Origin and Function of the Renal Stroma in Health and Disease

  • Christopher J. Rowan
  • Sepideh Sheybani-Deloui
  • Norman D. Rosenblum
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 60)

Abstract

The renal stroma is defined as a heterogeneous population of cells that serve both as a supportive framework and as a source of specialized cells in the renal capsule, glomerulus, vasculature, and interstitium. In this chapter, we review published evidence defining what, where, and why stromal cells are important. We describe the functions of the renal stroma andhow stromal derivatives are crucial for normal kidney function. Next, we review the specification of stromal cells from the Osr1+ intermediate mesoderm and T+ presomitic mesoderm during embryogenesis and stromal cell differentiation. We focus on stromal signaling mechanisms that act in both a cell and non-cell autonomous manner in communication with the nephron progenitor and ureteric lineages. To conclude, stromal cells and the contribution of stromal cells to renal fibrosis and chronic kidney disease are described.

Notes

Acknowledgements

This work was supported by grants from the Canadian Institute of Health Research, the Kidney Foundation of Canada and the Canada Research Chairs Program (to NDR), the Natural Sciences and Engineering Research Council of Canada (to SS), and the Research Training Centre at The Hospital for Sick Children (to CR).

References

  1. Airik R, Bussen M, Singh MK, Petry M, Kispert A (2006) Tbx18 regulates the development of the ureteral mesenchyme. J Clin Investig 116(3):663–674CrossRefGoogle Scholar
  2. Am S, Péault P, Jj M (2013) Renal pericytes: multifunctional cells of the kidneys. Pflugers Arch Eur J Physiol 465(6):767–773CrossRefGoogle Scholar
  3. Bagherie-Lachidan M, Reginensi A, Pan Q, Zaveri HP, Scott DA, Blencowe BJ, Helmbacher F, McNeill H (2015) Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool. Development 142(15):2564–2573CrossRefGoogle Scholar
  4. Basta JM, Robbins L, Kiefer SM, Dorsett D, Rauchman M (2014) Sall1 balances self-renewal and differentiation of renal progenitor cells. Development 141(5):1047–1058CrossRefGoogle Scholar
  5. Batourina E, Gim S, Bello N, Shy M, Clagett-Dame M, Srinivas S, Costantini F, Mendelsohn C (2001) Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet 27(1):74–78CrossRefGoogle Scholar
  6. Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP et al (2005) Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 37(10):1082–1089CrossRefGoogle Scholar
  7. Bohnenpoll T, Bettenhausen E, Weiss A-C, Foik AB, Trowe M-O, Blank P, Airik R, Kispert A (2013) Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev Biol 380(1):25–36CrossRefGoogle Scholar
  8. Boivin FJ, Sarin S, Dabas P, Karolak M, Oxburgh L, Bridgewater D (2016) Stromal β-catenin overexpression contributes to the pathogenesis of renal dysplasia. J Pathol 239(2):174–185CrossRefGoogle Scholar
  9. Boivin FJ, Sarin S, Lim J, Javidan A, Svajger B, Khalili H, Bridgewater D (2015) Stromally expressed β-catenin modulates Wnt9b signaling in the ureteric epithelium. PLoS One 10(3):e0120347CrossRefGoogle Scholar
  10. Boor P, Floege J (2012) The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrol Dial Transplant 27(8):3027–3036CrossRefGoogle Scholar
  11. Boyle SC, Liu Z, Kopan R (2014) Notch signaling is required for the formation of mesangial cells from a stromal mesenchyme precursor during kidney development. Development 141(2):346–354CrossRefGoogle Scholar
  12. Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, Oxburgh L (2013) Role for compartmentalization in nephron progenitor differentiation. PNAS 110(12):4640–4645CrossRefGoogle Scholar
  13. Carroll TJ, Park J-S, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9(2):283–292CrossRefGoogle Scholar
  14. Caspary T, Cleary MA, Perlman EJ, Zhang P, Elledge SJ, Tilghman SM (1999) Oppositely imprinted genes p57Kip2 and Igf2 interact in a mouse model for Beckwith–Wiedemann syndrome. Genes Dev 13(23):3115–3124CrossRefGoogle Scholar
  15. Chen Y-T, Chang F, Wu C-F, Chou Y, Hsu H, Chiang W, Shen J, Chen Y, Wu K, Tsai T et al (2011) Platelet-derived growth factor receptor signaling activates pericyte–myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int 80(11):1170–1181CrossRefGoogle Scholar
  16. Cheng J, Truong LD, Wu X, Kuhl D, Lang F, Du J (2010) Serum- and glucocorticoid-regulated kinase 1 is upregulated following unilateral ureteral obstruction causing epithelial-mesenchymal transition. Kidney Int 78(7):668–678CrossRefGoogle Scholar
  17. Cui S, Schwartz L, Quaggin SE (2003) Pod1 isuri required in stromal cells for glomerulogenesis. Dev Dyn 226(3):512–522CrossRefGoogle Scholar
  18. Das A, Tanigawa S, Karner CM, Xin M, Lum L, Chen C, Olson EN, Perantoni AO, Carroll TJ (2013) Stromal-epithelial crosstalk regulates kidney progenitor cell differentation. Nat Cell Biol 15(9):1035–1044CrossRefGoogle Scholar
  19. Dawson TP, Gandhi R, Le Hir M, Kaissling B (1989) Ecto-5′-nucleotidase: localization in rat kidney by light microscopic histochemical and immunohistochemical methods. J Histochem Cytochem 37(1):39–47CrossRefGoogle Scholar
  20. DiRocco DP, Kobayashi A, Taketo MM, McMahon AP, Humphreys BD (2013) Wnt4/β-catenin signaling in medullary kidney myofibroblasts. J Am Soc Nephrol 24(9):1399–1412CrossRefGoogle Scholar
  21. Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529CrossRefGoogle Scholar
  22. Dufourcq P, Couffinhal T, Ezan J, Barandon L, Moreau C, Daret D, Duplàa C (2002) FrzA, a secreted frizzled related protein, induced angiogenic response. Circulation 106(24):3097–3103CrossRefGoogle Scholar
  23. Fabian SL, Penchev RR, St-Jacques B, Rao AN, Sipilä P, West KA, McMahon AP, Humphreys BD (2012) Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 180(4):1441–1453CrossRefGoogle Scholar
  24. Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ, Nguyen TQ (2015) Diverse origins of the myofibroblast—implications for kidney fibrosis. Nat Rev Nephrol 11(4):233–244CrossRefGoogle Scholar
  25. Fetting JL, Guay JA, Karolak MJ, Iozzo RV, Adams DC, Maridas DE, Brown AC, Oxburgh L (2014) FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney. Development 141(1):17–27CrossRefGoogle Scholar
  26. Fotter R (ed) (2008) Pediatric uroradiology. Springer, Berlin, HeidelbergGoogle Scholar
  27. Gaengel K, Genové G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638CrossRefGoogle Scholar
  28. Gong K-Q, Yallowitz AR, Sun H, Dressler GR, Wellik DM (2007) A Hox-Eya-Pax complex regulates early kidney developmental gene expression. Mol Cell Biol 27(21):7661–7668CrossRefGoogle Scholar
  29. Grgic I, Duffield JS, Humphreys BD (2012) The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol 27(2):183–193CrossRefGoogle Scholar
  30. Grgic I, Krautzberger AM, Hofmeister A, Lalli M, DiRocco DP, Fleig SV, Liu J, Duffield JS, McMahon AP, Aronow B et al (2014) Translational profiles of medullary myofibroblasts during kidney fibrosis. J Am Soc Nephrol 25(9):1979–1990CrossRefGoogle Scholar
  31. Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133(1):53–61CrossRefGoogle Scholar
  32. Guillaume R, Bressan M, Herzlinger D (2009) Paraxial mesoderm contributes stromal cells to the developing kidney. Dev Biol 329(2):169–175CrossRefGoogle Scholar
  33. Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10(12):1467–1478CrossRefGoogle Scholar
  34. He J, Sheng T, Stelter AA, Li C, Zhang X, Sinha M, Luxon BA, Xie J (2006) Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J Biol Chem 281(47):35598–35602CrossRefGoogle Scholar
  35. Hum S, Rymer C, Schaefer C, Bushnell D, Sims-Lucas S (2014) Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS One 9(2):e88400CrossRefGoogle Scholar
  36. Humphreys BD, Lin S, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, Mcmahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176(1):85–97CrossRefGoogle Scholar
  37. Hurtado R, Zewdu R, Mtui J, Liang C, Aho R, Kurylo C, Selleri L, Herzlinger D (2015) Pbx1-dependent control of VMC differentiation kinetics underlies gross renal vascular patterning. Development 142(15):2653–2664CrossRefGoogle Scholar
  38. Itäranta P, Chi L, Seppänen T, Niku M, Tuukkanen J, Peltoketo H, Vainio S (2006) Wnt-4 signaling is involved in the control of smooth muscle cell fate via Bmp-4 in the medullary stroma of the developing kidney. Dev Biol 293(2):473–483CrossRefGoogle Scholar
  39. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Investig 110(3):341–350CrossRefGoogle Scholar
  40. James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133(15):2995–3004CrossRefGoogle Scholar
  41. Kanda S, Tanigawa S, Ohmori T, Taguchi A, Kudo K, Suzuki Y, Sato Y, Hino S, Sander M, Perantoni AO et al (2014) Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. J Am Soc Nephrol 25(11):2584–2595CrossRefGoogle Scholar
  42. Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41(7):793–799CrossRefGoogle Scholar
  43. Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, Oliver G, Carroll TJ (2011) Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development 138(7):1247–1257CrossRefGoogle Scholar
  44. Kobayashi H, Liu Q, Binns TC, Urrutia AA, Davidoff O, Kapitsinou PP, Pfaff AS, Olauson H, Wernerson A, Fogo AB et al (2016) Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest 126(5):1926–1938CrossRefGoogle Scholar
  45. Kobayashi A, Mugford JW, Krautzberger AM, Naiman N, Liao J, McMahon AP (2014) Identification of a multipotent self-renewing stromal progenitor population during mammalian kidney organogenesis. Stem Cell Rep 3(4):650–662CrossRefGoogle Scholar
  46. Kramann R, Fleig SV, Schneider RK, Fabian SL, DiRocco DP, Maarouf O, Wongboonsin J, Ikeda Y, Heckl D, Chang SL et al (2015a) Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest 125(8):2935–2951CrossRefGoogle Scholar
  47. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA, Henderson JM, Ebert BL, Humphreys BD (2015b) Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16(1):51–66CrossRefGoogle Scholar
  48. Le Hir M, Kaissling B (1989) Distribution of 5′-nucleotidase in the renal interstitium of the rat. Cell Tissue Res 258(1):177–182CrossRefGoogle Scholar
  49. Le Hir M, Kaissling B (1993) Distribution and regulation of renal ecto-5′-nucleotidase: implications for physiological functions of adenosine. Am J Physiol 264(3 Pt 2):F377–F387PubMedGoogle Scholar
  50. LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19(8):1047–1053CrossRefGoogle Scholar
  51. Leimeister C, Bach A, Gessler M (1998) Developmental expression patterns of mouse sFRP genes encoding members of the secreted frizzled related protein family. Mech Dev 75(1–2):29–42CrossRefGoogle Scholar
  52. Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL (2005) Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 132(3):529–539CrossRefGoogle Scholar
  53. Li W, Hartwig S, Rosenblum ND (2014) Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney. Dev Dyn 243(7):853–863CrossRefGoogle Scholar
  54. Li L, Zepeda-Orozco D, Black R, Lin F (2010) Autophagy is a component of epithelial cell fate in obstructive uropathy. Am J Pathol 176(4):1767–1778CrossRefGoogle Scholar
  55. Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, Soriano P, Betsholtz C (1998) Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development 125(17):3313–3322PubMedGoogle Scholar
  56. Mao Y, Francis-West P, Irvine KD (2015) Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 142(15):2574–2585CrossRefGoogle Scholar
  57. Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD (2011) Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 138(5):947–957CrossRefGoogle Scholar
  58. Marxer-Meier A, Hegyi I, Loffing J, Kaissling B (1998) Postnatal maturation of renal cortical peritubular fibroblasts in the rat. Anat Embryol 197:143–153CrossRefGoogle Scholar
  59. McNeill H (2009) Planar cell polarity and the kidney. J Am Soc Nephrol 20(10):2104–2111CrossRefGoogle Scholar
  60. Mendelsohn C, Mark M, Dollé P, Dierich A, Gaub MP, Krust A, Lampron C, Chambon P (1994a) Retinoic acid receptor beta 2 (RAR beta 2) null mutant mice appear normal. Dev Biol 166(1):246–258CrossRefGoogle Scholar
  61. Mendelsohn C, Lohnes D, Décimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994b) Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120(10):2749–2771PubMedGoogle Scholar
  62. Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J (1999) Stromal cells mediate retinoid-dependent functions essential for renal development. Development 1148:1139–1148Google Scholar
  63. Miyazaki Y, Oshima K, Fogo A, Ichikawa I (2003) Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int 63(3):835–844CrossRefGoogle Scholar
  64. Mugford JW, Sipilä P, McMahon JA, McMahon AP (2008) Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney. Dev Biol 324(1):88–98CrossRefGoogle Scholar
  65. Nakagawa N, Xin C, Roach AM, Naiman N, Shankland SJ, Ligresti G, Ren S, Szak S, Gomez IG, Duffield JS (2015) Dicer1 activity in the stromal compartment regulates nephron differentiation and vascular patterning during mammalian kidney organogenesis. Kidney Int 87(6):1125–1140CrossRefGoogle Scholar
  66. Nemes B, Kanyári Z, Zádori G, Zsom L, Berhés M, Hamar M, Kóbor K, Péter A (2015) Horseshoe kidney transplantation. Intervent Med Appl Sci 7(2):85–89CrossRefGoogle Scholar
  67. Ohmori T, Tanigawa S, Kaku Y, Fujimura S (2015) Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors. Sci Rep 5:1–11Google Scholar
  68. Oxburgh L, Brown AC, Muthukrishnan SD, Fetting JL (2014) Bone morphogenetic protein signaling in nephron progenitor cells. Pediatr Nephrol 29(4):531–536CrossRefGoogle Scholar
  69. Park J-S, Ma W, O’Brien LL, Chung E, Guo J-J, Cheng J-G, Valerius MT, McMahon JA, Wong WH, McMahon AP (2012) Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Dev Cell 23(3):637–651CrossRefGoogle Scholar
  70. Park J-S, Valerius MT, McMahon AP (2007) Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development 134(13):2533–2539CrossRefGoogle Scholar
  71. Paroly SS, Wang F, Spraggon L, Merregaert J, Batourina E, Tycko B, Schmidt-Ott KM, Grimmond S, Little M, Mendelsohn C (2013) Stromal protein Ecm1 regulates ureteric bud patterning and branching. PLoS One 8(12):e84155CrossRefGoogle Scholar
  72. Phua YL, Chu JYS, Marrone AK, Bodnar AJ, Sims-Lucas S, Ho J (2015) Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival. Physiol Rep 3(10):e12537CrossRefGoogle Scholar
  73. Quaggin SE, Kreidberg JA (2008) Development of the renal glomerulus: good neighbors and good fences. Development 135(4):609–620CrossRefGoogle Scholar
  74. Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, Rossant J (1999) The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development 126(24):5771–5783PubMedGoogle Scholar
  75. Ranghini EJ, Dressler GR (2015) Evidence for intermediate mesoderm and kidney progenitor cell specification by Pax2 and PTIP dependent mechanisms. Dev Biol 399(2):296–305CrossRefGoogle Scholar
  76. Rock R, Schrauth S, Gessler M (2005) Expression of mouse dchs1, fjx1, and fat-j suggests conservation of the planar cell polarity pathway identified in Drosophila. Dev Dyn 234(3):747–755CrossRefGoogle Scholar
  77. Rodriguez MM (2014) Congenital anomalies of the kidney and the urinary tract (CAKUT). Fetal Pediatr Pathol 33(5–6):293–320CrossRefGoogle Scholar
  78. Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, Niederreither K, Dolle P, Duester G, Chambon P et al (2010) Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137(2):283–292CrossRefGoogle Scholar
  79. Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, Quaggin SE, Harrison R, Mount R, McNeill H (2008) Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet 40(8):1010–1015CrossRefGoogle Scholar
  80. Schnabel CA, Godin RE, Cleary ML (2003) Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol 254(2):262–276CrossRefGoogle Scholar
  81. Schnabel CA, Selleri L, Jacobs Y, Warnke R, Cleary ML (2001) Expression of Pbx1b during mammalian organogenesis. Mech Dev 100(1):131–135CrossRefGoogle Scholar
  82. Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and hypodysplasia in ret-k-mutant mice result from defects in ureteric bud development. Development 122(6):1919–1929PubMedGoogle Scholar
  83. Sequeira Lopez MLS, Gomez RA (2011) Development of the renal arterioles. J Am Soc Nephrol 22(12):2156–2165CrossRefGoogle Scholar
  84. Sequeira Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol Renal Physiol 281(2):F345–F356CrossRefGoogle Scholar
  85. Sequeira-Lopez MLS, Lin EE, Li M, Hu Y, Sigmund CD, Gomez RA (2015) The earliest metanephric arteriolar progenitors and their role in kidney vascular development. Am J Physiol Regul Integr Comp Physiol 308(2):R138–R149CrossRefGoogle Scholar
  86. Shawber CJ, Kitajewski J (2004) Notch function in the vasculature: insights from zebrafish, mouse and man. BioEssays 26(3):225–234CrossRefGoogle Scholar
  87. Sims-Lucas S, Schaefer C, Bushnell D, Ho J, Logar A, Prochownik E, Gittes G, Bates CM (2013) Endothelial progenitors exist within the kidney and lung mesenchyme. PLoS One 8(6):e65993CrossRefGoogle Scholar
  88. Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372(6507):679–683CrossRefGoogle Scholar
  89. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14(1):53–67CrossRefGoogle Scholar
  90. Takasato M, Little MH (2015) The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development 142(11):1937–1947CrossRefGoogle Scholar
  91. Trevant B, Gaur T, Hussain S, Symons J, Komm BS, Bodine PVN, Stein GS, Lian JB (2008) Expression of secreted frizzled related protein 1, a Wnt antagonist, in brain, kidney, and skeleton is dispensable for normal embryonic development. J Cell Physiol 217(1):113–126CrossRefGoogle Scholar
  92. Weizer AZ, Silverstein AD, Auge BK, Delvecchio FC, Raj G, Albala DM, Leder R, Preminger GM (2003) Determining the incidence of horseshoe kidney from radiographic data at a single institution. J Urol 170(5):1722–1726CrossRefGoogle Scholar
  93. Xu J, Wong EYM, Cheng C, Li J, Sharkar MTK, Xu CY, Chen B, Sun J, Jing D, Xu P-X (2014a) Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Dev Cell 31(4):434–447CrossRefGoogle Scholar
  94. Xu J, Nie X, Cai X, Cai CL, Xu PX (2014b) Tbx18 is essential for normal development of vasculature network and glomerular mesangium in the mammalian kidney. Dev Biol 391(1):17–31CrossRefGoogle Scholar
  95. Yallowitz AR, Hrycaj SM, Short KM, Smyth IM, Wellik DM (2011) Hox10 genes function in kidney development in the differentiation and integration of the cortical stroma. PLoS One 6(8):e23410CrossRefGoogle Scholar
  96. Yoshino K, Rubin JS, Higinbotham KG, Üren A, Anest V, Plisov SY, Perantoni AO (2001) Secreted frizzled-related proteins can regulate metanephric development. Mech Dev 102(1–2):45–55CrossRefGoogle Scholar
  97. Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, McMahon AP (2009) A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136(1):161–171CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Open Access This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Christopher J. Rowan
    • 1
    • 2
  • Sepideh Sheybani-Deloui
    • 1
    • 3
  • Norman D. Rosenblum
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Program in Developmental and Stem Cell Biology, The Hospital for Sick ChildrenTorontoCanada
  2. 2.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  3. 3.Department of PhysiologyUniversity of TorontoTorontoCanada
  4. 4.Division of Nephrology, Department of PaediatricsUniversity of TorontoTorontoCanada
  5. 5.Peter Gilgan Centre for Research and Learning, Hospital for Sick ChildrenTorontoCanada

Personalised recommendations