Advertisement

Most Recent Clinical Advances in CAR T Cell and Gene Therapy 2017/2018

  • Syed A. Abutalib
  • Saar I. Gill
Chapter
Part of the Advances and Controversies in Hematopoietic Transplantation and Cell Therapy book series (ACHTCT)

Abstract

Adoptive cell therapy with gene-engineered T cells bearing antitumor-reactive T-cell receptor or chimeric antigen receptor (CAR) is a promising and rapidly evolving field of translational medicine. This approach has delivered exciting responses for some patients with lymphoid hematologic neoplasms, leading to recent US Food and Drug Administration approvals. Hematopoietic stem cellular gene therapy has also shown promising advances, with durable and potentially curative clinical benefit and without the potential toxicities of allogeneic hematopoietic cell transplant. However, for both of these novel strategies, many questions remain unanswered. Compared to synthetic viral gene addition therapy (e.g., CAR T-cell engineering), translation of gene-editing technologies to patient care is in its infancy. Multiple clinical trials are ongoing or expected to open for CAR T cell and inherited monogenic disorders (Gardner et al., Blood 129:3322–3331, 2017) (refer to subsequent disease-specific chapters in the book). In this chapter, we will highlight the most recent and clinically relevant developments in the arena of gene-modified T-cell-based therapies and hematopoietic stem cellular gene therapy specifically focusing on hematologic disorders. We will conclude the chapter by summarizing the apparent challenges and directions for the future.

Keywords

Cell therapy Gene therapy CAR T cell Lymphoma CLL ALL Leukemia CD19 Chimeric antigen receptors Adoptive T-cell therapy Chimeric antigen receptor-modified T cells 

Notes

Conflict of Interest

Syed A. Abutalib—None.

Saar I Gill—Research funding (Novartis); Equity (Carisma Therapeutics); Scientific Advisory Board (Carisma Therapeutics, Extellia Therapeutics).

References

  1. Ali SA, Shi V, Maric I et al (2016) T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128(13):1688–1700CrossRefGoogle Scholar
  2. Ansell SM, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319CrossRefGoogle Scholar
  3. Antony JS, Haque AKMA, Lamsfus-Calle A et al (2018) CRISPR/Cas9 system: a promising technology for the treatment of inherited and neoplastic hematological diseases. Adv Cell Gene Ther 1:e10. https://onlinelibrary.wiley.com/doi/abs/10.1002/acg2.10 CrossRefGoogle Scholar
  4. Awasthi R, Mueller KT, Yanik GA et al (2018) Considerations for tisagenlecleucel dosing rationale. J Clin Oncol 36:e15056 (suppl; abstr e15056)CrossRefGoogle Scholar
  5. Berdeja JG, Lin Y, Raje N et al (2017) Durable clinical responses in heavily pretreated patients with relapsed/refractory multiple myeloma: updated results from a multicenter study of bb2121 anti-Bcma CAR T cell therapy. Blood 130:740Google Scholar
  6. Brudno J, Lam N, Wang M et al (2017) T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor with a CD28 costimulatory moiety cause remissions of poor-prognosis relapsed multiple myeloma. Blood 130:524Google Scholar
  7. Buddee LB, Joo Y Song JY, Kim Y et al (2017) Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR T cells: a first-in-human clinical trial. Abstract 811Google Scholar
  8. Buechner J, Grupp SA, Maude SL et al (2017) Global registration trial of efficacy and safety of CTL019 in pediatric and young adults patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL): update of the international interim analysis. In: 2017 European Hematology Association (EHA) annual meeting (Abstract S476)Google Scholar
  9. Cohen AD, Garfall AL, Stadtmauer EA et al (2016) B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) for multiple myeloma (MM): initial safety and efficacy from a phase I study. In: 58th American Society of Hematology annual meeting and exposition. Abstract #1147Google Scholar
  10. Cohen AD, Garfall AL, Stadtmauer EA et al (2017) Safety and efficacy of B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) with cyclophosphamide conditioning for refractory multiple myeloma (MM). Blood 130:505CrossRefGoogle Scholar
  11. Crump M, Neelapu SS, Farooq U et al (2017) Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 130:1800–1808CrossRefGoogle Scholar
  12. Dunbar CE, High KA, Joung JK et al (2018) Gene therapy comes of age. Science 359:6372CrossRefGoogle Scholar
  13. Eichler F, Duncan C, Musolino PL, Orchard PJ, De Oliveira S, Thrasher AJ, Armant M, Dansereau C, Lund TC, Miller WP, Raymond GV, Sankar R, Shah AJ, Sevin C, Gaspar HB, Gissen P, Amartino H, Bratkovic D, NJC S, Paker AM, Shamir E, O’Meara T, Davidson D, Aubourg P, Williams DA (2017) Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med 377(17):1630–1638CrossRefGoogle Scholar
  14. Fan F, Zhao W, Liu J et al (2018) Durable remissions with BCMA-specific chimeric antigen receptor (CAR)-modified T cells in patients with refractory/relapsed multiple myeloma. J Clin Oncol 35(18_suppl):LBA3001–LBA3001.  https://doi.org/10.1200/JCO.2017.35.18_suppl.LBA3001 CrossRefGoogle Scholar
  15. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, Bleakley M, Brown C, Mgebroff S, Kelly-Spratt KS, Hoglund V, Lindgren C, Oron AP, Li D, Riddell SR, Park JR, Jensen MC (2017) Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129(25):3322–3331PubMedPubMedCentralGoogle Scholar
  16. Giavridis T, van der Stegen SJC, Eyquem J et al (2018) CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 24(6):731–738CrossRefGoogle Scholar
  17. Gill S, Frey NV, Hexner EO et al (2017) CD19 CAR-T cells combined with ibrutinib to induce complete remission in CLL. J Clin Oncol 35:7509 (suppl; abstr 7509)CrossRefGoogle Scholar
  18. Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518CrossRefGoogle Scholar
  19. Khalil DN, Smith EL, Brentjens RJ et al (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13:273–290CrossRefGoogle Scholar
  20. Kim MY, Yu KR, Kenderian SS et al (2018) Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell 173(6):1439–1453.e19CrossRefGoogle Scholar
  21. Kochenderfer JN, Somerville RPT, Lu T et al (2017) Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Mol Ther 25(10):2245–2253CrossRefGoogle Scholar
  22. Locke FL, Neelapu SS, Bartlett NL et al (2017a) Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther 25(1):285–295CrossRefGoogle Scholar
  23. Locke FL, Neelapu SS, Bartlett NL et al (2017b) Primary results from ZUMA-1: a pivotal trial of axicabtagene ciloleucel (Axi-cel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (NHL). Presented at 2017 AACR annual meeting; April 1–5, 2017; Washington, DC. Abstract CT019Google Scholar
  24. Lulla P, Ramos CA (2017) Expanding accessibility to CD19-CAR T cells: commercializing a “boutique” therapy. Mol Ther 25(1):8–9CrossRefGoogle Scholar
  25. Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517CrossRefGoogle Scholar
  26. Neelapu SS, Locke FL, Bartlett NL et al (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377(26):2531–2544CrossRefGoogle Scholar
  27. Park JH, Rivière I, Gonen M et al (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378(5):449–459CrossRefGoogle Scholar
  28. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733CrossRefGoogle Scholar
  29. Ramos CA, Ballard B, Zhang H et al (2017) Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest 127(9):3462–3471CrossRefGoogle Scholar
  30. Riddell SR, Sommermeyer D, Berger C, Liu LS, Balakrishnan A, Salter A, Hudecek M, Maloney DG, Turtle CJ (2014) Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J 20(2):141–144CrossRefGoogle Scholar
  31. Rouce RH, Heslop HE (2017) Equal opportunity CAR T cells. Blood 129(25):3275–3277PubMedPubMedCentralGoogle Scholar
  32. Santomasso BD, Park JH, Salloum D et al (2018) Clinical and biologic correlates of neurotoxicity associated with CAR T cell therapy in patients with B-cell acute lymphoblastic leukemia (B-ALL). Cancer Discov 7:811Google Scholar
  33. Schuster SJ, Svoboda J, Chong EA et al (2017a) Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377(26):2545–2554CrossRefGoogle Scholar
  34. Schuster S et al (2017b) Primary analysis of juliet: a global, pivotal, Phase 2 trial of CTL019 in adult patients with relapsed or refractory diffuse large B-cell lymphoma. In: 59th American Society of Hematology annual meeting and exposition. Abstract #577Google Scholar
  35. Schuster SJ, Bishop MR, Tam C et al (2017c) Global pivotal phase 2 trial of the CD19-targeted therapy CTL019 in adult patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) — an interim analysis. Hematol Oncol 35(Suppl 2):27. Abstract published June 7, 2017CrossRefGoogle Scholar
  36. Singh N, Perazzelli J, Grupp SA et al (2016) Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med 8(320):320ra3CrossRefGoogle Scholar
  37. Sommermeyer D, Hudecek M, Kosasih PL et al (2016) Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30(2):492–500CrossRefGoogle Scholar
  38. Sotillo E, Barrett DM, Black KL et al (2015) Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5(12):1282–1295CrossRefGoogle Scholar
  39. Thompson AA, Walters MC, Kwiatkowski J et al (2018) Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med 378(16):1479–1493CrossRefGoogle Scholar
  40. Tran E, Ahmadzadeh M, Lu YC et al (2015) Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350(6266):1387–1390CrossRefGoogle Scholar
  41. Tran E, Robbins PF, Lu YC et al (2016) T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375(23):2255–2262CrossRefGoogle Scholar
  42. Tran E, Robbins PF, Rosenberg SA (2017) ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 18(3):255–262CrossRefGoogle Scholar
  43. Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, Hawkins R, Chaney C, Cherian S, Chen X, Soma L, Wood B, Li D, Heimfeld S, Riddell SR, Maloney DG (2016) Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 8(355):355ra116CrossRefGoogle Scholar
  44. Turtle CJ, Hay KA, Hanafi LA et al (2017) Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol 35(26):3010–3020CrossRefGoogle Scholar
  45. Wang CM et al (2017) Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin lymphoma: an open-label phase I trial. Clin Cancer Res 23(5):1156–1166CrossRefGoogle Scholar
  46. Zacharakis N, Chinnasamy H, Black M et al (2018) Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat Med 24(6):724–730CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Syed A. Abutalib
    • 1
    • 2
  • Saar I. Gill
    • 3
    • 4
  1. 1.Cancer Treatment Centers of AmericaZionUSA
  2. 2.Chicago Medical School, Rosalind Franklin University of Medicine and ScienceNorth ChicagoUSA
  3. 3.Division of Hematology-Oncology, Department of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Smilow Translational Research CenterPhiladelphiaUSA

Personalised recommendations