Influence of Mixture Composition in the Collapse of Soil Columns Open image in new window

  • Lorenzo BrezziEmail author
  • Fabio Gabrieli
  • Simonetta Cola
  • Isabella Onofrio
Conference paper


The collapse and consequent spreading of a column of granular or cohesive material is a simple experiment used by many research groups to study the rheology of the soils and for calibrating numerical propagation models. This paper deals with the results of a comprehensive experimental program carried out with mixtures of sand, kaolin and water: the main aim of the program is to know and understand how the mixture composition influences the collapse and run-out mechanism. In particular, the run-out length and the profile of the final deposit are the two fundamental characteristics taken into consideration to distinguish each test and to find a relation with the mixture composition. Four percentages of kaolin and water are considered for the experiments and different amounts of sand are added to these matrices. The main aim is the comprehension of the role of the coarser granular material in a cohesive collapsing mass. Finally, the dependency of the final runout on the aspect ratio of the initial column is discussed.


Slump test Collapse Kaolin Granular mixtures 


  1. Artoni R, Santomaso AC, Gabrieli F, Tono D, Cola S (2013) Collapse of quasi-two-dimensional wet granular columns. Phys Rev E 87(3):032205CrossRefGoogle Scholar
  2. Brezzi L, Bossi G, Gabrieli F, Marcato G, Pastor M, Cola S (2015) A new data assimilation procedure to develop a debris flow run-out model. Landslides, 1–14. doi: 10.1007/s10346-015-0625-y CrossRefGoogle Scholar
  3. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271CrossRefGoogle Scholar
  4. Gabrieli F, Artoni R, Santomaso A, Cola S (2013) Discrete particle simulations and experiments on the collapse of wet granular columns. Phys Fluids 25(10):103303CrossRefGoogle Scholar
  5. Hungr O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21(4):663–677CrossRefGoogle Scholar
  6. Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296CrossRefGoogle Scholar
  7. Iverson RM (2015) Scaling and design of landslide and debris-flow experiments. Geomorphology 244:9–20CrossRefGoogle Scholar
  8. Körner HJ (1976) Reichweite und Geschwindigkeit von Bergstürzen und Fließschneelawinen. Rock Mech 8(4):225–256Google Scholar
  9. Lagrée PY, Staron L, Popinet S (2011) The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a μ (i)-rheology. J Fluid Mech 686:378–408CrossRefGoogle Scholar
  10. Lajeunesse E, Mangeney-Castelnau A, Vilotte JP (2004) Spreading of a granular mass on a horizontal plane. Phys Fluids 16(7):2371–2381CrossRefGoogle Scholar
  11. Lube G, Huppert HE, Sparks RSJ, Hallworth MA (2004) Axisymmetric collapses of granular columns. J Fluid Mech 508:175–199CrossRefGoogle Scholar
  12. Lube G, Huppert HE, Sparks RSJ, Freundt A (2005) Collapses of two-dimensional granular columns. Phys Rev E 72(4):041301CrossRefGoogle Scholar
  13. Major JJ, Pierson TC (1992) Debris flow rheology: Experimental analysis of fine-grained slurries. Water Resour Res 28(3):841–857CrossRefGoogle Scholar
  14. Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Met Geomech 33(2):143–172CrossRefGoogle Scholar
  15. Phillips CJ (1988) Rheological investigations of debris flow materials. PhD Thesis. Univ of CanterburyGoogle Scholar
  16. Pirulli M, Sorbino G (2008) Assessing potential debris flow runout: a comparison of two simulation models. Nat Hazard Earth Sys Science 8:961–971CrossRefGoogle Scholar
  17. Rickenmann D (2005) Runout prediction methods. Debris-flow hazards and related phenomena. Springer, Berlin Heidelberg, pp 305–324CrossRefGoogle Scholar
  18. Scheidl C, Rickenmann D, McArdell BW (2013) Runout prediction of debris flows and similar mass movements. In: Landslide Science and Practice. Springer, Berlin Heidelberg, pp 221–229CrossRefGoogle Scholar
  19. Seng S, Tanaka H (2012) Properties of very soft clays: A study of thixotropic hardening and behavior under low consolidation pressure. Soils Found 52(2):335–345CrossRefGoogle Scholar
  20. Soga K, Alonso E, Yerro A, Kumar K, Bandara S (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3):248–273CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lorenzo Brezzi
    • 1
    Email author
  • Fabio Gabrieli
    • 1
  • Simonetta Cola
    • 1
  • Isabella Onofrio
    • 1
  1. 1.Department ICEAUniversity of PaduaPaduaItaly

Personalised recommendations