Maier LS, Hasenfuss G, Nikolaev VO (2015) In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat Commun 6:6965. doi: 10.1038/ncomms7965 CrossRefPubMedGoogle Scholar
  75. Stangherlin A, Zaccolo M (2012) Phosphodiesterases and subcellular compartmentalized cAMP signaling in the cardiovascular system. Am J Phys Heart Circ Phys 302(2):H379–H390. doi:ajpheart.00766.2011 [pii]Google Scholar
  76. Swinnen JV, Joseph DR, Conti M (1989) Molecular cloning of rat homologues of the Drosophila melanogaster dunce cAMP phosphodiesterase: evidence for a family of genes. Proc Natl Acad Sci U S A 86:5325–5329CrossRefGoogle Scholar
  77. Tasken KA, Collas P, Kemmner WA, Witczak O, Conti M, Tasken K (2001) Phosphodiesterase 4D and protein kinase a type II constitute a signaling unit in the centrosomal area. J Biol Chem 276(25):21999–22002CrossRefGoogle Scholar
  78. Terrenoire C, Houslay MD, Baillie GS, Kass RS (2009) The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem 284(14):9140–9146CrossRefGoogle Scholar
  79. Terrin A, Di Benedetto G, Pertegato V, Cheung Y-F, Baillie G, Lynch MJ, Elvassore N, Prinz A, Herberg FW, Houslay MD, Zaccolo M (2006) PGE1 stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol 175(3):441–451CrossRefGoogle Scholar
  80. Uys GM, Ramburan A, Loos B, Kinnear CJ, Korkie LJ, Mouton J, Riedemann J, Moolman-Smook JC (2011) Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C. BMC Cell Biol 12:18. doi:1471-2121-12-18 [pii]CrossRefGoogle Scholar
  81. Verde I, Pahlke G, Salanova M, Zhang G, Wang S, Coletti D, Onuffer J, Jin SL, Conti M (2001) Myomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase. J Biol Chem 276(14):11189–11198CrossRefGoogle Scholar
  82. Wang L, Burmeister BT, Johnson KR, Baillie GS, Karginov AV, Skidgel RA, O'Bryan JP, Carnegie GK (2015) UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy. Cell Signal 27(5):908–922. doi: 10.1016/j.cellsig.2015.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Weishaar RE, Kobylarz-Singer DC, Kaplan HR (1987a) Subclasses of cyclic AMP phosphodiesterase in cardiac muscle. J Mol Cell Cardiol 19(10):1025–1036CrossRefGoogle Scholar
  84. Weishaar RE, Kobylarz-Singer DC, Steffen RP, Kaplan HR (1987b) Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res 61(4):539–547CrossRefGoogle Scholar
  85. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295(5560):1711–1715CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of ObstetricsUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations