Advertisement

Effect of Heat Treatment on Friction-Stir-Processed Nanodispersed AA7075 and 2024 Al Alloys

  • I. El-Mahallawi
  • M. M. Z. Ahmed
  • A. A. Mahdy
  • A. M. M. Abdelmotagaly
  • W. Hoziefa
  • M. Refat
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Friction stir processing (FSP) is gaining wide recognition in producing surfaces with high hardness and enhanced properties for light weight transportation application and armored vehicles. This work compares the effect of T6 peak-aging heat treatment on the toughness properties and the aging precipitation behavior of friction stir processed and nanodispersed AA2024 and AA7075 alloys. Plates of aluminum alloy AA7075-O with and without the addition of alumina nano-particles (Al2O3) of average size ~40 nm were FSP. The AA2024 nanodispersed alloys were prepared by casting, then were FSP. Combining nanodispersion and friction stir processing with peak-aged condition has shown to be an effective route in enhancing the elongation % of AA2024 alloy to double that of the T6 peak aged condition, and improving the impact toughness of AA7075 by 35% compared to the peak aged condition. The presence of nanodispersions affects the precipitation behavior of both AA2024 and AA7075 in peak aged condition, where the precipitates attach themselves to the nanoparticles and spinel type precipitates form resulting de-acceleration of the aging process.

Keywords

Nano-surface composite Friction stir processing AA7075 AA2024 

References

  1. 1.
    King F (1987) Aluminum and its Alloys. Ellis Harwood Series in Metals Materials. Ellis Harwood, Chichester, England, p 193Google Scholar
  2. 2.
    Cobden R, Banbury A (1994) Aluminium: physical properties, characteristics and alloys. TALAT Lecture 1501. European Aluminium AssociationGoogle Scholar
  3. 3.
    Hatch E (1984) Aluminium—properties and physical metallurgy (metals park. American Society for Metals, Ohio. ISBN 0-87179-176-6Google Scholar
  4. 4.
    Ringer SP, Hono K (2000) Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies. Mater Charact 44:101–131Google Scholar
  5. 5.
    Santosh Kumar, Namboodhiri TKG (2011) Precipitation hardening and hydrogen embrittlement of aluminum alloy AA7020. Bull Mater Sci 34(2):311–321Google Scholar
  6. 6.
    Berg LK, Gjnnes J, Hansen V, XZ Li, Knutson-Wedel M, Waterloo G (2001) GP zones in Al–Zn–Mg alloys and their role in artificial ageing. Acta Mater 49:3443–3451Google Scholar
  7. 7.
    Abdel-Azim AN, Shash Y, Mostafa SF, Younan A (1995) Casting of 2024-Al alloy reinforced with Al2O3 particles. J Mater Process Technol 55:199–205Google Scholar
  8. 8.
    Rahimi B, Khosravi H, Haddad-Sabzevar M (2015) Microstructural characteristics and mechanical properties of Al-2024 alloy processed via a rheocasting route. Int J Min Metall Mater 22(1):1–9Google Scholar
  9. 9.
    Curle UA (2010) Semi-Solid near-net shape rheocasting of heat treatable wrought aluminum alloys. Trans Nonferrous Met Soc China 20:1719–1724Google Scholar
  10. 10.
    El-Mahallawi I, Abdelkader H, Yousef L, Amer A, Mayer J, Schwedt A (2012) Influence of Al2O3 nano—dispersions on micro structure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic alloys. Mater Sci Eng, A 556:1–12Google Scholar
  11. 11.
    Ma ZY, Sharma SR, Mishra RS (2006) Effect of friction stir processing on the microstructure of cast A356 aluminum. Mater Sci Eng 433:269–278Google Scholar
  12. 12.
    Hu WZ, Yuan S, Wang X, Liu G, Huang Y (2011) Effect of post-weld heat treatment on the microstructure and plastic deformation behavior of friction stir welded 2024. Mater Des 32:5055–5060Google Scholar
  13. 13.
    Ahmed MMZ, Refat M, El Mahallawi I (2014) Manufacturing of nano surface AA7075 composites by friction stir processing. Light Met 1417–1422Google Scholar
  14. 14.
    Naeem Haider T, Mohammed Kahtan S, Ahmad Khairel R (2015) Effect of friction stir processing on the microstructure and hardness of an aluminum–zinc–magnesium–copper alloy with nickel additives. Phys Met Metall 116(10):1035–1046Google Scholar
  15. 15.
    Aydin GH, Bayram A, Aguz A, Akay KS (2009) Tensile properties of friction stir welded joints of 2024 aluminium alloys in different heat-treated- state. Mater Des 30:2211–2221Google Scholar
  16. 16.
    Singh RKR, Shanna Chaitanya, Dwivedi DK, Mehta NK, Kumar P (2011) The microstructure and mechanical properties of FSWed Al-Zn-Mg alloy in welded and heat treated conditions. Mater Des 32:682–687Google Scholar
  17. 17.
    Sivaraj P, Kanagarajan D, Balasubram V (2014) Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651aluminium alloy. Defence Technol 10:1–8Google Scholar
  18. 18.
    Hoziefa W, Toschi S, Ahmed MMZ, Morri Al, Mahdy AA, El-Sayed Seleman MM, El-Mahallawi I, Ceschini L, Atlam A (2016) Influence of friction stir processing on the microstructure and mechanical properties of a compocast AA2024-Al2O3 nanocomposite. Mater Des 106:273–284Google Scholar
  19. 19.
    Hoziefa W, Ahmed MMZ, Mahdy AA, El-Mahallawi I, Atlam A (2016) Fabrication and development of aluminium 2024 composite reinforced with alumina nano particles using compocasting and friction stir processing. Ph.D. thesis, Faculty of Engineering, Al-Azhar UniversityGoogle Scholar
  20. 20.
    Refat M, Abdelmotagaly AMM, Ahmed MMZ, El-Mahallawi I (2015) The effect of heat treatment on the properties of friction stir processed AA7075-O with and without nano alumina additions. In: Friction stir welding and processing VIII, TMS. WileyGoogle Scholar
  21. 21.
    Ardakani M, Amirkhanlou S, Khorsand S (2014) Cross accumulative roll bonding—A novel mechanical technique for significant improvement of stir-cast Al/Al2O3 nanocomposite properties. Mater Sci Eng, A 591:144–149Google Scholar
  22. 22.
    Abdel-Azim AN, Shash Y, Mostafa SF, Younan A (1995) Ageing behaviour of 2024-Al alloy reinforced with Al2O3 particles. J Mater Process Technol 55:140–145Google Scholar
  23. 23.
    Refat M, Elashery A, Toschi S, Ahmed MMZ, Morri A, El-Mahallawi I, Ceschini L Microstructure, hardness and impact toughness of heat treated surface nanodispersed and friction stir processed aluminum alloy AA7075”, JMEP. doi: 10.1007/s1166501623463

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • I. El-Mahallawi
    • 1
  • M. M. Z. Ahmed
    • 2
    • 4
  • A. A. Mahdy
    • 3
  • A. M. M. Abdelmotagaly
    • 5
  • W. Hoziefa
    • 3
  • M. Refat
    • 4
    • 6
  1. 1.Faculty of Engineering, Department of Metallurgy and Materials EngineeringCairo UniversityGizaEgypt
  2. 2.Suez and Sinai Metallurgical and Materials Research Center of Scientific, Excellence (SSMMR-CSE)Suez UniversitySuezEgypt
  3. 3.Faculty of Engineering, Department of Metallurgy, Mining & Petroleum EngineeringAl-Azhar UniversityCairoEgypt
  4. 4.Faculty of Engineering, Department of Mechanical EngineeringThe British University in EgyptEl-Shorouk CityEgypt
  5. 5.Centre for Advanced MaterialsThe British University in EgyptEl-Shorouk CityEgypt
  6. 6.Mechanical Engineering Department, Polytechnic SchoolUniversity of GironaGironaSpain

Personalised recommendations