Advertisement

Anesthetic Considerations in the Evaluation of Children with Glaucoma and Associated Conditions

  • Jacqueline L. Tutiven
  • Dorothea Kadarian-Baumgard
  • Alecia L. S. Stein
Chapter

Abstract

Glaucoma in the pediatric population can be difficult to diagnose and treat without a child’s cooperation. Examination and intervention under anesthesia play a critical role in the management of childhood glaucoma, as detailed elsewhere. This requires a change in setting from the office to the operating room with the availability and assistance of a pediatric anesthesiologist, who may have to sedate or anesthetize the child repeatedly, sometimes even just to confirm the glaucoma diagnosis. An anesthesiologist with specialty training in pediatrics is pertinent, as childhood glaucoma can often be associated with syndromes involving other organ systems, hence making their anesthetic complicated and at times potentially dangerous. Once the glaucoma diagnosis is established, these children may have to return to the operating room multiple times for examinations and/or treatments; thus, having prior anesthetic records with any previous complications can offer vital information to both the pediatric anesthesiologist and pediatric glaucoma specialist. This chapter focuses on the preoperative workup of pediatric patients to ensure that they are optimized medically to undergo sedation and general anesthesia with the lowest possible risk. The intraoperative course is also described, including why sedation may be chosen over general anesthesia and how the various anesthetic drugs such as volatile anesthetics or intravenous induction agents can affect intraocular pressure measurements. The chapter finishes by describing potential postoperative complications related to anesthesia: nausea, vomiting, postoperative delirium, and agitation, along with a brief discussion on various syndromes that could potentially affect the delivery and choice of anesthetic.

Keywords

Glaucoma Pediatric anesthesia Intraocular pressure (IOP) Pediatric sedation Perioperative anesthesia Postoperative nausea and vomiting (PONV) General anesthesia Pediatric induction Laryngeal mask airways 

References

  1. 1.
    Cullen KA, Hall MJ, Golosinskiy A. Ambulatory surgery in the United States, 2006. Natl Health Stat Report. 2009;11:1–2.Google Scholar
  2. 2.
    August DA, Everett LL. Pediatric ambulatory anesthesia. Anesthesiol Clin. 2014;32(2):411–29.PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen MM, Cameron CB, Duncan PG. Pediatric anesthesia morbidity and mortality in the perioperative period. Anesth Analg. 1990;70(2):160–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Bhananker SM, Ramamoorthy C, Geiduschek JM, Posner KL, Domino KB, Haberkern CM, et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105(2):344–50.PubMedCrossRefGoogle Scholar
  5. 5.
    Flick RP, Sprung J, Harrison TE, Gleich SJ, Schroeder DR, Hanson AC, et al. Perioperative cardiac arrests in children between 1988 and 2005 at a tertiary referral center: a study of 92,881 patients. Anesthesiology. 2007;106(2):226–37. quiz 413–4PubMedCrossRefGoogle Scholar
  6. 6.
    Ramamoorthy C, Haberkern CM, Bhananker SM, Domino KB, Posner KL, Campos JS, Morray JP. Anesthesia-related cardiac arrest in children with heart disease: data from the Pediatric Perioperative Cardiac Arrest (POCA) registry. Anesth Analg. 2010;110(5):1376–82.PubMedCrossRefGoogle Scholar
  7. 7.
    Committee on Standards and Practice Parameters, Apfelbaum JL, Connis RT, Nickinovich DG, American Society of Anesthesiologists Task Force on Preanesthesia Evaluation, Pasternak LR, Arens JF, Caplan RA, et al. Practice advisory for pre-anesthesia evaluation. An updated report by the American Society of Anesthesiologists Task Force on Pre-anesthesia Evaluation. Anesthesiology. 2012;116(3):522–38.CrossRefGoogle Scholar
  8. 8.
    Bryson GL, Chung F, Finegan BA, Friedman Z, Miller DR, van Vlymen J, et al. Canadian Ambulatory Anesthesia Research Education group. Patient selection in ambulatory anesthesia - an evidence-based review: part I. Can J Anaesth. 2004;51(8):768–81. ReviewPubMedCrossRefGoogle Scholar
  9. 9.
    Bryson GL, Chung F, Cox RG, Crowe MJ, Fuller J, Henderson C, et al. Canadian Ambulatory Anesthesia Research Education group. Patient selection in ambulatory anesthesia - an evidence-based review: part II. Can J Anaesth. 2004;51(8):782–94. ReviewPubMedCrossRefGoogle Scholar
  10. 10.
    Heinrich S, Birkholz T, Ihmsen H, Irouschek A, Ackermann A, Schmidt J. Incidence and predictors of difficult laryngoscopy in 11,219 pediatric anesthesia procedures. Paediatr Anaesth. 2012;22(8):729–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Heinrich S, Birkholz T, Ihmsen H, Irouschek A, Ackermann A, Cesnjevar R, Schmidt J. Incidence and predictors of poor laryngoscopic view in children undergoing pediatric cardiac surgery. J Cardiothorac Vasc Anesth. 2013;27(3):516–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Mirghassemi A, Soltani AE, Abtahi M. Evaluation of laryngoscopic views and related influencing factors in a pediatric population. Paediatr Anaesth. 2011;21(6):663–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Crosby ET, Cooper RM, Douglas MJ, Doyle DJ, Hung OR, Labrecque P, et al. The unanticipated difficult airway with recommendations for management. Can J Anaesth. 1998;45(8):757–76. ReviewPubMedCrossRefGoogle Scholar
  14. 14.
    Kumar HV, Schroeder JW, Gang Z, Sheldon SH. Mallampati score and pediatric obstructive apnea. J Clin Sleep Med. 2014;10(9):985–90.PubMedPubMedCentralGoogle Scholar
  15. 15.
    American Academy of Pediatrics, American Academy of Pediatric Dentistry, Coté CJ, Wilson S, Work Group on Sedation. Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures: an update. Pediatrics. 2006;118(6):2587–602.CrossRefGoogle Scholar
  16. 16.
    American Society of Anesthesiologists. ASA physical status classification system. Last approved by the ASA House of Delegates on 15 Oct 2014. https://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system. Accessed 17 Jun 2017.
  17. 17.
    Motas D, McDermott NB, VanSickle T, Friesen RH. Depth of consciousness and deep sedation attained in children as administered by nonanesthesiologists in a children’s hospital. Pediatri Anaesth. 2004;14(3):256–0.CrossRefGoogle Scholar
  18. 18.
    American Academy of Pediatrics, American Academy of Pediatric Dentistry. Guideline for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures. Pediatr Dent. 2008–2009;30(7 Suppl):143–59.Google Scholar
  19. 19.
    Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures. An updated report by the American Society of Anesthesiologists Taskforce on Preoperative Fasting and the Use of Pharmacologic Agents to Reduce the Risk of Pulmonary Aspiration. Anesthesiology. 2017;126(3):376–93.CrossRefGoogle Scholar
  20. 20.
    Olsson GL, Hallen B, Hambraeus-Jonzon K. Aspiration during anaesthesia: a computer-aided study of 185,358 anaesthetics. Acta Anaesthesiolo Scand. 1986;30(1):84–92.CrossRefGoogle Scholar
  21. 21.
    Benington S, Severn A. Preventing aspiration and regurgitation. Anesth Intensive Care Med. 2007;8(9):368–72.CrossRefGoogle Scholar
  22. 22.
    Malviya S, Voepel-Lewis T, Tait AR, Merkel S, Tremper K, Naughton N. Depth of sedation in children undergoing computed tomography; validity and reliability of the University of Michigan Sedation Scale (UMSS). Br J Anaesth. 2002;88(2):241–5.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Green SM, Mason KP, Krauss BS. Ketamine and propofol sedation by emergency medicine specialists: mainstream or menace? Br J Anaesth. 2016;116(4):449–51.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Dial S, Silver P, Bock K, Sagy M. Pediatric sedation for procedures titrated to a desired degree of immobility results in unpredictable depth of sedation. Pediatr Emerg Care. 2001;17(6):414–20.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Oberacher-Velten I, Prasser C, Rochon J, Ittner KP, Helbig H, Lorenz B. The effect of midazolam on intraocular pressure in children during examination under sedation. Br J Ophthalmol. 2011;95(8):1102–5.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Fazi L, Jantzen EC, Rose JB, Kurth CD, Watcha MF. A comparison of oral clonidine and oral midazolam as preanesthetic medications in the pediatric tonsillectomy patients. Anesth Analg. 2001;92(1):56–61.PubMedCrossRefGoogle Scholar
  27. 27.
    Gobeaux D, Sardinal F. Midazolam and flumazenil in ophthalmology. Acta Anaesthesthiol Scand Suppl. 1990;92:35–8.CrossRefGoogle Scholar
  28. 28.
    Nagdeve NG, Yaddanapudi S, Pandav SS. The effect of different doses of ketamine on intraocular pressure in anesthetized children. J Pediatr Ophthalmol Strabismus. 2006;43(4):219–23.PubMedGoogle Scholar
  29. 29.
    Kim KS, Kwak HJ, Min SK, Lee SY, Kim KM, Kim JY. The effect of ketamine on tracheal intubating conditions without neuromuscular blockade during sevoflurane induction in children. J Anesthesia. 2011;25(2):195–9.CrossRefGoogle Scholar
  30. 30.
    Morris C, Perris A, Klein J, Mahoney P. Anesthesia in haemodynamically compromised patients: does ketamine represent the best choice of induction agent? Anesthesiology. 2009;64(5):532–9.Google Scholar
  31. 31.
    Sator-Katzenschlager S, Deusch E, Dolezal S, Michalek-Sauberer A, Grubmüller R, Heinze G, Wedrich A. Sevoflurane and propofol decrease intraocular pressure equally during non-ophthalmic surgery and recovery. Br J Anaesth. 2002;89(5):764–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Schäfer R, Klett J, Auffarth G, Polarz H, Völcker HE, Martin E, Böttiger BW. Intraocular pressure more reduced during anesthesia with propofol than with Sevoflurane: both combined with remifentanil. Acta Anaesthesiol Scand. 2002;46(6):703–6.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Neel S, Deitch R Jr, Moorthy SS, Dierdorf S, Yee R. Changes in intraocular pressure during low dose intravenous sedation with propofol before cataract surgery. Br J Ophthalmol. 1995;79(12):1093–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lauretti GR, Lauretti CR, Lauretti-Fihlo A. Propofol decreases ocular pressure in outpatients undergoing trabeculectomy. J Clin Anaesth. 1997;9(4):289–92.CrossRefGoogle Scholar
  35. 35.
    Cravero JP, Beach ML, Blike GT, Gallagher SM, Hertzog JH, Pediatric Sedation Research Consortium. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth Analg. 2009;108(3):795–804.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Asserhøj LL, Mosbech H, Krøigaard M, Garvey LH. No evidence for contraindications to the use of propofol in adults allergic to egg, soy or peanut. Br J Anaesth. 2016;116(1):77–82.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mahmoud M, Gunter J, Donnelly LF, Wang Y, Nick TG, Sadhasivam S. A comparison of Dexmedetomidine with propofol for magnetic resonance imaging sleep studies in children. Anesth Analg. 2009;109(3):745–53.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Deutsch E, Tobias JD. Hemodynamic and respiratory changes following dexmedetomidine administration during general anesthesia: sevoflurane vs desflurane. Pediatr Anesth. 2007;17(5):438–44.CrossRefGoogle Scholar
  39. 39.
    Mason KP, Zgleszewski S, Forman RE, Stark C, DiNardo JA. An exaggerated hypertensive response to glycopyrrolate therapy for bradycardia associated with high dose dexmedetomidine. Anesth Analg. 2009;108(3):906–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Mason KP, Lerman J. Dexmedetomidine in children: current knowledge and future applications. Anesth Analg. 2011;113(5):1129–42.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Termühlen J, Gottschalk A, Eter N, Hoffmann EM, Van Aken H, Grenzebach U, Prokosch V. Does general anesthesia have a clinical impact on intraocular pressure in children? Paediatr Anaesth. 2016;26(9):936–41.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Bhargava AK, Setlur R, Sreevastava D. Correlation of bispectral index and Guedel’s stages of ether anesthesia. Anesth Analg. 2004;98(1):132–4.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Blumberg D, Congdon N, Jampel H, Gilbert D, Elliott R, Rivers R, et al. The effects of sevoflurane and ketamine on intraocular pressure in children during examination under anesthesia. Am J Ophthalmol. 2007;143(3):494–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Korenfeld MS, Dueker DK. Review of external ocular compression: clinical applications of the ocular pressure estimator. Clin Ophthalmol. 2016;10:343–57.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Verghese C, Brimacombe JR. Survey of laryngeal mask airway usage in 11,910 patients: safety and efficacy for conventional and nonconventional usage. Anesth Analg. 1996;82(1):129–33.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Bhardwaj N, Yaddanapudi S, Singh S, Pandav SS. Insertion of laryngeal mask airway does not increase the intraocular pressure in children with glaucoma. Paediatr Anesth. 2011;21(10):1036–40.CrossRefGoogle Scholar
  47. 47.
    Stillman PC. Lingual oedema associated with the prolonged use of an inappropriately large laryngeal mask airway (LMARM) in an infant. Paediatr Anaesth. 2003;13(7):637–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Akhtar TM, Street MK. Risk of aspiration with a laryngeal mask airway. Br J Anaesth. 1994;72(4):447–50.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Marjot R. Pressure exerted by the laryngeal mask airway cuff upon the pharyngeal mucosa. Br J Anaesth. 1993;70(1):25–9.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Mathis MR, Haydar B, Taylor EL, Morris M, Malviya SV, Christensen RE, et al. Failure of the Laryngeal Mask Airway Unique™ and Classic™ in the pediatric surgical patient: a study of clinical predictors and outcomes. Anesthesiology. 2013;119(6):1284–95.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Berdahl JP, Fautsch MP, Stinnett SS, Allingham RR. Intracranial pressure in primary open angle glaucoma, normal tension glaucoma, and ocular hypertension: a case-control study. Invest Ophthalmol Vis Sci. 2008;49(12):5412–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ozcan MS, Praetel C, Bhatti MT, Gravenstein N, Mahla ME, Seubert CN. The effect of body inclination during prone positioning on intraocular pressure in awake volunteers: a comparison of two operating tables. Anesth Analg. 2004;99(4):115–8.CrossRefGoogle Scholar
  53. 53.
    Chiu CL, Jaais F, Wang CY. Effect of rocuronium compared with succinylcholine on intraocular pressure during rapid sequence induction anesthesia. Br J Anaesth. 1999;82(5):757–60.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Murphy DF. Anesthesia and intraocular pressure. Anesth Analg. 1985;64(5):520–30.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Cymbor M, Knapp E, Carlin F. Idiopathic elevated episcleral venous pressure with secondary glaucoma. Optom Vic Sci. 2013;90(7):e213–7.CrossRefGoogle Scholar
  56. 56.
    Teba L, Viti A, Banks DE, Fons A, Barbera M, Hshieh PB. Intraocular pressure during mechanical ventilation with different levels of positive end-expiratory pressure. Crit Care Med. 1993;21(6):867–70.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Cunningham AJ. Intraocular pressure – physiology and implications for anesthetic management. Can Anaesth Soc J. 1986;33(2):195–208.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Okafor KC, Brandt JD. Measuring intraocular pressure. Curr Opin Ophthalmol. 2015;26(2):103–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Mamikonian VR, Galoian NS, Sheremet NL, Kazarian EE, Kharlap SI, Shmeleva-Demir OA, et al. Peculiarities of ocular blood flow in ischemic optic neuropathy and normal tension glaucoma. Vestn Oftalmol. 2013, 129(4):3–8. (Article in Russian) Google Scholar
  60. 60.
    Singleton CD, Robertson D, Byrne DW, Joos KM. Effect of posture on blood and intraocular pressures in multiple system atrophy, pure autonomic failure and baroreflex failure. Circulation. 2003;108(19):2349–54.PubMedCrossRefGoogle Scholar
  61. 61.
    Nathanson JA. Adrenergic regulation of intraocular pressure: identification of beta-2-adrenergic-simulated adenylate cyclase in ciliary process epithelium. Proc Natl Acad Sci U S A. 1980;77(12):7420–4.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    McDougal DH, Graham PD. Autonomic control of the eye. Compr Physiol. 2015;5(1):439–73.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Kreiglstein CK, Langham ME, Leydhecker W. The peripheral and central neural action of clonidine in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci. 1978;17(2):149–58.Google Scholar
  64. 64.
    Oltulu R, Satirtav G, Ersan I, Soylu E, Okka M, Zengin N. Effect of dehydration and fasting on corneal biomechanical properties and intraocular pressures. Eye Contact Lens. 2016;42(6):392–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Hunt AP, Feigl B, Stewart IB. The intraocular pressure response to dehydration: a pilot study. Eur J Appl Physiol. 2012;112(5):1963–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Mikhail M, Sabri K, Levin AV. The effect of anesthesia on intraocular pressure measurement in children. Surv Ophthalmol. 2017;62(5):648–58.PubMedCrossRefGoogle Scholar
  67. 67.
    Lalwani K, Fox EB, Fu R, Edmunds B, Kelly LD. The effect of nitrous oxide on intra-ocular pressure in healthy adults. Anaesthesia. 2012;67(3):256–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Shibata S, Shigeomi S, Sato W, Enzan K. Nitrous oxide administration during washout of sevoflurane improves post anesthetic agitation in children. J Anesth. 2005;12(2):160–3.CrossRefGoogle Scholar
  69. 69.
    Lee EJ. Use of nitrous oxide causing severe visual loss 37 days after retinal surgery. Br J Anaesth. 2004;93(3):464–6.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    TerRiet MF, DeSouza GJ, Jacobs JS, Young D, Lewis MC, Herrington C, Gold MI. Which is more pungent: isoflurane, sevoflurane or desflurane? Br J Anaesth. 2000;85(2):305–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Eber TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology. 1993;79(3):444–53.CrossRefGoogle Scholar
  72. 72.
    Part TJ, Lim HK, Jang KY Um DJ. The effects of desflurane and sevoflurane on the intraocular pressure associated with endotracheal intubation in pediatric ophthalmic surgery. Korean J Anesthesiol. 2013;64(2):117–21.CrossRefGoogle Scholar
  73. 73.
    Yodhikawa K, Murai Y. The effect of ketamine on intraocular pressure in children. Anesth Analg. 1971;50(2):199–202.Google Scholar
  74. 74.
    Jones L, Sung V, Lascaratos G, Nagi H, Holder R. Intraocular pressure after ketamine and sevoflurane in children with glaucoma undergoing examination under anesthesia. Br J Ophthalmol. 2010;94(1):33–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Vanlander AV, Okun JG, de Jaeger A, Smet J, De Latter E, De Paepe B, et al. Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme Q. Anesthesiology. 2015;122(2):343–52.PubMedCrossRefGoogle Scholar
  76. 76.
    Vanlander AV, Jorens PG, Smet J, De Paepe B, Verbrugghe W, Van den Eynden GG, et al. Inborn oxidative phosphorylation defect as risk factor for propofol infusion syndrome. Acta Anaesthesiol Scand. 2012;56(4):530–5.CrossRefGoogle Scholar
  77. 77.
    Molina-Infante J, Arias A, Vara-Brenes D, Prados-Manzano R, Gonzalez-Cervera J, Alvarado-Arenas M, Lucendo AJ. Propofol administration is safe in adult eosinophilic patients sensitized to egg, soy or peanut. Allergy. 2014;69(3):388–94.PubMedCrossRefGoogle Scholar
  78. 78.
    Alipour M, Derakhshan A, Pourmazar R, Abrishami M, Ghanbarabadi VG. Effects of propofol, etomidate and thiopental on intraocular pressure and hemodynamic responses in pharmacoemulsification by insertion of laryngeal mask airway. J Ocul Pharmacol Ther. 2014;30(8):665–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Besunder IB, Reed MD, Blumer IL. Principles of drug bio disposition in the neonate. A critical evaluation of the pharmacologic-pharmacodynamic interface (Part I). Clin Pharmacokinet. 1998;14(4):189–216.CrossRefGoogle Scholar
  80. 80.
    Mulroy MF. Systemic toxicity and Cardiotoxicity from local anesthetics: incidence and preventative measures. Reg Anesth Pain Med. 2002;27(6):556–61.PubMedCrossRefGoogle Scholar
  81. 81.
    Litz RJ, Roessel T, Heller AR, Stehr SN. Reversal of central nervous system and cardiac toxicity after local anesthetic intoxication by lipid emulsion injection. Anesth Analg. 2008;106(5):1575–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Weinberg GL. Lipid emulsion infusion: resuscitation for local anesthetic and other drug over dose. Anesthesiology. 2012;117(1):180–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Patel Z, Palte HP, Tutiven J. Postoperative analgesia and infant vitreoretinal surgery. Paediatr Anaesth. 2012;22(12):1225–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Tocchio S, Kline-Fath B, Kanal E, Schmithorst VJ, Panigrahy A. MRI evaluation and safety in the developing brain. Semin Perinatol. 2015;39(2):73–104.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Malihi M, MaLaren JW, Sit AJ. Effect of topical anesthesia on episcleral venous pressure in normal human subjects. Invest Ophthalmol Vic Sci. 2015;56(5):2968–70.CrossRefGoogle Scholar
  86. 86.
    Guidelines for the ethical conduct of studies to evaluate drugs in pediatric populations. Committee on drugs, American Academy of Pediatrics. Pediatrics. 1995;95(2):286–94.Google Scholar
  87. 87.
    Tanaka A, Isono S, Ishikawa T, Sato J, Nishino T. Laryngeal resistance before and after minor surgery: endotracheal tube versus laryngeal mask airway. Anesthesiol. 2003;99(2):252–8.CrossRefGoogle Scholar
  88. 88.
    Sayed JA, F Riad MA, M Ali MO. Comparison of dexmedetomidine or intravenous fluids or combination of both on postoperative nausea, vomiting and pain in pediatric strabismus surgery. J Clin Anaesth. 2016;34:136–42.CrossRefGoogle Scholar
  89. 89.
    Allen LE, Sudesh S, Sandramouli S, Cooper G, McFarlane D, Willshaw HE. The association between the oculocardiac reflex and post-operative vomiting in children undergoing strabismus surgery. Eye (Lond). 1998;12(Pt 2):193–6.CrossRefGoogle Scholar
  90. 90.
    Villeret I, Laffon M, Duchalais A, Blond MH, Lecuyer AI, Mercier C. Incidence of postoperative nausea and vomiting in paediatric ambulatory surgery. Paediatr Anaesth. 2002;12(8):712–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Gupta N, Kumar R, Kumar S, Sehgal R, Sharma KR. A prospective randomized double blind study to evaluate the effect of peribulbar block or topical application of local anaesthetic combined with general anaesthesia on intraoperative and postoperative complications during paediatric strabismus surgery. Anaesthesiol. 2007;62(11):1110–3.CrossRefGoogle Scholar
  92. 92.
    Palmer GM, Atkins M, Anderson BJ, Smith KR, Culnane TJ, McNally CM, et al. I.V. Acetaminophen pharmacokinetics in neonates after multiple doses. Br J Anaesth. 2008;101(4):523–30.PubMedCrossRefGoogle Scholar
  93. 93.
    Hopkins PM. Malignant hyperthermia: advances in clinical management and diagnosis. Br J Anaesth. 2000;85(1):118–28.PubMedCrossRefGoogle Scholar
  94. 94.
    Krause T, Gerbershagen MU, Fiege M, Weisshorn R, Wappler F. Dantrolene—a review of its pharmacology, therapeutic use and new developments. Anaesthesia. 2004;59(4):364–73.PubMedCrossRefGoogle Scholar
  95. 95.
    Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K. Malignant hyperthermia: a review. Orphanet J Rare Dis. 2015;10:93.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kim TW, Nemergut ME. Preparation of modern anesthesia workstations for malignant hyperthermia-susceptible patients: a review of past and present practice. Anesthesiology. 2011;114(1):205–12.PubMedCrossRefGoogle Scholar
  97. 97.
    Hoguet A, Grajewski A, Hodapp E, Chang TC. A retrospective survey of childhood glaucoma prevalence according to Childhood Glaucoma Research Network classification. Indian J Ophthalmol. 2016;64(2):118–23.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    van der Griend BF, Lister NA, McKenzie IM, Martin N, Ragg PG, Sheppard SJ, Davidson AJ. Postoperative mortality in children after 101,885 anesthetics at a tertiary pediatric hospital. Anesth Analg. 2011;112(6):1440–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Houck CS, Vinson AE. Anaesthetic considerations for surgery in newborns. Arch Dis Child Fetal Neonatal Ed. 2017;102(4):F359–63.PubMedCrossRefGoogle Scholar
  100. 100.
    Jevtovic-Todorovic V. General anesthetics and neurotoxicity: how much do we know? Anesthesiol Clin. 2016;34(3):439–51.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zhang X, Liu F, Slikker W Jr, Wang C, Paule MG. Minimally invasive biomarkers of general anesthetic-induced developmental neurotoxicity. Neurotoxicol Teratol. 2017;60:95–101.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Andropoulos DB, Greene MF. Perspective: Anesthesia and developing brains-implications of the FDA warning. N Engl J Med. 2017;376(10):905–7.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Alam A, Suen KC, Hana Z, Sanders RD, Maze M, Ma D. Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon. Neurotoxicol Teratol. 2017;60:102–16.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Yeung H, Walton D. Clinical classification of childhood glaucoma. Arch Ophthalmol. 2010;128(6):680–4.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Hoskin H, Shaffer R, Hetherington J. Anatomical classification of the developmental glaucoma. Arch Ophthalmol. 1984;102(9):1331–6.CrossRefGoogle Scholar
  106. 106.
    Roy FH. Comprehensive development glaucoma classification. Ann Ophthalmol. 2005;37(4):237–44.CrossRefGoogle Scholar
  107. 107.
    Beck A, Chang TCP, Freedman S. Definition, classification, differential diagnosis. In: Weinreb RN, Grajewski A, Papadopoulos M, Grigg J, Freedman S, editors. Childhood glaucoma, World Glaucoma Association Consensus Series 9. Amsterdam: Kugler Publications; 2013. p. 3–10.Google Scholar
  108. 108.
    Tutiven J. Anaesthetic consideration for syndromic children undergoing eye surgery. Curr Anaesth Crit Care. 2006;17(3–4):207–13.CrossRefGoogle Scholar
  109. 109.
    Bissonnette B, Luginbuehl I, Marciniak B, Dalens B, editors. Syndromes: rapid recognition and perioperative implications. New York: McGraw Hill; 2006.Google Scholar
  110. 110.
    Chen J, Smith LE. Retinopathy of prematurity. Angiogenesis. 2007;10(2):133–40.PubMedCrossRefGoogle Scholar
  111. 111.
    Ichhpujani P, Singh R. Pediatric genetic diseases causing glaucoma. J Pediatr Genet. 2014;3(4):209–18.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Klumpp S, Jorge LM, Aziz-Sultan MA. Hemodynamic instability induced by superselective angiography of the ophthalmic artery. Case Rep Anesthesiol. 2013;2013:408670.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Smith DW, Patau K, Therman E, Inhorn SL. A new autosomal trisomy syndrome: multiple congenital anomalies caused by an extra chromosome. J Pediatr. 1960;57:338–45.PubMedCrossRefGoogle Scholar
  114. 114.
    Stevens CA. Rubinstein-Taybi Syndrome. 30 Aug 2002 [Updated 7 Aug 2014]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle: University of Washington; 1993–2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1526/. Accessed 19 Dec 2017.
  115. 115.
    Pollard R, Beasley J. Anaesthesia for patients with trisomy 13 (Patau's syndrome). Paediatr Anaesth. 1996;6(2):151–3.PubMedCrossRefGoogle Scholar
  116. 116.
    Cladis FP. Appendix D: Index of syndromes and their pediatric anesthetic implications. In: Davis PJ, Cladis FP, Motoyama EK, editors. Smith's anesthesia for infants and children. 8th ed. Philadelphia: Mosby; 2011.Google Scholar
  117. 117.
    Wren C, Richmond S, Donaldson L. Presentation of congenital heart disease in infancy: implications for routine examination. Arch Dis Child Fetal Neonatal Ed. 1999;80(1):F49–53.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Hoffman J. Incidence of congenital heart disease, part I: postnatal incidence. Pediatr Cardiol. 1995;16(3):103–13.PubMedCrossRefGoogle Scholar
  119. 119.
    Baum V, Barton D, Gutgesell HP. Influence of congenital heart disease on mortality after noncardiac surgery in hospitalized children. Pediatrics. 2000;105(2):332–5.PubMedCrossRefGoogle Scholar
  120. 120.
    Sümpelmann R, Osthaus W. The pediatric cardiac patient presenting for noncardiac surgery. Curr Opin Anaesthesiol. 2007;20(3):216–20.PubMedCrossRefGoogle Scholar
  121. 121.
    White M. Approach to managing children with heart disease for noncardiac surgery. Paediatr Anaesth. 2011;21(5):522–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jacqueline L. Tutiven
    • 1
  • Dorothea Kadarian-Baumgard
    • 2
  • Alecia L. S. Stein
    • 3
    • 4
  1. 1.Pediatric Anesthesia Fellowship, University of Miami Department of AnesthesiologyUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Division of Pediatric Anesthesia, Department of AnesthesiologyHoltz Children’s Hospital at Jackson Memorial Hospital, University of Miami Miller School of MedicineMiamiUSA
  3. 3.Division of Pediatric Anesthesiology, Department of AnesthesiologyPerioperative Medicine and Pain Management, University of Miami Health CentersFLUSA
  4. 4.Jackson Memorial Hospital, University of Miami Miller School of MedicineFLUSA

Personalised recommendations