The 10 April 2014 Nicaraguan Crustal Earthquake: Evidence of Complex Deformation of the Central American Volcanic Arc

  • Gerardo SuárezEmail author
  • Angélica Muñoz
  • Isaac A. Farraz
  • Emilio Talavera
  • Virginia Tenorio
  • David A. Novelo-Casanova
  • Antonio Sánchez
Part of the Pageoph Topical Volumes book series (PTV)


On 10 April 2014, an Mw 6.1 earthquake struck central Nicaragua. The main event and the aftershocks were clearly recorded by the Nicaraguan national seismic network and other regional seismic stations. These crustal earthquakes were strongly felt in central Nicaragua but caused relatively little damage. This is in sharp contrast to the destructive effects of the 1972 earthquake in the capital city of Managua. The differences in damage stem from the fact that the 1972 earthquake occurred on a fault beneath the city; in contrast, the 2014 event lies offshore, under Lake Managua. The distribution of aftershocks of the 2014 event shows two clusters of seismic activity. In the northwestern part of Lake Managua, an alignment of aftershocks suggests a northwest to southeast striking fault, parallel to the volcanic arc. The source mechanism agrees with this right-lateral, strike-slip motion on a plane with the same orientation as the aftershock sequence. For an earthquake of this magnitude, seismic scaling relations between fault length and magnitude predict a sub-surface fault length of approximately 16 km. This length is in good agreement with the extent of the fault defined by the aftershock sequence. A second cluster of aftershocks beneath Apoyeque volcano occurred simultaneously, but spatially separated from the first. There is no clear alignment of the epicenters in this cluster. Nevertheless, the decay of the number of earthquakes beneath Apoyeque as a function of time shows the typical behavior of an aftershock sequence and not of a volcanic swarm. The northeast–southwest striking Tiscapa/Ciudad Jardín and Estadio faults that broke during the 1972 and 1931 Managua earthquakes are orthogonal to the fault where the 10 April earthquake occurred. These orthogonal faults in close geographic proximity show that Central Nicaragua is being deformed in a complex tectonic setting. The Nicaraguan forearc sliver, between the trench and the volcanic arc, moves to the northwest relative to the Caribbean plate at a rate of 14 mm/year. Part of the deformation is apparently accommodated by strain partitioning in the form of bookshelf faulting, on a system of orthogonal faults. The sinistral faults striking northeast–southwest rotate blocks of the Caribbean plate in a clockwise manner. The recent crustal earthquakes in central Nicaragua in 1931, 1972 and 2005 earthquakes took place on these left-lateral faults. The motion of the forearc sliver is also accommodated by a second set of right-lateral, strike-slip faults oriented parallel to the volcanic arc. Faults with this orientation and direction of motion are responsible for the 2014 and possibly the 1955 earthquakes. The presence of this geometry of orthogonal crustal faults highlights the seismic hazard posed by this complex faulting system, not only in the capital city of Managua, but also to the major Nicaraguan cities, which lie close to the volcanic arc.


Nicaraguan tectonics crustal deformation bookshelf faulting Central American seismicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Algermissen, S. T., Dewey, J. W., Langer, C. J., and Dillinger, W. H. (1974). The Managua, Nicaragua, earthquake of December 23, 1972, Location, focal mechanism, and intensity distribution, Bull. Seismol. Soc. Am., 64(4), 993–1004.Google Scholar
  2. Alvarado, D., C., DeMets, B. Tikokk, D. Hernández, T.F. Wawrzyeniec, C. Pullinger, G. Mattioli, H.L. Turner, M. Rodríguez, and F. Correa-Mora. (2011). Forearc motion and deformation between El Salvador and Nicaragua: GPS, seismic, structural and paleomagnetic observations, Lithosphere, 3, 3–21.CrossRefGoogle Scholar
  3. Ambraseys, N. N., and Adams, R. D. (1996). Large-magnitude Central American earthquakes, 1898–1994, Geophys. J. Int., 127(3), 665–692.CrossRefGoogle Scholar
  4. Avellán, D.R., Macías, J.L., Pardo, N., Scolamacchia, T., and Rodriguez, D. (2012). Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa Volcanic Field, western Managua, Nicaragua, Journal of Volcanology and Geothermal Research, 213–214: 51–71.CrossRefGoogle Scholar
  5. Benoit, J. P., & McNutt, S. R. (1996). Global volcanic earthquake swarm database 1979–1989 (pp. 96–69). US Department of the Interior, US Gological Survey.Google Scholar
  6. Bondár, I., Myers, S. C., Engdahl, E. R., & Bergman, E. A. (2004). Epicentre accuracy based on seismic network criteria. Geophysical Journal International, 156(3), 483–496.CrossRefGoogle Scholar
  7. Brown, R. D., Ward, P. L., and Plafker, G. (1974). Geologic and seismologic aspects of the Managua, Nicaragua, earthquakes of December 23, 1972, Bull. Seismol. Soc. Am., 64(4), 1031–1031.Google Scholar
  8. Carr, M. J. (1976). Underthrusting and Quaternary faulting in northern Central America, Bull. Geol. Soc. Am., 87, 825–829.CrossRefGoogle Scholar
  9. Chatelain, J. L., Roecker, S. W., Hatzfeld, D., & Molnar, P. (1980). Microearthquake seismicity and fault plane solutions in the Hindu Kush region and their tectonic implications, Journal of Geophysical Research: Solid Earth (1978–2012), 85(B3), 1365–1387.CrossRefGoogle Scholar
  10. Cluff, L. S. and Carver, G. A. (1973). Geological observations, Managua, Nicaragua, earthquake of December 23, 1972, EERI Recon. Rept., Earthquake Eng. Res. Inst., Oakland, Calif, 5–20.Google Scholar
  11. Correa-Mora, F., DeMets, C., Alvarado, D., Turner, H. L., Mattioli, G., Hernandez, D., and Tenorio, C. (2009). GPS-derived coupling estimates for the Central America subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua, Geophys. J. Int., 179(3), 1279–1291.Google Scholar
  12. Cowan, H., Prentice, C., Pantosti, D., de Martini, P., and Strauch, W. (2002). Late Holocene Earthquakes on the Aeropuerto Fault, Managua, Nicaragua, Bull. Seismol. Soc. Am., 92(5), 1694–1707.CrossRefGoogle Scholar
  13. DeMets, C. (2001). A new estimate for present‐day Cocos‐Caribbean plate motion: Implications for slip along the Central American volcanic arc, Geophys. Res. Lett., 28(21), 4043–4046.CrossRefGoogle Scholar
  14. DeMets, C., Mattioli, G., Jansma, P., Rogers, R. D., Tenorio, C., and Turner, H. L. (2007). Present motion and deformation of the Caribbean plate: Constraints from new GPS geodetic measurements from Honduras and Nicaragua, Special Papers, Geological Society of America, 428, 21.Google Scholar
  15. Durham, H. W. (1931). Managua Earthquake of 1931, Engineering News Record, Apr. 22, 696–700.Google Scholar
  16. Dziewonski, A.M., Chou T.A, and Woodhouse J.H (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852, doi: 10.1029/JB086iB04p02825.CrossRefGoogle Scholar
  17. Fitch, T. J. (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific, J. Geophys. Res., 77(23), 4432–4460.CrossRefGoogle Scholar
  18. French, S. W., et al. Constraints on upper plate deformation in the Nicaraguan subduction zone from earthquake relocation and directivity analysis. Geochemistry, Geophysics, Geosystems 11.3 (2010).Google Scholar
  19. Geist, E. L., J.R. Childs, and D.W. Scholl (1988). The origin of Summit basins of the Aleutian Ridge: Implications for block rotation of an arc massif, Tectonics, 7(2), 327–341, doi: 10.1029/TC007i002p00327.CrossRefGoogle Scholar
  20. Gomberg, J. S., Shedlock, K. M., & Roecker, S. W. (1990). The effect of S-wave arrival times on the accuracy of hypocenter estimation, Bulletin of the Seismological Society of America, 80(6A), 1605–1628.Google Scholar
  21. Jarrard, R. D. (1986). Terrane motion by strike-slip faulting of forearc slivers, Geology, 14(9), 780–783.CrossRefGoogle Scholar
  22. Kissling, E. (1988). Geotomography with local earthquake data, Reviews of Geophysics, 26(4), 659–698.CrossRefGoogle Scholar
  23. Kates, R. W., Haas, J. E., Amaral, D. J., Olson, R. A., Ramos, R., and Olson, R. (1973). Human impact of the Managua earthquake, Science, 182(4116), 981–990.CrossRefGoogle Scholar
  24. Kobayashi, D., LaFemina, P., Geirsson, H., Chichaco, E., Abrego, A. A., Mora, H., & Camacho, E. (2014). Kinematics of the western Caribbean: Collision of the Cocos Ridge and upper plate deformation. Geochemistry, Geophysics, Geosystems, 15(5), 1671–1683.Google Scholar
  25. Knudson, C. F., Perez, V., and Matthiesen, R. B. (1974). Strong-motion instrumental records of the Managua earthquake of December 23, 1972, Bull. Seismol. Soc. Am., 64(4), 1049–1067.Google Scholar
  26. Langer, C. J., Hopper, M. G., Algermissen, S. T., and Dewey, J. W. (1974). Aftershocks of the Managua, Nicaragua, earthquake of December 23, 1972, Bull. Seismol. Soc. Am., 64(4), 1005–1016.Google Scholar
  27. La Femina, P. C., Dixon, T. H., and Strauch, W. (2002). Bookshelf faulting in Nicaragua. Geology, 30(8), 751–754.CrossRefGoogle Scholar
  28. La Femina, P.C., Dixon, T.H., Govers, R., Norabuena, E., Turner, H., Saballos, A., Mattioli, G., Protti, M., and Strauch, W. (2009). Forearc motion and Cocos Ridge collision in Central America, Geochem. Geophys. Geosys., v. 10, p. Q05S14, doi: 10.1029/2008GC002181.CrossRefGoogle Scholar
  29. Leeds, D. J. (1974). Catalog of Nicaraguan earthquakes, Bull. Seismol. Soc. Am., 64(4), 1135–1158.Google Scholar
  30. McBirney, A. R. and H. Williams (1965). Volcanic history of Nicaragua, Univ. Calif. Publ. Geol. Sci., 55, 1–65.Google Scholar
  31. McCaffrey, R. (1992). Oblique plate convergence, slip vectors, and forearc deformation, J. Geophys. Res., 97(B6), 8905–8915.CrossRefGoogle Scholar
  32. Mogi, K. (1963). Some discussions on aftershocks, foreshocks and earthquake swarms: the fracture of a semi-infinite body caused by an inner stress origin and its relation to the earthquake phenomena, 3, Bull. Earthquake Res. Inst., Tokyo Univ. 41. 615–658.Google Scholar
  33. Omori, F. (1894). On the aftershocks of earthquakes. Journal of the College of Science, Imperial University of Tokyo 7: 111–200.Google Scholar
  34. Pardo, N., Macías, J.L., Giordano, G., Cianfarra, P., Avellán, D.R., and Bellatreccia, F. (2009). The ~1245 yr BP Asososca maar eruption: The youngest event along the Nejapa-Miraflores volcanic fault, Western Managua, Nicaragua, Journal of Volcanology and Geothermal Research, 184: 292–312.CrossRefGoogle Scholar
  35. Rojas, W., Bungum, H. and Lindholm, C. (1993). Historical and recent earthquakes in Central America, Revista Geológica de América Central, 16.Google Scholar
  36. Stirling, M. W., Rhoades, D., and Berryman, K. R. (2002). Comparison of scaling relations derived from data of the instrumental and preinstrumental eras, Bull. Seismol. Soc. Am., 92, 355–375.Google Scholar
  37. Stoiber, R. and Carr, M. (1973). Quaternary volcanic and tectonic segmentation of Central America, Bulletin Volcanologique, 37(3), 304–325.CrossRefGoogle Scholar
  38. Sultan, D.I. (1931). The Managua earthquake of 1931, Military Engineer, 92, 354–361.Google Scholar
  39. Turner, H. L., III, P. LaFemina, A., Saballos, G. S. Mattioli, P. E. Jansma, and T. Dixon (2007). Kinematics of the Nicaraguan forearc from GPS geodesy, Geophys. Res. Lett., 34, L02302, doi: 10.1029/2006GL027586.
  40. Utsu, T. (1961). A statistical study of the occurrence of aftershocks. Geophysical Magazine 30: 521–605.Google Scholar
  41. Utsu, T.; Ogata, Y.; Matsu’ura, R.S. (1995). The centenary of the Omori formula for a decay law of aftershock activity, Journal of Physics of the Earth 43: 1–33.CrossRefGoogle Scholar
  42. White, R. A. (1991). Tectonic implications of upper-crustal seismicity in Central America, in Neotectonics of North America: Slemmons, D. B., Engdahl, E. R., Zoback, M. D., and Blackwell, D. (Editors), Boulder, Colorado, Geological Society of America, pp. 323–338.Google Scholar
  43. White, R. A. and Harlow, D. H. (1993). Destructive upper-crustal earthquakes of Central America since 1900, Bull. Seismol. Soc. Am., 83(4), 1115–1142.Google Scholar
  44. Ward, P. L., Gibbs, J., Harlow, D., and Aburto, A. (1974). Aftershocks of the Managua, Nicaragua, earthquake and the tectonic significance of the Tiscapa fault, Bull. Seismol. Soc. Am., 64(4), 1017–1029.Google Scholar
  45. Weinberg, R. F. (1992). Neotectonic development of western Nicaragua, Tectonics, 11(5), 1010–1017.CrossRefGoogle Scholar
  46. Wells, D. L. and Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84(4), 974–1002.Google Scholar
  47. Wesnousky, S.G. (2008). Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture, Bull. Seismol. Soc. Am., 98(4), 1609–1632.CrossRefGoogle Scholar
  48. Wright, R.N and Kramer, S. (1973). Building performance in the 1972 Earthquake, National Bureau of Standards Technical Note 807, Washington D.C., 155 pp.Google Scholar
  49. Wyllie, L. A., Wright, R. N., Sozen, M. A., Degenkolb, H. J., Steinbrugge, K. V., and Kramer, S. (1974). Effects on structures of the Managua earthquake of December 23, 1972, Bull. Seismol. Soc. Am., 64(4), 1069–1133.Google Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Gerardo Suárez
    • 1
    Email author
  • Angélica Muñoz
    • 2
  • Isaac A. Farraz
    • 3
  • Emilio Talavera
    • 2
  • Virginia Tenorio
    • 2
  • David A. Novelo-Casanova
    • 1
  • Antonio Sánchez
    • 4
  1. 1.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMéxico CityMexico
  2. 2.Instituto Nacional de Estudios Territoriales (INETER)ManaguaNicaragua
  3. 3.Terracon Ingeniería S.A. de C.V.México CityMexico
  4. 4.Trimble Navigation Ltd.PlanoUSA

Personalised recommendations