Advertisement

Multi-methodological Studies on the Large El Capulín Landslide in the State of Veracruz (Mexico) Open image in new window

  • Martina WildeEmail author
  • Wendy V. Morales Barrera
  • Daniel Schwindt
  • Matthias Bücker
  • Berenice Solis Castillo
  • Birgit Terhorst
  • Sergio R. Rodríguez Elizarrarás
Conference paper

Abstract

During the last decade, the State of Veracruz (Mexico) experienced a series of intense rainfall seasons with more than 1000 registered landslides. As a consequence, more than 45,000 people had to be evacuated and resettled. Even though the mountainous areas of Veracruz are highly prone to landslides, neither susceptibility maps nor any other relevant information (distribution of landslides, geology, etc.) with high spatial resolution is available. The high social impact of the most recent landslide hazards points out the necessity of detailed investigations in the affected areas. The aim of this study is to improve the understanding of process dynamics for the landslides and to provide the base for future susceptibility mapping. As an example, a young landslide with a high complexity of nested processes from the year 2013 is selected for detailed investigations in the east Trans Mexican Volcanic Belt in the State of Veracruz, related to the complexity of the studied landslide a multi-methodological approach is applied, which includes geomorphological mapping, sediment characterization as well as geophysical methods (electrical resistivity tomography, seismic refraction tomography). Field results indicate that the studied landslide must be regarded as a reactivated older landslide body, with a variety of intricate processes and numerous secondary slides. Detailed investigations provide deep insights in the dynamics and interactions of landslide processes related to their natural and anthropogenic settings.

Keywords

Landslide Electrical resistivity tomography Seismic refraction tomography Mexico 

Notes

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) (Te295/19-1) and the German Academic Exchange Service (DAAD) for funding. Furthermore, we thank the Civil Protection of Veracruz, for their cooperation. We also would like to express our appreciation to the landowners and the community of El Capulín for their help. Special thanks goes to Dr. Elizabeth Solleiro Rebolledo (UNAM) for scientific and personal support.

References

  1. Alcántara-Ayala I (2008) On the historical account of disastrous lands in Mexico: the challenge of risk management and disaster prevention. Adv Geosci 14:159–164CrossRefGoogle Scholar
  2. Demant A (1978) Características del Eje Neovolcánico Transmexicano y sus problemas de interpretación. Revista Instituto de Geología. 2:172–187Google Scholar
  3. Fell R, Hartford D (1997) Landslide risk assessment. In: Cruden D, Fell R (eds) Proceedings of the international workshop on landslide risk assessment, Honolulu, Hawaii, USA, 19–21 Feb 1997. A.A. Balkema Rotterdam, 371p. ISBN 978-9-054-10914-3Google Scholar
  4. Ferrari L, Tagami T, Eguchi M, Orozco-Esquivel MT, Petron CM, Jacobo-Albarrán J, López-Martínez M (2005) Geology, geochronology and tectonic setting of late Cenozoic volcanism along the southwestern Gulf of Mexico: The Eastern Alkaline Province revisited. J Volcanol Geoth Res 146(4):284–306CrossRefGoogle Scholar
  5. Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522–523:122–149CrossRefGoogle Scholar
  6. Giocoli A, Stabile TA, Adurno I, Perrone A, Gallipoli MR, Gueguen E, Norelli E, Piscitelli S (2015) Geological and geophysical characterization of the southeastern side of the High Agri Valley (southern Apennines, Italy). Nat Hazards Earth Syst Sci 15(2):315–323CrossRefGoogle Scholar
  7. Gómez-Tuena A (2002) Control Temporal del Magmatismo de Subducción en la Porción Oriental de la Faja Volcánica Transmexicana: Caracterización del Manto, Componentes en Subducción y Contaminación Cortical. Ph.D. thesis, National Autonomous University of Mexico, Mexico City, MexicoGoogle Scholar
  8. Gómez-Tuena A, LaGatta AB, Langmuir CH, Goldstein SL, Doherty L, Ortega-Gutiérrez F, Carrasco-Núñez G (2003) Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: Mantle sources, slab contributions, and crustal contamination. Geochem Geophys Geosyst 4–8:1–33Google Scholar
  9. Gómez-Tuena A, Orozco-Esquivel MT, Ferrari L (2005) Petrogénesis ígnea de la Faja Volcánica Transmexicana. Boletín de la Sociedad Geológica Mexicana. Volumen Conmemorativo del Centenario, Tomo LVII. 3:227–283Google Scholar
  10. Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58:89–107CrossRefGoogle Scholar
  11. Guzzetti F, Carrara A, Cardinali M, Reichenabch P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale-study, Central Italy. Geomorphology 31:181–216CrossRefGoogle Scholar
  12. Heimsath AM, Korup O (2012) Quantifying rates and processes of landscape evolution. Earth Surf Proc Land 37:249–251CrossRefGoogle Scholar
  13. Hibert C, Grandjean G, Bitri A, Travelletti J, Malet JP (2012) Characterizing lands through geophysical data fusion: example of the La Valette landslide (France). Eng Geol 128:23–29CrossRefGoogle Scholar
  14. Jongmans D, Bièvre G, Renalier F, Schwartz S, Beaurez N, Orengo Y (2009) Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng Geol 109:45–56CrossRefGoogle Scholar
  15. Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60(6):1682–1690CrossRefGoogle Scholar
  16. López-Infanzón M (1991) Petrologic study of the volcanic rocks in the Chiconquiaco-Palma Sola area, central Veracuz, Mexico. MS thesis, Tulane University of Louisiana, New Orleans, USAGoogle Scholar
  17. Margottini C, Canuti P, Sassa K (eds) (2013) Landslide science and practice. Volume 7: Social and economic impact and policies. Springer, Berlin, 333p. ISBN 978-3-642-31312-7Google Scholar
  18. Morales-Barrera W, Rodríguez-Elizarrarás SR (2014) La Gestión del Riesgo por deslizamientos de laderas en el estado de Veracruz durante 2013. Gobierno del Estado de Veracruz. Secretaría de Protección Civil, 113p. ISBN 978-607-7527-90-9Google Scholar
  19. Nixon GT (1982) The relationship between Quaternary volcanism in central Mexico and the seismicity and structure of subducted ocean lithosphere. Geol Soc Am Bull 93:514–523CrossRefGoogle Scholar
  20. Pardo M, Suárez G (1995) Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications. J Geophys Res Solid Earth 100(B7):357–373CrossRefGoogle Scholar
  21. Perrone A, Lapenna V, Piscitelli S (2014) Electrical resistivity tomography technique for landslide investigation: a review. Earth Sci Rev 135:65–82CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Martina Wilde
    • 1
    Email author
  • Wendy V. Morales Barrera
    • 2
  • Daniel Schwindt
    • 3
  • Matthias Bücker
    • 4
  • Berenice Solis Castillo
    • 5
  • Birgit Terhorst
    • 1
  • Sergio R. Rodríguez Elizarrarás
    • 2
  1. 1.Institute of Geography and GeologyUniversity of WürzburgWürzburgGermany
  2. 2.Institute of GeologyNational Autonomous University of MexicoMexico CityMexico
  3. 3.Geomorphology and Soil Science, Science Centre WeihenstephanTechnical University of MunichFreisingGermany
  4. 4.Department of Geophysics, Steinmann InstituteUniversity of BonnBonnGermany
  5. 5.Centre for Research in Environmental GeographyNational Autonomous University of MexicoMexico CityMexico

Personalised recommendations