Advertisement

Flare-Shaped Acoustic Anomalies in the Water Column Along the Ecuadorian Margin: Relationship with Active Tectonics and Gas Hydrates

  • Francois Michaud
  • Jean-Noël Proust
  • Alexandre Dano
  • Jean-Yves Collot
  • Grâce Daniella Guiyeligou
  • María José Hernández Salazar
  • Gueorgui Ratzov
  • Carlos Martillo
  • Hugo Pouderoux
  • Laure Schenini
  • Jean-Frederic Lebrun
  • Glenda Loayza
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

With hull-mounted multibeam echosounder data, we report for the first time along the active Ecuadorian margin, acoustic signatures of water column fluid emissions and seep-related structures on the seafloor. In total 17 flare-shaped acoustic anomalies were detected from the upper slope (1250 m) to the shelf break (140 m). Nearly half of the flare-shaped acoustic anomalies rise 200–500 m above the seafloor. The base of the flares is generally associated with high-reflectivity backscatter patches contrasting with the neighboring seafloor. We interpret these flares as caused by fluid escape in the water column, most likely gases. High-resolution seismic profiles show that most flares occur close to the surface expression of active faults, deformed areas, slope instabilities or diapiric structures. In two areas tectonic deformation disrupts a Bottom Simulating Reflector (BSR), suggesting that buried frozen gas hydrates are destabilized, thus supplying free gas emissions and related flares. This discovery is important as it opens the way to determine the nature and origin of the emitted fluids and their potential link with the hydrocarbon system of the forearc basins along the Ecuadorian margin.

Keywords

Ecuador Subduction Continental margin Multibeam Backscatter Fluid Seepage Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bourgois J (2013) A review on tectonic record of strain buildup and stress release across the andean forearc along the gulf of guayaquil-tumbes basin (GGTB) near ecuador-peru border. Intern Journ Geosc 4:618–635. doi: 10.4236/ijg.2013.43057.CrossRefGoogle Scholar
  2. Collot J-Y, Marcaillou B, Sage F, Michaud F, Agudelo W, Charvis P, Graindorge D, Gutscher MA, Spence G (2004) Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidence form MCS data acquired accross the N-Ecuador-SW Colombia margin. J Geophys Res 109:B11103. doi: 10.1029/2004JB003060.
  3. Collot J-Y, Migeon, S, Spence, G, Legonidec, Y, Marcaillou, B, Schneider, J-L, Michaud, F, Alvarado, A, Lebrun, J-F, Sosson, M, Pazmiño, A, 2005. Seafloor margin map helps in understanding subduction earthquakes. EOS Transactions, American Geophysical Union, 86(46): 464–466.Google Scholar
  4. Collot J-Y, Agudelo W, Ribodetti A, Marcaillou B (2008) Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador–south Colombia oceanic margin. J Geophys Res 113:B12102. doi: 10.1029/2008JB005691.
  5. Collot J-Y, Michaud F, Alvarado A, Marcaillou B, Sosson M, Ratzov G, Migeon S, Calahorrano A, Pazmiño A (2009) Visión general de la morfología submarina del margen convergente de Ecuador- Sur de Colombia: implicaciones sobre la transferencia de masa y la edad de la subducción de la Cordillera de Carnegie. In: Collot JY, Sallares V, Pazmiño A (ed) Geologia y Geofisica Marina y Terestre del Ecuador. Publicacion CNDM-INOCAR-IRD, PSE001-09, Guayaquil, Ecuador, pp. 47–74.Google Scholar
  6. Dano A, Migeon S, Praeg D, Ceramicola S, Augustin JM, Ketzer JM, Augustin AH, Ducassou E, Mascle J, (2014) Fluid Seepage in Relation to Seabed Deformation on the Central Nile Deep-Sea Fan, Part 1: Evidence from Sidescan Sonar Data S. Krastel et al. (eds.), Submarine Mass Movements and Their Consequences, Advances 129 in Natural and Technological Hazards Research 37, DOI  10.1007/978-3-319-00972-8 12:129–139  .Google Scholar
  7. Deniaud Y, Baby P, Basile C, Ordoñez M, Montenegro G, Mascle G (1999) Ouverture et évolution tectono- sédimentaire du Golfe de Guayaquil: bassin d’avant- arc néogène et quaternaire du Sud des Andes équatoriennes. C. R. Acad. Sci. Paris, 328: 181–187.  CrossRefGoogle Scholar
  8. Deynoux M, Proust JN, Durand J, Merino E (1990) Water transfer cylindrical structures in the Late Proterozoïc eolian sandstones in the Taoudeni Basin, West Africa. Sedim. Geol., 66:227-242.CrossRefGoogle Scholar
  9. Dominguez S, Lallemand S, Malavieille J, Von Huene R (1998) Upper plate deformations associated with seamount subduction, Tectonophysics, 293: 207–224.CrossRefGoogle Scholar
  10. Dupré S, Woodside J, Klaucke I, Mascle J, Foucher J-P (2010) Widespread active seepage activity on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery. Marine Geology, 275(1–4), 1–19.CrossRefGoogle Scholar
  11. Dupré S, bERGER L, Le Bouffant N, scalabrin C, bourillet J-F (2014) Fluid emissions at the Aquitaine Shelf (Bay of Biscay, France): A biogenic origin or the expression of hydrocarbon leakage? Continental Shelf Research, 88, 24–33.CrossRefGoogle Scholar
  12. Dupré S, Scalabrin C, Grall C, Augustin J-M, Henry P, Sengör AMC, Görür N, Çagatay MN, Géli L (2015) Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging, J. Geophys. Res. Solid Earth, 120, doi: 10.1002/2014JB011617.Google Scholar
  13. Eguez A, Alvarado A, Yepes H, Machette M, Costa C, Dart R (2003) Database and map of Quaternary faults and folds of Ecuador and its offshore regions. US Geological Survey, Open File Rep, 03–289.Google Scholar
  14. Gay A, Lopez M, Berndt C, Séranne M, (2007) Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin, Marine Geology 244; 68–92.CrossRefGoogle Scholar
  15. Geli L, Henry P, Zitter T, Dupre S, Tryon M, Cagatay M, De Lepinay B, Le Pichon X, Sengor A, Gorur N, Natalin B, Ucarkus G, Oezeren S, Volker D, Gasperini L, Burnard P, Bourlange S (2008). Gas emissions and active tectonics within the submerged section of the North Anatolian Fault zone in the Sea of Marmara. Earth and Planetary Science Letters, 274(1–2): 34–39.CrossRefGoogle Scholar
  16. German CR, Parson LM, Mills RA (1996) Mid-ocean ridges and hydrothermal activity. In: Oceanography. An Illustrated Guide. C.P. Summerhayes and S.A. thorpe, eds, p. 152–164.Google Scholar
  17. Graindorge D, Calahorrano A, Charvis P, Collot J-Y, Bethoux N (2004) Deep structures of the margin and the Carnegie Ridge, possible consequence on great earthquake recurrence interval. Geoph Res Lett 31. doi: 10.1029/2003GL018803.
  18. Greinert, J, Artemov, Y, Egorov, V, De Batist, M, Mcginnis, D, (2006) 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability. Earth and Planetary Science Letters 244:1–15. doi: 10.1016/j.epsl.2006.02.011.CrossRefGoogle Scholar
  19. Gutscher M-A, Malavieille J, Lallemand S, Collot J-Y (1999) Tectonic segmentation of the North Andean margin: impact of the Carnegie ridge collision. Earth and Planetary Science Letters 168:255–270.CrossRefGoogle Scholar
  20. Hernández M-J, Michaud F., Collot J-Y, Proust J-N, Ortega R., Aleman A-M (2014) The Neogene Forearc Basins of the Ecuadorian Shelf (1°N-2°20′S): Preliminary Interpretation of a Dense Grid of Mcs Data Abstract T11C-4578 presented at 2014 Fall Meeting, AGU, San Francisco, Calif., 15–19 Dec.Google Scholar
  21. Hornafius JS, Quigley D, Luyendyk BP (1999) The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions. Journal of Geophysical Research 104. doi:  10.1029/1999JC900148.CrossRefGoogle Scholar
  22. Judd AG, Hovland, M (2007) Seabed Fluid Flow. The Impact on Geology, Biology and the Marine Environment. Cambridge University Press, Cambridge.Google Scholar
  23. Krabbenhöft A, Netzeband G, Bialas J, Papenberg C (2010) Episodic methane concentrations at seep sites on the upper slope Opouawe Bank, southern Hikurangi Margin, New Zealand, Marine Geology, 272 (1/4):71–78. DOI  10.1016/j.margeo.2009.08.001.CrossRefGoogle Scholar
  24. Loayza G, Proust J-N, Michaud F, Collot J-Y (2014), Evolution pléistocène du système de canyons du golfe de Guayaquil (Equateur). Contrôles paléo-climatique et tectonique, 14 éme ASF congrés, Paris, page 248.Google Scholar
  25. Loncke L., Mascle J., and Fanil Scientific Parties, (2004) Mud volcanoes, gas chimneys, pockmarks and mounds in the Nile deep-sea fan (Eastern Mediterranean): geophysical evidences, Marine and Petroleum Geology 21,6: 669–689.CrossRefGoogle Scholar
  26. Marcaillou, B, Spence G, Collot J-Y, Wang K (2006) Thermal regime from bottom simulating reflectors along the north Ecuador–south Colombia margin: Relation to margin segmentation and great subduction earthquakes, Journal Geophysisycal Research 111, B12407, doi: 10.1029/2005JB004239.CrossRefGoogle Scholar
  27. Marcaillou B, Collot J-Y., Ribodetti A, d’Acremont E, Mahamat AA, Alvarado A (2016) Seamount subduction at the North-Ecuadorian convergent margin: Effects on structures, inter-seismic coupling and seismogenesis, Earth and Planetary Science Letters 433, 1 January 2016, Pages 146–158.CrossRefGoogle Scholar
  28. Mascle J, Flore  M, Praeg D, Brosolo L, Camera L, Ceramicola S, Dupre S (2014) Distribution and geological control of mud volcanoes and other fluid/free gas seepage features in the Mediterranean Sea and nearby Gulf of Cadiz. Geo-marine Letters, 34(2–3), 89–110. http://dx.doi.org/10.1007/s00367-014-0356-4.CrossRefGoogle Scholar
  29. Michaud F, Collot J-Y, Alvarado A, Lopez E y el personal científico y tecnico del INOCAR, (2006) Republica del Ecuador, Batimetría y Relieve Continental, publicación IOA-CVM-02- Post. INOCAR, Guayaquil.Google Scholar
  30. Michaud F, Witt C, Royer J-Y (2009) Influence of the Carnegie ridge subduction on Ecuadorian geology: reality and fiction: In: Kay S, Ramos V, and Dickinson WR (eds) Backbone of the Americas: Shallow Subduction, Plateau Uplift and Ridge and terrane Collision. Geol Soc Am Memoir 204:217–228 doi: 10.1130/2009.1204.10.
  31. Michaud F, Proust J-N, Collot J-Y, the ATACAMES scientific team (2013) Sediments distribution and tectonic faults (Ecuadorian shelf): preliminary results of the ATACAMES Cruise (2012), Abstract T23B-06 presented at 2013 Meeting of the Americas, AGU, Cancun, Mexico, 14-17 May. Google Scholar
  32. Michaud F, Proust J-N, Collot J-Y, Lebrun J-F, Witt C, Ratzov G, Pouderoux H, Martillo C, Hernández M-J, Loayza G, Penafiel L, Schenini L, Dano A, Gonzalez M, Barba D, De Min L, Ponce adams G, Urresta A, Calderon M, (2015) Quaternary sedimentation and active faulting along the Ecuadorian shelf: preliminary results of the ATACAMES Cruise (2012), Marine Geophysical Research, 36, 1:81–98.Google Scholar
  33. Merewether R, Olsson M-S, Lonsdale P (1985) Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California J. Geophys. Res., 90 (1985), pp. 3075–3085.CrossRefGoogle Scholar
  34. Nocquet J-M, Mothes P, Alvarado A (2009) Geodesy, geodynamics and earthquake cycle in Ecuador. Geology and marine and onland Geophysics of Ecuador: from the continental coast to the Galapagos Islands. In Collot JY, Sallares V, Pazmiño A (eds) Geologia y Geofisica Marina y Terrestre del Ecuador. Publicacion CNDM-INOCAR-IRD, PSE001-09, Guayaquil, Ecuador pp 83–94.Google Scholar
  35. Nocquet J-M, Villegas-Lanza JC, Chlieh M, Mothes PA, Rolandone F, Jarrin P, Cisneros D, Alvarado A, Audin L, Bondoux F, Martin X, Font Y, Régnier M, Vallée M, Tran T, Beauval C, Maguiña Mendoza JM, Martinez W, Tavera H, Yepes H, (2014) Motion of continental slivers and creeping subduction in the northern Andes, Nature Geosciences, 7 (4) (2014), pp. 287–291. http://dx.doi.org/10.1038/ngeo2099CrossRefGoogle Scholar
  36. Obzhirov A, SHAKIROV R, SALYUK A, SUESS E, BIEBOW N, SALOMATIN A (2004) Relations between methane venting, geological structure and seismo-tectonics in the okhotsk sea, Geo-marine letters, 24:135–139. Google Scholar
  37. Paull CK, Borowski WS, Rodrigues N M, (1998) ODP Leg 164 Shipboard Scientific Party, Marine Gas Hydrate Inventory: Preliminary Results of ODP Leg 164 and Implications for Gas Venting and Slumping Associated with the Blake Ridge Gas Hydrate Field. In: Henrient, J. P., Mienert, J., eds., Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geol. Soc. London Spec. Publ., 137: 153–160.Google Scholar
  38. Pazmiño A, Zapata C, Michaud F, Martillo C, Loayza G (2010) Reporte Científico a Bordo del B.I.- 91 “Orion” Estudio Geológico del Margen de Plataforma Continental del Golfo de Guayaquil (GEMAC- 1), Diciembre 2010.Google Scholar
  39. Pedoja K, Dumont JF, Lamothe M, Ortlieb L, Collot JY, Ghaleb B, Auclair M, Alvarez V, Labrousse B (2006) Plio-quaternary uplift of the manta peninsula and La Plata Island and the subduction of the Carnegie Ridge, central coast of Ecuador. J S Am Earth Sci 22:1–21.CrossRefGoogle Scholar
  40. Praeg D, Ketzer JM, Augustin AH, Migeon S, Ceramicola S, Dano A, Ducassou E, Dupre S, Mascle J, Rodrigues LF (2014) Fluid seepage in relation to seabed deformation on the central Nile Deep-Sea Fan, part 2: evidence from multibeam and sidescan imagery. Advances in Natural and Technological Hazards Research, 37, 141–150.Google Scholar
  41. Proust J-N, Martillo C, Michaud F, Collot J-Y, Dauteuil O (2016) Subduction of seafloor asperities revealed by detailed stratigraphic analysis of the active margin shelf sediments of Central Ecuador. Marine Geology (in press).Google Scholar
  42. Ranero CR, Von Huene R (2000) Subduction erosion along the Middle America convergent margin: Nature, v. 404, p. 335–357.CrossRefGoogle Scholar
  43. Reyes P, Michaud F (2012) Mapa Geologico de la Margen Costera Ecuatoriana (1500000) EPPetroEcuador-IRD (eds), Quito Ecuador.Google Scholar
  44. Römer M, Sahling H, Pape Th, dos santos Ferreira C, Wenzhöfer F, Boetius A, Bohrmann G, (2014) Methane fluxes and carbonate deposits at a cold seep area of the Central Nile Deep Sea Fan, Eastern Mediterranean Sea, Marine Geology, 347: 27–42.CrossRefGoogle Scholar
  45. Sanclemente E (2014) Seismic imaging of the structure of the central Ecuador convergent margin: relationship with the inter-seismic coupling variations, Earth Sciences. Thèse Université de Nice-Sophia Antipolis 2014.Google Scholar
  46. Sage F, Collot J-Y , Ranero CR (2006) Interplate patchiness and subduction-erosion mechanisms: Evidence from depth-migrated seismic images at the central Ecuador convergent margin, Geology, v. 34; no. 12; pp. 997–1000; doi:  10.1130/G22790A.1.CrossRefGoogle Scholar
  47. Schneider Von Deimling J, Brockhoff J, Greinert J (2007) Flare imaging with multibeam systems: Data processing for bubble detection at seeps, Geochem. Geophys. Geosyst., 8, Q06004, doi: 10.1029/2007GC001577.CrossRefGoogle Scholar
  48. Suess E, Torres Ł, M.E., Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E, (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin, Earth and Planetary Science Letters 170 (1999) 1–15.CrossRefGoogle Scholar
  49. Witt C, Bourgois J, Michaud F, Ordoñez M, Jimenez N, Sosson M (2006) Development of the Gulf of Guayaquil (Ecuador) as an effect of the North Andean Block tectonic escape since the lower Pleistocene. Tectonics 25. doi: 10.1029/2004TC001723.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Francois Michaud
    • 1
    • 2
  • Jean-Noël Proust
    • 3
  • Alexandre Dano
    • 2
  • Jean-Yves Collot
    • 2
    • 4
  • Grâce Daniella Guiyeligou
    • 2
  • María José Hernández Salazar
    • 5
  • Gueorgui Ratzov
    • 2
  • Carlos Martillo
    • 2
    • 3
    • 6
    • 7
  • Hugo Pouderoux
    • 3
  • Laure Schenini
    • 2
  • Jean-Frederic Lebrun
    • 8
  • Glenda Loayza
    • 6
    • 7
  1. 1.Univ. Pierre et Marie Curie, UPMC, CNRS, IRD, Observatoire de la Côte d’Azur, Géoazur UMR 7329Sophia AntipolisFrance
  2. 2.Univ. Nice Sophia Antipolis, CNRS, IRD, Observatoire de la Côte d’Azur, Géoazur UMR 7329Sophia AntipolisFrance
  3. 3.Géosciences Rennes, CNRS, Université de Rennes 1Rennes CedexFrance
  4. 4.Investigador Prometeo, Instituto Geofísico, Escuela Politécnica NacionalQuitoEcuador
  5. 5.Departamento de GeologíaEscuela Politécnica NacionalQuitoEcuador
  6. 6.Facultad de Ingenieria en Ciencias de la TierraEscuela Politécnica del LitoralGuayaquilEcuador
  7. 7.Instituto Oceanográfica de la Armada de Ecuador (INOCAR)GuayaquilEcuador
  8. 8.Univ. des Antilles et de la GuyanePointe a` Pitre CedexFrance

Personalised recommendations