Advertisement

Seismic Anisotropy and Mantle Flow Driven by the Cocos Slab Under Southern Mexico

  • Leslie A. Bernal-López
  • Berenice R. Garibaldi
  • Gerardo León Soto
  • Raúl W. Valenzuela
  • Christian R. Escudero
Chapter
Part of the Pageoph Topical Volumes book series (PTV)

Abstract

Shear wave splitting measurements were made using SKS and SKKS waves recorded by the Meso-American Subduction Experiment, which was deployed in southern Mexico starting at the coast of the Pacific Ocean and running north toward the Gulf of Mexico. In this segment of the Middle America Trench the oceanic Cocos plate subducts under the continental North American plate. The active volcanic arc is located at the southern end of the Trans-Mexican Volcanic Belt. Unlike most subduction zones, however, the volcanic arc is not subparallel to the trench. In the fore-arc, between the trench and the Trans-Mexican Volcanic Belt, the Cocos slab subducts subhorizontally. Beneath the volcanic belt, however, the slab dives steeply into the mantle. A marked difference in the orientation of the fast polarization directions is observed between the fore-arc and the back-arc. In the fore-arc the fast axes determined using SKS phases are oriented NE–SW, in the same direction as the relative motion between the Cocos and North American plates, and are approximately perpendicular to the trench. Physical conditions in the subslab mantle are consistent with the existence of A-type olivine and consequently entrained mantle flow is inferred. Strong coupling between the slab and the surrounding mantle is observed. In the back-arc SKS fast polarization directions are oriented N–S and are perpendicular to the strike of the slab. Given the high temperatures in the mantle wedge tip, the development of A-type, or similar, olivine fabric throughout the mantle wedge is expected. The orientation of the fast axes is consistent with corner flow in the mantle wedge.

Keywords

Shear wave splitting upper mantle anisotropy mantle flow Mexico Middle America Trench flat slab subduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are thankful to Manuel Velásquez for computer support; Rob Clayton, Vlad Manea, and Marina Manea for discussions and suggestions. We are also thankful to Xyoli Pérez-Campos, Rob Clayton, Arturo Iglesias, Shri Krishna Singh, Paul Davis, and Allen Husker for access to the MASE data; and also to all the volunteers who contributed their time for field work. We are thankful to Karen Fischer for providing the computer code used in the early stages of this project to measure the splitting parameters. The suggestions made by two anonymous reviewers greatly enriched the manuscript. One of us (GLS) received a postdoctoral fellowship from Mexico’s Consejo Nacional de Ciencia y Tecnología for work at Centro de Sismología y Volcanología de Occidente, Universidad de Guadalajara. This work was funded by Universidad Nacional Autónoma de México through Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, PAPIIT grant IN112814. The MASE experiment was supported by the Tectonics Observatory at the California Institute of Technology and by the Center for Embedded Network Sensors (CENS) at the University of California Los Angeles. The MASE experiment was funded by the Gordon and Betty Moore Foundation. The maps and figures in this study were made using the Generic Mapping Tools package (Wessel and Smith 1998).

Supplementary material

978-3-319-51529-8_10_MOESM1_ESM.doc (460 kb)
Supplementary material 1 (DOC 459 kb)

References

  1. Abt, D.L., Fischer, K.M., Abers, G.A., Strauch, W., Protti, J.M., and González, V. (2009), Shear wave anisotropy beneath Nicaragua and Costa Rica: Implications for flow in the mantle wedge, Geochem. Geophys. Geosyst. 10, Q05S15, doi: 10.1029/2009GC002375.CrossRefGoogle Scholar
  2. Abt, D.L., Fischer, K.M., Abers, G.A., Protti, M., González, V., and Strauch, W. (2010), Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting, J. Geophys. Res. 115, B06316, doi: 10.1029/2009JB006710.CrossRefGoogle Scholar
  3. Atwater, T. and Stock, J. (1991). Pacific North America plate tectonics of the Neogene southwestern United States: An update, Int Geol Rev 40, 375 – 402.CrossRefGoogle Scholar
  4. Audet, P. (2013), Seismic anisotropy of subducting oceanic uppermost mantle from fossil spreading, Geophys. Res. Lett. 40, 173-177, doi: 10.1029/2012GL054328.CrossRefGoogle Scholar
  5. Audoine, E., Savage, M.K. and Gledhill K. (2004). Anisotropic structure under a back arc spreading region, the Taupo volcanic zone, New Zealand, J Geophys Res 109. doi: 10.1029/2003JB02932.
  6. Baccheschi, P., Margheriti, L., and Steckler, M.S. (2007). Seismic anisotropy reveals focused mantle flow around the Calabrian slab (Southern Italy), Geophys Res Lett 34, L05302.CrossRefGoogle Scholar
  7. Bernal-díaz, A., Valenzuela-Wong, R., Pérez-Campos, X., Iglesias, A., and Clayton, R.W. (2008), Anisotropía de la onda SKS en el manto superior debajo del arreglo VEOX (abstract), Geos Boletín Informativo de la UGM 28 (2), 199-200.Google Scholar
  8. Bernal-López, L.A. (2015), Anisotropía sísmica y flujo del manto producidos por la placa de Cocos subducida en el sur de México, M. Sc. thesis, 65 pp., Centro de Sismología y Volcanología de Occidente, Universidad de Guadalajara, Puerto Vallarta, Jal., Mexico.Google Scholar
  9. Castillo-Castellanos, J.A. (2015), Variaciones de la anisotropía sísmica en la corteza y manto superior en el centro-sur de México, M.Sc. thesis, 147 pp., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.Google Scholar
  10. Castillo, J.A., Pérez-Campos, X., Husker, A.L., and Valenzuela-Wong, R. (2014), Crust and mantle anisotropy variations from the coast to inland in central and southern Mexico, Abstract DI33A-4303 presented at 2014 Fall Meeting, AGU, San Francisco, CA, 15-19 December.Google Scholar
  11. Castro-Artola, O.A. (2010), Caracterización de la geometría de la zona Benioff con una red densa de banda ancha en el Istmo de Tehuantepec, B.Sc. thesis, 65 pp., Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico.Google Scholar
  12. Currie, C.A., Cassidy, J.F., Hyndman, R. and Bostock, M.G. (2004). Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton, Geophys J Int 157, 341-353.CrossRefGoogle Scholar
  13. DeMets, C., and Traylen, S. (2000), Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle, Tectonophysics 318, 119-159.CrossRefGoogle Scholar
  14. DeMets, C., Gordon, R.G., and Argus, D.F. (2010), Geologically current plate motions, Geophys. J. Int. 181, 1-80.CrossRefGoogle Scholar
  15. Di Leo, J.F., Wookey, J., Hammond, J.O.S., Kendall, J.-M., Kaneshima, S., Inoue, H., Yamashina, T., and Harjadi, P. (2012a). Deformation and mantle flow beneath the Sangihe subduction zone from seismic anisotropy, Phys Earth Planet Inter 194-195, 38-54. doi: 10.1016/j.pepi.2012.01.008.CrossRefGoogle Scholar
  16. Di Leo, J.F., Wookey, J., Hammond, J.O.S., Kendall, J.-M., Kaneshima, S., Inoue, H., Yamashina, T., and Harjadi P. (2012b). Mantle flow in regions of complex tectonics: Insights from Indonesia, Geochem Geophys Geosyst 13, Q12008. doi: 10.1029/2012GC004417.CrossRefGoogle Scholar
  17. Eakin, C.M., Obrebski, M., Allen, R.M., Boyarko, D.C., Brudzinski, M.R., and Porritt, R.(2010), Seismic anisotropy beneath Cascadia and the Mendocino triple junction: Interaction of the subducting slab with mantle flow, Earth Planet. Sci. Lett. 297, 627-632.Google Scholar
  18. Ferrari, L., Orozco-Esquivel, T., Manea, T. and Manea, V.C. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone, Tectonophysics 522-523, 122 – 149.CrossRefGoogle Scholar
  19. Foley, B., and Long, M.D. (2011), Upper and mid-mantle anisotropy beneath the Tonga slab, Geophys. Res. Lett.38, L02303, doi: 10.1029/2010GL046021.CrossRefGoogle Scholar
  20. Gill, J.B., Orogenic andesites and plate tectonics, “Minerals and rocks, vol. 16” (Springer, Berlin 1981).CrossRefGoogle Scholar
  21. Gripp, A.E., and Gordon, R.G. (2002), Young tracks of hotspots and current plate velocities, Geophys. J. Int. 150, 321-361.CrossRefGoogle Scholar
  22. Hammond, J.O.S., Wookey, J., Kaneshima, S., Inoue, H., Yamashina, T. and Harjadi, P. (2010). Systematic variation in anisotropy beneath the mantle wedge in the Java-Sumatra subduction system from shear wave splitting, Phys Earth Planet Inter 178, 189-201.CrossRefGoogle Scholar
  23. Husker, A. and Davis, P.M. (2009), Tomography and thermal state of the Cocos plate subduction beneath Mexico City, J. Geophys. Res. 114, B04306, doi: 10.1029/2008JB006039.CrossRefGoogle Scholar
  24. Ismaïl, W.B., and Mainprice, D. (1998), An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy, Tectonophysics 296, 145-157, doi: 10.1016/S0040-1951(98)00141-3.CrossRefGoogle Scholar
  25. Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S. (2006). Effect of water and stress on the lattice preferred orientation (LPO) of olivine, Tectonophysics 421, 1-22.CrossRefGoogle Scholar
  26. Kanjorski, M.N. (2003), Cocos plate structure along the Middle America subduction zone off Oaxaca and Guerrero, Mexico: Influence of subducting plate morphology on tectonics and seismicity, Ph.D. thesis, University of California, San Diego, CA, USA.Google Scholar
  27. Karato, S.-i., Jung, H., Katayama, I. and Skemer, P. (2008). Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratories studies, Annu. Rev. Earth Planet. Sci. 36, 59-95.CrossRefGoogle Scholar
  28. Kawakatsu, H., Kumar, P., Takei, Y., Shinohara, M., Kanazawa, T., Araki, E., and Suyehiro, K. (2009), Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates, Science 324, 499-502, doi: 10.1126/science.1169499.CrossRefGoogle Scholar
  29. Kim, Y., Clayton, R.W., and Jackson, J.M. (2010), Geometry and seismic properties of the subducting Cocos plate in central Mexico, J. Geophys. Res. 115, B06310, doi: 10.1029/2009JB006942.CrossRefGoogle Scholar
  30. Király, E., Bianchi, I., and Bokelmann, G. (2012). Seismic anisotropy in the south western Pacific region from shear wave splitting, Geophys Res Lett 39, L05302.CrossRefGoogle Scholar
  31. Kneller, E.A, van keken, P.E., Karato, S.-i., and Park, J. (2005), B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models, Earth Planet. Sci. Lett. 237, 781-797, doi: 10.1016/j.epsl.2005.06.049.CrossRefGoogle Scholar
  32. León soto, G., and Valenzuela, R.W. (2013), Corner flow in the Isthmus of Tehuantepec, Mexico inferred from anisotropy measurements using local intraslab earthquakes, Geophys. J. Int. 195, 1230-1238, doi: 10.1093/gji/ggt291.CrossRefGoogle Scholar
  33. León Soto, G., Ni, J.F., Grand, S.P., Sandvol, E., Valenzuela, R.W., Guzmán Speziale, M., Gómez González, J.M., and Domínguez Reyes, T. (2009), Mantle flow in the Rivera-Cocos subduction zone, Geophys. J. Int. 179, 1004-1012, doi: 10.1111/j.1365-246X.2009.04352x.CrossRefGoogle Scholar
  34. Levin, V., Droznin, D., Park, J. and Gordeev, E. (2004). Detailed mapping of seismic anisotropy with local shear waves in southeastern Kamchatka, Geophys J Int 158, 1009-1023.CrossRefGoogle Scholar
  35. Long, M.D. (2009). Complex anisotropy in D” beneath the eastern Pacific from SKS-SKKS splitting discrepancies, Earth Planet Sci. Lett. 283, 181-189.Google Scholar
  36. Long, M.D. (2013). Constraints on subduction geodynamics from seismic anisotropy, Rev Geophys 51, 76-112.CrossRefGoogle Scholar
  37. Long, M.D. and Silver, P.G. (2008). The subduction zone flow field from seismic anisotropy: A global view, Science 319, 315-318.CrossRefGoogle Scholar
  38. Long, M.D., and Silver, P.G. (2009), Mantle flow in subduction systems: The subslab flow field and implications for mantle dynamics, J. Geophys. Res. 114, B10312, doi: 10.1029/2008JB006200.CrossRefGoogle Scholar
  39. Long, M.D. and Van der Hilst, R.D. (2005). Upper mantle anisotropy beneath Japan from shear wave splitting, Phys Earth Planet Inter 151, 206-222.CrossRefGoogle Scholar
  40. Long, M.D. and Van der Hilst, R.D. (2006). Shear wave splitting from local events beneath the Ryukyu arc: Trench parallel anisotropy in the mantle wedge, Phys Earth Planet Inter 155, 300-312.CrossRefGoogle Scholar
  41. Long, M.D., and Wirth, E.A. (2013), Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes, J. Geophys. Res. Solid Earth 118, 583–606, doi: 10.1002/jgrb.50063.CrossRefGoogle Scholar
  42. Lynner, C., and Long, M.D. (2013), Sub-slab seismic anisotropy and mantle flow beneath the Caribbean and Scotia subduction zones: Effects of slab morphology and kinematics, Earth Planet. Sci. Lett. 361, 367-378, doi: 10.1016/j.epsl.2012.11.007.CrossRefGoogle Scholar
  43. lynner, C., and Long, M.D. (2014a), Sub-slab anisotropy beneath the Sumatra and circum-Pacific subduction zones from source-side shear wave splitting observations, Geochem. Geophys. Geosyst. 15, 2262–2281, doi: 10.1002/2014GC005239.CrossRefGoogle Scholar
  44. Lynner, C., and Long, M.D. (2014b), Testing models of sub-slab anisotropy using a global compilation of source-side shear wave splitting data, J. Geophys. Res. Solid Earth 119, 7226–7244, doi: 10.1002/2014JB010983.CrossRefGoogle Scholar
  45. Macías, J.L. (2005), Geología e historia eruptiva de algunos de los grandes volcanes activos de México, Bol. Soc. Geol. Mex. LVII, 379-424.CrossRefGoogle Scholar
  46. Manea, M., and Manea, V.C. (2008), On the origin of El Chichón volcano and subduction of Tehuantepec Ridge: A geodynamical perspective, J. Volcanol. Geoth. Res. 175, 459-471, doi: 10.1016/j.volgeores.2008.02.028.CrossRefGoogle Scholar
  47. Manea, V.C., and Manea, M. (2011), Flat-slab thermal structure and evolution beneath central Mexico, Pure Appl. Geophys. 168, 1475-1487, doi: 10.1007/s00024-010-0207-9.CrossRefGoogle Scholar
  48. Manea, V., Manea, M., Kostoglodov, V., and Sewell, G. (2006), Intraslab seismicity and thermal stress in the subducted Cocos plate beneath central Mexico, Tectonophysics 420, 389-408, doi: 10.1016/j.tecto.2006.03.029.CrossRefGoogle Scholar
  49. Mase (2007), Meso America subduction experiment, Caltech, dataset, Pasadena, CA, USA, doi: 10.7909/C3RN35SP.CrossRefGoogle Scholar
  50. Özalaybey, S., and Savage, M.K. (1994), Double-layer anisotropy resolved from S phases, Geophys. J. Int. 117, 653-664.CrossRefGoogle Scholar
  51. Özalaybey, S., and Savage, M.K. (1995), Shear-wave splitting beneath western United States in relation to plate tectonics, J. Geophys. Res. 100, 18,135-18,149.CrossRefGoogle Scholar
  52. Pacheco, J.F., and Singh, S.K. (2010), Seismicity and state of stress in Guerrero segment of the Mexican subduction zone, J. Geophys. Res. 115, B01303, doi: 10.1029/2009JB006453.CrossRefGoogle Scholar
  53. Paczkowski, K., Montési, L.G.J., Long, M.D., and Thissen, C.J. (2014a), Three-dimensional flow in the subslab mantle, Geochem. Geophys. Geosyst. 15, 3989-4008, doi: 10.1002/2014GC005441.CrossRefGoogle Scholar
  54. Paczkowski, K., Thissen, C.J., Long, M.D., and Montési, L.G.J. (2014b), Deflection of mantle flow beneath subducting slabs and the origin of subslab anisotropy, Geophys. Res. Lett. 41, 6734-6742, doi: 10.1002/2014GL060914.CrossRefGoogle Scholar
  55. Pardo, G., and Suárez, M. (1995). Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications, J Geophys Res 100, 12,3357 – 12,373.CrossRefGoogle Scholar
  56. Payero, J.S., Kostoglodov, V., Shapiro, N., Mikumo, T., Iglesias, A., Pérez-Campos, X. and Clayton, R.W. (2008). Nonvolcanic tremor observed in the Mexican subduction zone, J Geophys Res 35, L07305.Google Scholar
  57. Peyton, V., Levin, V., Park, J., Brandon, M., Lees, J., Gordeev, E., and Ozerov, A. (2001). Mantle flow at a slab edge: Seismic anisotropy in the Kamchatka region, Geophys Res Lett 28, 379- 382.CrossRefGoogle Scholar
  58. Pérez-Campos, X., Kim, Y., Husker, A., Davis, P., Clayton, R., Iglesias, A., Pacheco, J.F., Singh, S.K., Manea, V.C. and Gurnis, M. (2008). Horizontal subduction and truncation of the Cocos plate beneath Central Mexico, Geophys Res Lett 35, L18303.CrossRefGoogle Scholar
  59. Perttu, A., Christensen, D., Abers, G., and Song, X. (2014). Insights into the mantle structure and flow beneath Alaska based on a decade of observations of shear wave splitting, J Geophys Res 119, 8366-8377.CrossRefGoogle Scholar
  60. Phipps Morgan, J., Hasenclever, J., Hort, M., Rüpke, L., and Parmentier, E.M. (2007), On subducting slab entrainment of buoyant asthenosphere, Terra Nova 19, 167-173, doi: 10.1111/j.1365-3121.2007.00737.x.CrossRefGoogle Scholar
  61. Piñero-Felicangeli, L., and Kendall, J.-M. (2008). Sub-slab mantle flow parallel to the Caribbean plate boundaries: Inferences from SKS splitting, Tectonophysics 462, 22-34.CrossRefGoogle Scholar
  62. Ponce-Cortés, J.G. (2012), Medición de la anisotropía de las ondas SKS en el manto superior, debajo de las estaciones permanentes del Servicio Sismológico Nacional instaladas a partir del año 2005, B.Sc. thesis, 79 pp., Facultad de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico.Google Scholar
  63. Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Walpersdorf, A., Cotte, N., and Kostoglodov, V. (2012). Slow slip events and strain accumulation in the Guerrero gap, Mexico, J Geophys Res 117, B04305.CrossRefGoogle Scholar
  64. Rodríguez-Pérez, Q. (2007), Estructura tridimensional de velocidades para el sureste de México, mediante el análisis de trazado de rayos sísmicos de sismos regionales, M.Sc. thesis, 83 pp., Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.Google Scholar
  65. Rojo-Garibaldi, B. (2011), Anisotropía de las ondas SKS en el manto superior debajo de un arreglo sísmico entre Guerrero y Veracruz, B. Sc. thesis, 84 pp., Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.Google Scholar
  66. Russo, R.M. (2009). Subducted oceanic asthenosphere and upper mantle flow beneath the Juan de Fuca slab, Lithosphere 1, 195-205.CrossRefGoogle Scholar
  67. Russo, R.M., and Silver, P.G. (1994). Trench-parallel flow beneath the Nazca plate from seismic anisotropy, Science 263, 1105-1111.CrossRefGoogle Scholar
  68. Savage, M.K. (1999), Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?, Rev. Geophys. 37, 65-106.CrossRefGoogle Scholar
  69. Silver, P.G. (1996), Seismic anisotropy beneath the continents: Probing the depths of Geology, Annu. Rev. Earth Planet. Sci. 24, 385-432.CrossRefGoogle Scholar
  70. Silver, P.G., and Chan, W.W. (1991). Shear wave splitting and subcontinental mantle deformation, J Geophys R 96, 16429 – 16454.CrossRefGoogle Scholar
  71. Silver, P.G., and Kaneshima, S. (1993), Constraints on mantle anisotropy beneath Precambrian North America from a transportable teleseismic experiment, Geophys. Res. Lett. 20, 1127-1130.CrossRefGoogle Scholar
  72. Silver, P.G., and Savage, M.K. (1994), The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers, Geophys. J. Int. 119, 949-963.CrossRefGoogle Scholar
  73. Song, T.-R.A., and Kawakatsu, H. (2012), Subduction of oceanic asthenosphere: Evidence from sub-slab seismic anisotropy, Geophys. Res. Lett. 39, L17301, doi: 10.1029/2012GL052639.CrossRefGoogle Scholar
  74. Song, T.-R.A., and Kim, Y. (2012a), Anisotropic uppermost mantle in young subducted slab underplating central Mexico, Nat. Geosci. 5, 55-59, doi: 10.1038/ngeo1342.CrossRefGoogle Scholar
  75. Song, T.-R.A., and Kim, Y. (2012b), Localized seismic anisotropy associated with long-term slow-slip events beneath southern Mexico, Geophys. Res. Lett. 39, L09308, doi: 10.1029/2012GL051324.CrossRefGoogle Scholar
  76. Stubailo, I. (2015), Seismic anisotropy below Mexico and its implications for mantle dynamics, Ph.D. thesis, 119 pp., University of California, Los Angeles, CA, USA.Google Scholar
  77. Stubailo, I., and Davis, P. (2007), Shear wave splitting measurements and interpretation beneath Acapulco-Tampico transect in Mexico, Eos Trans. AGU 88 (52), Fall Meet. Suppl. Abstract T51B-0539.Google Scholar
  78. Stubailo, I., and Davis, P.M. (2012a), Anisotropy of the Mexico subduction zone based on shear-wave splitting analysis (abstract), Seism. Res. Lett. 83 (2), 379.Google Scholar
  79. Stubailo, I., and Davis, P.M. (2012b), Anisotropy of the Mexico subduction zone based on shear-wave splitting and higher modes analysis, Abstract T11A-2538 presented at 2012 Fall Meeting, AGU, San Francisco, CA, 3-7 December.Google Scholar
  80. Stubailo, I., and Davis, P.M. (2015), The surface wave, shear wave splitting, and higher mode seismic anisotropy comparison of the Mexican subduction zone (abstract), Seism. Res. Lett. 86 (2B), 677.Google Scholar
  81. Stubailo, I., Beghein, C., and Davis, P.M. (2012), Structure and anisotropy of the Mexico subduction zone based on Rayleigh-wave analysis and implications for the geometry of the Trans-Mexican Volcanic Belt, J. Geophys. Res. 117, B05303, doi: 10.1029/2011JB008631.CrossRefGoogle Scholar
  82. Suarez, G., and Singh, S.K. (1986), Tectonic interpretation of the Trans-Mexican Volcanic Belt―Discussion, Tectonophysics 127, 155-158.CrossRefGoogle Scholar
  83. Syracuse, E.M., and Abers, G.A. (2006), Global compilation of variations in slab depth beneath arc volcanoes and implications, Geochem. Geophys. Geosyst. 7, Q05017, doi: 10.1029/2005GC001045.CrossRefGoogle Scholar
  84. Tatsumi, W., and Eggins, S., Subduction Zone Magmatism, “Frontiers in Earth Science” (Blackwell Science, Cambridge, MA, USA1995).Google Scholar
  85. Van Benthem, S.A.C.(2005), Anisotropy and flow in the uppermantle under Mexico, M. Sc. thesis, 41 pp., Utrecht University, Utrecht, The Netherlands.Google Scholar
  86. Van Benthem, S.A.C., Valenzuela, R.W., and Ponce, G.J. (2013), Measurements of shear wave anisotropy from a permanent network in southern Mexico, Geofís. Int. 52, 385–402, doi: 10.1016/S0016-7169(13)71485-5.CrossRefGoogle Scholar
  87. Wessel, P., and Smith, W.H.F. (1998), New, improved version of Generic Mapping Tools released, Eos Trans. AGU 79, 579.CrossRefGoogle Scholar
  88. Wirth, E., and Long, M.D. (2010). Frequency-dependent shear wave splitting beneath the Japan and Izu-Bonin subduction zones, Phys Earth Planet Inter 181, 141-154. doi: 10.1016/j.pepi.2010.05.006.CrossRefGoogle Scholar
  89. Wolfe, C.J., and Silver, P.G. (1998). Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations, J Geophys R 103, 749-771.CrossRefGoogle Scholar
  90. Wookey, J., Kendall, J.-M., and Rumpker, G. (2005). Lowermost mantle anisotropy beneath the north Pacific from differential S-ScS splitting, Geophys J Int 161, 829-838.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  • Leslie A. Bernal-López
    • 1
  • Berenice R. Garibaldi
    • 2
  • Gerardo León Soto
    • 3
  • Raúl W. Valenzuela
    • 2
  • Christian R. Escudero
    • 1
  1. 1.Centro de Sismología y Volcanología de OccidenteUniversidad de GuadalajaraPuerto VallartaMexico
  2. 2.Departamento de Sismología, Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.Instituto de Investigaciones en Ciencias de la TierraUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico

Personalised recommendations