Advertisement

Metallurgical Processing of Polymetallic Ocean Nodules

  • R. P. DasEmail author
  • S. Anand
Chapter

Abstract

During the last five decades metallurgical processing of polymetallic nodule is of global interest—as well as a challenge—for researchers, and industries. This has generated a vast knowledge base, but till now there is no commercial operation. Some of the main reasons are: (1) lack of a techno-economically feasible mining operation, (2) poor economics of metal extraction, in comparison with similar terrestrial resources, and (3) environmental impact of mining as well as metal extraction. For metallurgists, the processing of polymetallic nodules becomes more challenging with passage of time because the environmental and processing norms keep changing for lean resources like polymetallic nodules. Considering the processes developed for nodule, and the current trend, the authors feel (1) production of alloy pig iron for use in series 200 stainless steel, and (2) aqueous reduction processes based on sulphuric acid, HCl/Cl2, or ammonia under atmospheric conditions hold good promise for a cost-effective, low capex, and environmentally accepted process.

References

  1. Acharya S, Anand S, Das SC et al (1989) Ammonia leaching of ocean nodules using various reductants. Ertzmetall 42(2):66–73Google Scholar
  2. Acharya S, Das RP (1987) Kinetics and mechanism of the reductive ammonia leaching of ocean nodules by manganous ion. Hydrometallurgy 19:169–186CrossRefGoogle Scholar
  3. Acharya R, Ghosh MK, Anand S et al (1999) Leaching of metals from Indian ocean nodules in SO2-H2O-H2SO4-(NH4)2SO4 medium. Hydrometallurgy 53(2):169–175CrossRefGoogle Scholar
  4. Agarwal B, Hu P, Placidi M et al (2012) Feasibility study on manganese nodules recovery in the Clarion-Clipperton Zone. https://www.southampton.ac.uk/assetsimported/transforms/peripheral-block/UsefulDownloads_Download/8BC7B9645A8E4690A375D527F98DF7EC/LRET%20Collegium%202012%20Volume%202.pdfGoogle Scholar
  5. Agarwal JC, Wilder TC (1974) Recovery of metal values from manganese nodules. U.S. Patent 3,788,841, 29 Jan 1974Google Scholar
  6. Agarwal JC, Wilder TC (1975) Recovery of metal values from manganese nodules. Canadian Patent 980,130, 23 Dec 1975Google Scholar
  7. Agarwal JC, Barner HE, Beecher N et al (1978) Kennecott process for recovery of copper, nickel, cobalt and molybdenum from ocean nodules. Paper presented at AIME Annual Meeting, Denver, CO, February, SME preprint, pp 788–789Google Scholar
  8. Agarwal JC, Barner HE, Beecher N et al (1979) Kennecott process for recovery of copper, nickel, cobalt and molybdenum from ocean nodules. Min Eng 31(12):1704–1709Google Scholar
  9. Anand S, Das SC, Das RP et al (1988a) Leaching of manganese nodules at elevated temperature and pressure in the presence of oxygen. Hydrometallurgy 20:155–168CrossRefGoogle Scholar
  10. Anand S, Das SC, Das RP et al (1988b) Leaching of manganese nodule in ammoniacal medium using ferrous sulphate as reductant. Metall Trans B 19B:331–335CrossRefGoogle Scholar
  11. Anon (2006) 200 series stainless—an overview. Stainless Steel Industry, p 6–8Google Scholar
  12. Asai S, Negi H, Konishi Y (1986) Reductive dissolution of manganese dioxide in aqueous sulphur dioxide. Can J Chem Eng 64:237–242CrossRefGoogle Scholar
  13. Bhattacharya IN, Anand S, Das SC et al (1989) Ammonia leaching of manganese nodules in nodule test plant. Trans Indian Inst Metals 42(4):385–392Google Scholar
  14. Caron MH (1924) Process of recovering values from nickel and cobalt-nickel ores. US Patent 1,487,145, 18 Mar 1924Google Scholar
  15. Chen HH, Fu C, Zheng DJ (1992) Reduction leaching of manganese nodules by nickel matte in hydrochloric acid solution. Hydrometallurgy 28:269–275CrossRefGoogle Scholar
  16. Choi KS, Sohn JW (1995) Reduction leaching of manganese nodules with sodium sulfite in ammonium chloride solution. In: Proceedings of the ISOPE—ocean mining symposium, Tsukuba, Japan, 21–22 Nov, pp 193–200Google Scholar
  17. Das GK, Anand S, Das RP et al (2000) Sulfur dioxide—a leachant for oxidic materials in aqueous and non-aqueous media. Miner Process Extr Metall Rev 20(4–6):377–407CrossRefGoogle Scholar
  18. Das PK, Anand S, Das RP (1997) Minimization of nickel precipitation from H2O-NH3 (NH4)2SO4-SO2-MnO2 system. Int J Miner Process 50:77–86CrossRefGoogle Scholar
  19. Das RP (2001) India’s demonstration metallurgical plant to treat ocean nodule. In: Proceedings of the 4th ocean mining symposium, ISOPE, Szczecin, Poland, 23–27 Sept, pp 163–167Google Scholar
  20. Das RP, Anand S (1997) Aqueous reduction of polymetallic nodule for metal extraction. In: Proceedings of the 2nd ocean mining symposium, ISOPE, Seoul, 24–26 Nov, pp 165–171Google Scholar
  21. Das RP, Anand S, Das SC et al (1986) Leaching of manganese nodules in ammoniacal medium using glucose as a reductant. Hydrometallurgy 16:335–344CrossRefGoogle Scholar
  22. Das SC, Anand S, Das RP et al (1989) Sulphuric acid leaching of manganese nodules in the presence of charcoal. AusIMM Bull Proc 294(1):73–76Google Scholar
  23. Demopoulos GP, Li Z, Becze MG et al (2008) New technologies for HCl regeneration in chloride hydrometallurgy. World Metallurgy Erzmetall 61(2):89–98Google Scholar
  24. Fuerstenau DW, Han KN (1983) Metallurgy and processing of marine manganese nodules. Miner Process Technol Rev 1:1–83CrossRefGoogle Scholar
  25. Ghosh MK, Barik SP, Anand S (2008) Sulphuric acid leaching of polymetallic nodules using paper as a reductant. Trans Indian Inst Metals 61(6):477–481CrossRefGoogle Scholar
  26. Han KN, Fuerstenau DW (1975) Acid leaching of ocean nodules at elevated temperatures. Int J Miner Process 2(2):163–171CrossRefGoogle Scholar
  27. Han KN (1997) Strategies for processing of ocean floor manganese nodules. Trans Indian Inst Metals 51(1):41–54Google Scholar
  28. Han KN, Fuerstenau DW (1986) Extraction behaviour of metallic elements from deep sea manganese nodules in reducing medium. Mar Min 2:155–169Google Scholar
  29. Hanieg G, Meixner MJ (1974) Pressure leaching of manganese nodule with sulphuric acid. Erzmetall 27(7–8):335Google Scholar
  30. Hariprasad D, Mohapatra M, Anand S (2013) Non-isothermal self-sustained one pot dissolution of metal values from manganese nodule using NH3OHCl as a novel reductant in sulphuric acid medium. J Chem Technol Biotechnol 88(6):1114–1120CrossRefGoogle Scholar
  31. Harris BG, Lakshmanan VI, Sridhar R (2004) Process for the recovery of value metals from material containing base metal oxides. Patent WO/2004/101833, 25 Nov 2004Google Scholar
  32. Harris B, White C, Jansen M et al (2006) A new approach to the high concentration chloride leaching of nickel laterites. In: ALTA Ni/Co, vol 11, Perth, Australia, 4–7 July 2006, pp 1–20Google Scholar
  33. Haynes BW, Law SL, Barron DC, et al. (1985) Pacific manganese nodules: characterization and processing. Bulletin 679, U.S. Bureau of MinesGoogle Scholar
  34. Hsiaohong C, Chongyue F, Di-Ji Z (1992) Reduction leaching of manganese nodules by nickel matte in hydrochloric acid solution. Hydrometallurgy 28:269–272CrossRefGoogle Scholar
  35. Hubred GL (1973) An extractive metallurgy study on deep sea manganese nodules with special emphasis on the sulphuric acid autoclave leach. Ph.D. thesis, University of California, Berkley, p 220Google Scholar
  36. Hubred GL (1980) Manganese nodule extractive metallurgy: a review 1973–1978. Mar Min 2:191–212Google Scholar
  37. ISA (2008) Workshop on polymetallic nodule mining technology, status and challenges ahead. NIOT, Chennai. www.isa.org.jm/files/documents/EN/Pubs/Chennai.pdf.. Accessed 18–22 Feb 2008
  38. Jana RK, Akerkar DD (1989) Studies of the metal–ammonia–carbon dioxide–water system in extraction metallurgy of poly metallic sea nodules. Hydrometallurgy 22:363–378CrossRefGoogle Scholar
  39. Jana RK, Murthy DSR, Nayak AK et al (1990) Leaching of roast-reduced poly metallic sea nodules to optimize the recoveries of copper, nickel and cobalt. Int J Miner Process 30:127–141CrossRefGoogle Scholar
  40. Jana RK, Singh DDN, Roy SK (1993) Hydrochloric acid leaching of sea nodules with methanol and ethanol addition. Mater Trans JIM (Japan) 34(70):593–598CrossRefGoogle Scholar
  41. Jana RK, Singh DDN, Roy SK (1995) Alcohol-modified hydrochloric acid leaching of sea nodules. Hydrometallurgy 38(3):289–298CrossRefGoogle Scholar
  42. Jana RK, Srikanth S, Pandey BD et al (1999a) Processing of deepsea manganese nodules at NML for recovery of copper, nickel and cobalt. Met Mater Process 11:133–144Google Scholar
  43. Jana RK, Pandey BD, Premchand (1999b) Ammoniacal leaching of roast reduced deep-sea manganese nodules. Hydrometallurgy 53:45–56CrossRefGoogle Scholar
  44. Jennings PH, Stanley RW, Ames HL et al (1973) Development of a process for purifying molybdenite concentrates. In: Evans DJI (ed) Proceedings of second international symposium on hydrometallurgy, AIME, Chicago, New York, 25 Feb–1 Mar 1973, p 868Google Scholar
  45. Jiang K, Jiang X, Feng L et al (2013) Study on self-catalysis reduction leaching of ocean Co-Mnpolymetallic ores in ammonia solution. In: Proceedings of the ISOPE ocean mining and gas hydrate symposium. Szczecin, Poland, 22–26 SeptGoogle Scholar
  46. Junghanss H, Roever W (1976) Method for reprocessing of manganese nodules and extraction of valuable materials contained in them. German Patent 2,501,284, 1 Sept 1976Google Scholar
  47. Kanungo SB (1999a) Rate process of the reduction leaching of manganese nodules in dilute HCl in the presence of pyrite Part-1: dissolution behavior of iron and sulphur species during leaching. Hydrometallurgy 52:313–330CrossRefGoogle Scholar
  48. Kanungo SB (1999b) Rate process of the reduction leaching of manganese nodules in dilute HCl in presence of pyrite Part-2: leaching behavior of manganese. Hydrometallurgy 52:331–347CrossRefGoogle Scholar
  49. Kanungo SB, Das RP (1988) Extraction of metals from manganese nodules of Indian ocean by leaching in aqueous solution of sulphur dioxide. Hydrometallurgy 20:135–146CrossRefGoogle Scholar
  50. Kanungo SB, Jena PK (1988a) Reduction leaching of manganese nodules of Indian Ocean origin in dilute hydrochloric acid. Hydrometallurgy 21(1):41–58CrossRefGoogle Scholar
  51. Kanungo SB, Jena PK (1988b) Studies on the dissolution of metal values in manganese nodules of Indian Ocean origin in dilute hydrochloric acid. Hydrometallurgy 21(1):23–39CrossRefGoogle Scholar
  52. Kawahara M, Mitsuo T (1992) Dilute sulphuric acid leaching of manganese nodules using hydrogen peroxide as a reductant. J Min Mater Process Inst Japan 108(5):396–401Google Scholar
  53. Khalafalla S, Pahlman JE (1981) Selective extraction of metals from Pacific sea nodules. JOM 33(8):37–42CrossRefGoogle Scholar
  54. Kim DJ, Park KH (1997) Study on the leaching mechanism of Cu and Ni from deep sea manganese nodules with hydrochloric acid. In: Proceedings of the 2nd ocean mining symposium, ISOPE, Seoul, Korea, 24–26 Nov, pp 172–176Google Scholar
  55. Kim I-S, Park K-H, Kim H-I (2005) Electroleaching of Fe-Ni-Cu-Co alloy. In: Proceedings of 6th ISOPE ocean mining symposium, Changsha, Hunan, China, 9–13 Oct, p 223Google Scholar
  56. Kotlinski R (1999) Metallogenesis of the world’s ocean against the background of oceanic crust evolution. Polish Geological Institute Special Papers, 4, 1999Google Scholar
  57. Kotlinski R, Stoyanova HV, Avramov HA (2008) An overview of the interoceanmetal (IOM) deep sea technology development (mining and processing). http://www.isa.org.jm/files/documents/EN/Workshops/Feb2008/IOM-Abst.pdf
  58. Kyle J (2010) Nickel laterite processing technologies—whereto next? In: ALTA 2010 Nickel/cobalt/copper conference, Perth, WA, Australia, 24–27 MayGoogle Scholar
  59. Lee JH, Gilje J, Zeitlin H (1978) Low temperature interaction of sulphur dioxide with Pacific ferromanganese nodules. Environ Sci Technol 12(13):1428–1431CrossRefGoogle Scholar
  60. Martino S, Parson LM (2012) A comparison between manganese nodules and cobalt crust economics in a scenario of mutual exclusivity. Mar Policy 36:790–800CrossRefGoogle Scholar
  61. Mehta KD, Das C, Pandey BD (2010) Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger. Hydrometallurgy 105:89–95CrossRefGoogle Scholar
  62. Mehta KD, Kumar R, Pandey BD et al (2008) Bio-dissolution of metals from activated nodules of Indian Ocean. Paper presented at International conference on Frontiers in Mechanochemistry and Mechanical Alloying held at CSIR-National Metallurgical Laboratory (CSIR-NML), Jamshedpur, India, 1–4 Dec 2008, under the aegis of International Mechanochemistry Association (IMA)Google Scholar
  63. Mishra D, Srivastava RR, Sahu KK et al (2011) Leaching of roast-reduced manganese nodules in NH3–(NH4)2CO3 medium. Hydrometallurgy 109:215–220CrossRefGoogle Scholar
  64. Mittal NK, Sen PK (2003) India's first medium scale demonstration plant for treating polymetallic nodules. Miner Eng 6:865–868CrossRefGoogle Scholar
  65. Mohanty PS, Ghosh MK, Anand S et al (1994) Leaching of manganese nodules in ammoniacal medium with elemental sulphur as reductant. Trans Inst Min Metall Sec C 103:C151–C155Google Scholar
  66. Mohapatra M, Mishra D, Anand S et al (2000) Aqueous reduction of cobalto-cobaltic oxides in ammoniacal medium using ammonium sulphite as the reductant. Hydrometallurgy 58(3):193–202CrossRefGoogle Scholar
  67. Monhemius AJ (1980) The extractive metallurgy of deep sea manganese nodule. In: Burkin R (ed) Topics in non ferrous extractive metallurgy. Society of Chemical Industry, London, pp 42–69Google Scholar
  68. Mukherjee A, Raichur AM, Modak JM et al (2003a) Bioprocessing of Indian Ocean nodules using marine isolate—effect of organics. Miner Eng 16:651–657CrossRefGoogle Scholar
  69. Mukherjee A, Raichur AM, Modak JM et al (2003b) Solubilisation of cobalt from ocean nodules at neutral pH—a novel bioprocess. J Ind Microbiol Biotechnol 30(10):606–612CrossRefGoogle Scholar
  70. Mukherjee A, Raichur AM, Modak JM et al (2004) Exploring process options to enhance metal dissolution in bioleaching of Indian Ocean nodules. J Chem Technol Biotechnol 79(5):512–517CrossRefGoogle Scholar
  71. Mohwinkel D, Kleint C, Koschinsky A (2014) Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores. Appl Geochem 43:13–21CrossRefGoogle Scholar
  72. Neuschutz D, Scheffler U, Junghans H (1977) Verfahren Zur Aufarbeitung von Manganknollen Durch Schwefelsaure Drucklaugung. (Method for the processing of manganese nodules by sulphuric acid pressure leaching). Erzmetall 30(2):61–67Google Scholar
  73. Pahlman JE, Khalafalla SE (1979) Selective recovery of nickel, cobalt, manganese from sea nodules with sulfurous acid. US patent 4,138,465, 6 Feb 1979Google Scholar
  74. Paramaguru RK, Kanungo SB (1998) Electrochemical phenomena in MnO2-FeS2 leaching in dilute HCl. Part-3: manganese dissolution from Indian Ocean nodules. Can Metall Q 37(5):405–417Google Scholar
  75. Park KH, Kim DJ (1999) Kinetics of copper and nickel leaching of manganese nodules with hydrochloric acid. Met Mater Process 11(2):117–124Google Scholar
  76. Park KH, Mohapatra D, Reddy BR et al (2007) A study on the oxidative ammonia-ammonium sulphate leaching of a complex (Cu-Ni-Co-Fe) matte. Hydrometallurgy 86:164–171CrossRefGoogle Scholar
  77. Parhi PK, Park KH, Nam CW, Park JT et al (2013) Extraction of rare earth metals from deep sea nodule using H2SO4 solution. Int J Miner Process 119:89CrossRefGoogle Scholar
  78. Parhi PK, Park KH, Kim HI et al (2011) Recovery of molybdenum from the sea nodule leach liquor by solvent extraction using Alamine 304-I. Hydrometallurgy 105:195–200CrossRefGoogle Scholar
  79. Parhi PK, Park KH, Nam CW et al (2015) Liquid-liquid extraction and separation of total rare earth (RE) metals from polymetallic manganese nodule leaching solution. J Rare Earths 3(2):207–213CrossRefGoogle Scholar
  80. Pophanken A, Friedrich B (2013) Challenges in the metallurgical processing of marine mineral resources. In: EMC 2013, University of Notre Dame, Indiana, 26–28 June 2013, p 681Google Scholar
  81. Premchand P, Jana RK (1999) Processing of polymetallic sea nodules: an overview. In: Proceedings of the 3rd ocean mining symposium, ISOPE, Goa, India, 8–10 Nov, pp 237–245Google Scholar
  82. Randhawa NS, Jana RK, Das NN (2013) Silicomanganese production utilising low grade manganese nodules leaching residue. Trans Inst Min Metall Sec C 122(1):6–14Google Scholar
  83. Rodriguez MP, Mosqueda AM, Ariza SB (2001) Hydrometallurgical processing technology of the polymetallic nodules from Interoceanmetal mining site. In: Proceedings of the 4th ISOPE ocean mining symposium, Szczecin, Poland, 23–27 Sept, p 177Google Scholar
  84. Rodriguez MP, Aja R, Miyares RC (2013) Optimization of the existing methods for recovery of basic metals from polymetallic nodules. In: Proceedings of the 10th ISOPE ocean mining and gas hydrates symposium, Szczecin, Poland, 22–26 Sept 2013, p 173Google Scholar
  85. Rokukawa N (1990) Extraction of nickel, cobalt and copper from ocean manganese nodules with mixed solution of ammonium carbonate and ammonium sulphite. Shigen-to-Sozai 106(4):205–209CrossRefGoogle Scholar
  86. Rokukawa N (1995) Development for hydrometallurgical process of cobalt rich crusts. In: Proceedings of the ISOPE—ocean mining symposium, Tsukuba, Japan, 21–22 Nov, pp 217–221Google Scholar
  87. Rao M, Li G, Jiang T, Luo J et al (2013) Carbothermic reduction of nickeliferous laterite ores for nickel pig iron production in China: a review. JOM 65(11):1573–1583CrossRefGoogle Scholar
  88. Sanjay K, Subbaiah T, Anand S et al. (1999) Manganese recovery from leach liquors/residues generated during hydrometallurgical processing of manganese nodules. In: Proceedings of the 3rd ocean mining symposium, ISOPE, Goa, India, 8–10 Nov 1999, p 246Google Scholar
  89. Sazbo LJ (1976) Recovery of metal values from manganese deep sea nodules using ammoniacal cuprous leach solutions. US patent 3,983,017, 28 Sept 1976Google Scholar
  90. Sen PK (1999) Processing of sea nodules: current status and future needs. Met Mater Process 11(2):85–100Google Scholar
  91. Sen PK (2010) Metals and materials from deep sea nodules: an outlook for the future. Int Mater Rev 55(6):364–391CrossRefGoogle Scholar
  92. Shen YF, Xue WY, Niu WY (2008) Recovery of Co(II) and Ni(II) from hydrochloric acid solution of alloy scrap. Trans Nonferrous Metals Soc China 18(5):1262–1268CrossRefGoogle Scholar
  93. Smit JT, Steyl IDT (2005) Leaching process in the presence of hydrochloric acid for the recovery of a value metal from an ore. WIPO Patent Application PCT/IB2005/003136, 21 Oct 2005Google Scholar
  94. Sridhar R (1974) Thermal upgrading of sea nodules. J Metals 26(12):18–22Google Scholar
  95. Sridhar R, Jones WE, Warner JS (1976) Extraction of copper, nickel, cobalt from sea nodules. J Metals 28(4):32–37Google Scholar
  96. Sridhar R, Warner JS, Bell MCE (1977) Non-ferrous metal recovery from deep sea nodules. US Patent 4,049,438, 20 Sept 1977Google Scholar
  97. Sridhar V, Verma JK (2011) Extraction of copper, nickel and cobalt from the leach liquor of manganese-bearing sea nodules using LIX 984 N and ACORGA M5640. Miner Eng 24:959–962CrossRefGoogle Scholar
  98. Srikanth S, Alex TC, Agrawal A et al. (1997) Reduction roasting of deep-sea manganese nodules using liquid and gaseous reductants. In: Proceedings of the 2nd ocean mining symposium, Seoul, South Korea, 24–26 Nov 1997, pp 177–184Google Scholar
  99. Stefanova VP, Iliev PK, Stefanov BS (2013) Copper, nickel and cobalt extraction from FeCuNiCoMn alloy obtained after pyrometallurgical processing of deep sea nodules. In: Proceedings of the 10th ISOPE ocean mining and gas hydrates symposium, Szczecin, Poland, 22–26 Sept 2013, p 180Google Scholar
  100. Stefanova VP, Iliev PK, Stefanov BS et al (2009) Selective dissolution of FeCuNiCoMn alloy obtained after pyrometallurgical processing of polymetallic nodules. In: Proceedings of the 8th ISOPE ocean mining symposium, Chennai, India, Sept 2009, p 186Google Scholar
  101. Vranka F (2001) Optimisation of technologies for processing of polymetallic nodules. In: Proceedings of the 4th ocean mining symposium, ISOPE, Szczecin, Poland, 23–27 Sept 2001, pp 172–175Google Scholar
  102. Vranka F, Kotlinski R (2005) Polymetallic nodules processing in Interoceanmetal—the present and the future. In: Proceedings of the 15th International offshore and polar engineering conference, Seoul, Korea, 19–24 June, pp 392–397Google Scholar
  103. Vu H, Jandova J, Lisa K et al (2005) Leaching of manganese deep ocean nodules in FeSO4–H2SO4–H2O solutions. Hydrometallurgy 77:147–153CrossRefGoogle Scholar
  104. Wang C-Y, Qiu D-F, Yin F et al (2010) Slurry electrolysis of ocean polymetallic nodule. Trans Nonferrous Metals Soc China 20:s60–s64CrossRefGoogle Scholar
  105. Wang Y, Li Z, Li H (2005) A new process for leaching metal values from ocean polymetallic nodules. Miner Eng 18:1093–1098CrossRefGoogle Scholar
  106. Watanabe A, Miwa S, Sakakibara S (1982) Sulphuric acid leaching of manganese nodules at elevated temperature. Nogoya Kogyo Gijutsu Shikensho Hokoku 31(6–7):190 (Japan), (CA 100: 107148)Google Scholar
  107. Wilder TC, Galin WE (1976) Reduction smelting of manganese nodules with a liquid reductant. U.S. Patent 3,957,485, 18 May 1976Google Scholar
  108. Xiang Z, Zequan H, Yujun S et al. (1999) The smelting–rusting-solvent extraction processes to recover valuable metals from polymetallic nodules. In: Proceedings of the 3rd ocean mining symposium, ISOPE, Goa, India, 8–10 Nov 1999, pp 227–231Google Scholar
  109. Zhang Y, Liu Q, Sun C (2001a) Sulphuric acid leaching of ocean manganese nodules using phenols as reducing agents. Miner Eng 14(5):525–537CrossRefGoogle Scholar
  110. Zhang Y, Liu Q, Sun C (2001b) Sulphuric acid leaching of ocean manganese nodules using aromatic amines as reducing agents. Miner Eng 14(5):539–542CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Regional Research Laboratory (Currently Institute of Minerals and Materials Technology)BhubaneswarIndia

Personalised recommendations