Advertisement

Laser-Assisted Treatment of Peri-implantitis

  • Edward A. MarcusEmail author
Chapter

Abstract

Dental lasers are becoming a useful adjunct in the treatment of ailing and failing implants with their ability to remove diseased tissue, decontaminate implant surfaces, and stimulate growth factors, fibroblast attachment, and collagen deposition. When compared to conventional treatment outcomes, reported clinical improvements resulting from laser-assisted treatment of peri-implantitis include reductions in probing depth, bleeding, suppuration, and implant mobility, with evidence of bone formation and reosseointegration. Future research is expected to optimize clinical efficacy and predictability of laser treatment in the long term.

Keywords

Peri-implantitis Laser Photodynamic therapy Photosensitizer Bacteria Probing depth Fibroblast attachment Growth factors Collagen deposition Bone formation Osseointegration 

References

  1. Al-Falaki R, Cronshaw M, Hughes FJ (2014) Treatment outcome following use of the erbium, chromium:yttrium, scandium, gallium, garnet laser in the non-surgical management of peri-implantitis: a case series. Br Dent J 217(8):453–457PubMedCrossRefGoogle Scholar
  2. Azzeh MM (2008) Er,Cr:YSGG laser-assisted surgical treatment of peri-implantitis with 1-year reentry and 18-month follow-up. J Periodontol 79(10):2000–2005PubMedCrossRefGoogle Scholar
  3. Badran Z, Bories C, Struillou X et al (2011) Er:YAG laser in the clinical management of severe peri-implantitis: a case report. J Oral Implantol 27(Spec No):212–217PubMedCrossRefGoogle Scholar
  4. Bassetti M, Schär D, Wicki B et al (2004) Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: 12-month outcomes of a randomized controlled clinical trial. Clin Oral Implants Res 25(3):279–287CrossRefGoogle Scholar
  5. Block CM, Mayo JA, Evans GH (1992) Effects of the Nd:YAG dental laser on plasma-sprayed and hydroxyapatite-coated titanium dental implants: surface alteration and attempted sterilization. Int J Oral Maxillofac Implants 7(4):441–449PubMedGoogle Scholar
  6. Boldrini C, de Almeida JM, Fernandes LA et al (2013) Biomechanical effect of one session of low-level laser on the bone-titanium implant interface. Lasers Med Sci 28(1):349–352PubMedCrossRefGoogle Scholar
  7. Bombeccari GP, Guzzi G, Gualini F et al (2013) Photodynamic therapy to treat periimplantitis. Implant Dent 22(6):631–638PubMedCrossRefGoogle Scholar
  8. Borrajo JLL, Varela LG, Castro GL et al (2004) Diode laser (980 nm) as adjunct to scaling and root planing. Photomed Laser Surg 22(6):509–512PubMedCrossRefGoogle Scholar
  9. De Vasconcellos LMR, Barbara MAM, Deco CP et al (2014) Healing of normal and osteopenic bone with titanium implant and low-level laser therapy (GaAlAs): a histomorphometric study in rats. Lasers Med Sci 29(2):575–580PubMedCrossRefGoogle Scholar
  10. Deppe H, Horch H-H, Neff A (2007) Conventional versus CO2 laser-assisted treatment of peri-implant defects with the concomitant use of pure-phase β-tricalcium phosphate: a 5-year clinical report. Int J Oral Maxillofac Implants 22(1):79–86PubMedGoogle Scholar
  11. Deppe H, Mücke T, Wagenpfeil S et al (2013) Nonsurgical antimicrobial photodynamic therapy in moderate vs severe peri-implant defects: a clinical pilot study. Quintessence Int 44(8):609–618PubMedGoogle Scholar
  12. Dörtbudak O, Haas R, Bernhart T et al (2001) Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis. Clin Oral Implants Res 12(2):104–108PubMedCrossRefGoogle Scholar
  13. Epstein SR (1992) Curettage revisited: laser therapy. Pract Periodontics Aesthet Dent 4(2):27–32PubMedGoogle Scholar
  14. Flax HD, Radz GM (2004) Closed-flap laser-assisted esthetic dentistry using Er:YSGG technology. Compend Contin Educ Dent 25(8):622 626, 628–630, 632, 634PubMedGoogle Scholar
  15. Geminiani A, Caton JG, Romanos GE (2011) Temperature increase during CO2 and Er:YAG irradiation on implant surfaces. Implant Dent 20(5):379–382PubMedGoogle Scholar
  16. Geminiani A, Caton JG, Romanos GE (2012) Temperature change during non-contact diode laser irradiation of implant surfaces. Lasers Med Sci 27(2):339–342PubMedCrossRefGoogle Scholar
  17. Giannelli M, Bani D, Tani A et al (2009) In vitro evaluation of the effects of low-intensity Nd:YAG laser irradiation on the inflammatory reaction elicited by bacterial lipopolysaccharide adherent to titanium dental implants. J Periodontol 80(6):977–984PubMedCrossRefGoogle Scholar
  18. Giannini R, Vassalli M, Chellini F et al (2006) Neodymium:yttrium aluminum garnet laser irradiation with low pulse energy: a potential tool for the treatment of peri-implant disease. Clin Oral Implants Res 17(6):638–643PubMedCrossRefGoogle Scholar
  19. Gold SI, Vilardi MA (1994) Pulsed laser beam effects on gingiva. J Clin Periodontol 21(6):391–396PubMedCrossRefGoogle Scholar
  20. Gonçalves F, Zanetti AL, Zanetti RV et al (2010) Effectiveness of 980-nm diode and 1064-nm extra-long-pulse neodymium-doped aluminum garnet lasers in implant disinfection. Photomed Laser Surg 28(2):273–280PubMedCrossRefGoogle Scholar
  21. Guzzardella GA, Torricelli P, Nicoli-Aldini N et al (2003) Osseointegration of endosseous ceramic implants after postoperative low-power laser stimulation: an in vivo comparative study. Clin Oral Implants Res 14(2):226–232PubMedCrossRefGoogle Scholar
  22. Harris DM, Yessik M (2004) Therapeutic ratio quantifies laser antisepsis: ablation of Porphyromonas gingivalis with dental lasers. Lasers Surg Med 35(3):206–213PubMedCrossRefGoogle Scholar
  23. Hauser-Gerspach I, Stübinger S, Meyer J (2010) Bactericidal effects of different laser systems on bacteria adhered to dental implant surfaces: an in vitro study comparing zirconia with titanium. Clin Oral Implants Res 21(3):277–283PubMedCrossRefGoogle Scholar
  24. Kamma JJ, Vasdekis VGS, Romanos GE (2009) The effect of diode laser (980 nm) treatment on aggressive periodontitis: evaluation of microbial and clinical parameters. Photomed Laser Surg 27(1):11–19PubMedCrossRefGoogle Scholar
  25. Kato T, Kusakari H, Hoshino E (1998) Bactericidal efficacy of carbon dioxide laser against bacteria-contaminated titanium implant and subsequent cellular adhesion to irradiated area. Lasers Surg Med 23(5):299–309PubMedCrossRefGoogle Scholar
  26. Khadra M, Kasem N, Lyngstadaas SP et al (2005) Laser therapy accelerates initial attachment and subsequent behavior of human oral fibroblasts cultured on titanium implant material. A scanning electron microscopic and histomorphometric analysis. Clin Oral Implants Res 16(2):168–175PubMedCrossRefGoogle Scholar
  27. Kilinc E, Rothrock J, Migliorati E et al (2012) Potential surface alteration effects of laser-assisted periodontal surgery on existing dental restorations. Quintessence Int 43(5):387–395PubMedGoogle Scholar
  28. Kim S-W, Kwon Y-H, Chung J-H et al (2010) The effect of Er:YAG laser irradiation on the surface microstructure and roughness of hydroxyapatite-coated implant. J Periodontal Implant Sci 40(6):276–282PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kim J-H, Herr Y, Chung J-H et al (2011) The effect of erbium-doped:yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of double-acid-etched implants. J Periodontal Implant Sci 41(5):234–241PubMedPubMedCentralCrossRefGoogle Scholar
  30. Knappe V, Frank F, Rohde E (2004) Principles of lasers and biophotonic effects. Photomed Laser Surg 22(5):411–417PubMedCrossRefGoogle Scholar
  31. Kreisler M, Kohnen W, Marinello C et al (2002) Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol 73(11):1292–1298PubMedCrossRefGoogle Scholar
  32. Kreisler M, Al Haj H, d’Hoedt B (2003) Temperature changes induced by 809-nm GaAlAs laser at the implant-bone interface during simulated surface decontamination. Clin Oral Implants Res 14(1):91–96PubMedCrossRefGoogle Scholar
  33. Kutkut A, Andreana S, Al-Sabbagh M (2011) Treatment of periimplant infection in the posterior maxilla, with 810-nm diode laser decontamination of the implant surfaces: a case report. J Laser Dent 19(3):270–275Google Scholar
  34. Lee J-H, Heo S-J, Koak J-Y et al (2008) Cellular responses on anodized titanium discs after laser irradiation. Lasers Surg Med 40(10):738–742PubMedCrossRefGoogle Scholar
  35. Lee J-H, Kwon Y-H, Herr Y et al (2011) Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants. J Periodontal Implant Sci 41(3):135–142PubMedPubMedCentralCrossRefGoogle Scholar
  36. Leja C, Geminiani A, Caton J et al (2013) Thermodynamic effects of laser irradiation of implants placed in bone: an in vitro study. Lasers Med Sci 28(6):1435–1440PubMedCrossRefGoogle Scholar
  37. Marotti J, Tortamano P, Cai S et al (2013) Decontamination of dental implant surfaces by means of photodynamic therapy. Lasers Med Sci 28(1):303–309 Erratum in: (2013) Lasers Med Sci 28(3):1047PubMedCrossRefGoogle Scholar
  38. Massotti FP, Gomes FV, Mayer L et al (2015) Histomorphometric assessment of the influence of low-level laser therapy on peri-implant tissue healing in the rabbit mandible. Photomed Laser Surg 33(3):123–128PubMedPubMedCentralCrossRefGoogle Scholar
  39. Monzavi A, Shahabi S, Fekrazad R et al (2014) Implant surface temperature changes during Er:YAG laser irradiation with different cooling systems. J Dent (Tehran) 11(2):210–215Google Scholar
  40. Moritz A, Schoop U, Goharkhay K et al (1998) Treatment of periodontal pockets with a diode laser. Lasers Surg Med 22(5):302–311PubMedCrossRefGoogle Scholar
  41. Mouhyi J, Sennerby L, Nammour S et al (1999) Temperature increases during surface decontamination of titanium implants using CO2 laser. Clin Oral Implants Res 10(1):54–61PubMedCrossRefGoogle Scholar
  42. Naka T, Yokose S (2012) Application of laser-induced bone therapy by carbon dioxide laser irradiation in implant therapy. Int J Dent 409496:1–8CrossRefGoogle Scholar
  43. Nevins M, Nevins ML, Yamamoto A et al (2014) Use of Er:YAG laser to decontaminate infected dental implant surface in preparation for reestablishment of bone-to-implant contact. Int J Periodontics Restor Dent 34(4):461–466CrossRefGoogle Scholar
  44. Nicholson D, Blodgett K, Braga C et al (2014) Pulsed Nd:YAG laser treatment for failing implants due to peri-implantitis. In: Rechmann P, Fried D (eds) Lasers in dentistry XX, San Francisco, Calif., February 2, 2014, vol 8929. Society of Photo-Optical Instrumentation Engineers, Bellingham, pp 89290H-1–89290H-14Google Scholar
  45. Omasa S, Motoyoshi M, Arai Y et al (2012) Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model. Photomed Laser Surg 30(5):255–261PubMedCrossRefGoogle Scholar
  46. Pang P, Andreana S, Aoki A et al (2010) Laser energy in oral soft tissue applications. J Laser Dent 18(3):123–131Google Scholar
  47. Papadopoulos CA, Vouros I, Menexes G et al (2015) The utilization of a diode laser in the surgical treatment of peri-implantitis. A randomized clinical trial. Clin Oral Investig. doi: 10.1007/s00784-014-1397-9 PubMedCrossRefGoogle Scholar
  48. Persson LF, Mouhyi J, Berglundh T et al (2004) Carbon dioxide laser and hydrogen peroxide conditioning in the treatment of periimplantitis: an experimental study in the dog. Clin Implant Dent Relat Res 6(4):230–238PubMedCrossRefGoogle Scholar
  49. Pick RM, Pecaro BC, Silberman CJ (1985) The laser gingivectomy. The use of the CO2 laser for the removal of phenytoin hyperplasia. J Periodontol 56(8):492–496PubMedCrossRefGoogle Scholar
  50. Renvert S, Lindahi C, Roos Jansåker A-M et al (2011) Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol 38(1):65–73PubMedCrossRefGoogle Scholar
  51. Romanos G (2006) 980-nm diode laser-assisted treatment of peri-implantitis. J Acad Laser Dent 14(1):13–15Google Scholar
  52. Romanos GE, Nentwig GH (2008) Regenerative therapy of deep peri-implant infrabony defects after CO2 laser implant surface decontamination. Int J Periodontics Restor Dent 28(3):245–255Google Scholar
  53. Romanos GE, Everts H, Nentwig GH (2000) Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol 71(5):810–815PubMedCrossRefGoogle Scholar
  54. Romanos G, Ko H-H, Froum S et al (2009) The use of CO2 laser in the treatment of peri-implantitis. Photomed Laser Surg 27(3):381–386PubMedCrossRefGoogle Scholar
  55. Roncati M, Lucchese A, Carinci F (2013) Non-surgical treatment of peri-implantitis with the adjunctive use of an 810-nm diode laser. J Indian Soc Periodontol 17(6):812–815PubMedPubMedCentralCrossRefGoogle Scholar
  56. Russell AD (2003) Lethal effects of heat on bacterial physiology and structure. Sci Prog 86(Pt 1–2):115–137PubMedCrossRefGoogle Scholar
  57. Schwarz F, Berakdar M, Georg T et al (2003) Clinical evaluation of an Er:YAG laser combined with scaling and root planing for non-surgical periodontal treatment. A controlled, prospective clinical study. J Clin Periodontol 30(1):26–34PubMedCrossRefGoogle Scholar
  58. Schwarz F, Sculean A, Rothamel D et al (2005) Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res 16(1):44–52PubMedCrossRefGoogle Scholar
  59. Schwarz F, Nuesry E, Bieling K et al (2006a) Influence of an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser on the reestablishment of the biocompatibility of contaminated titanium implant surfaces. J Periodontol 77(11):1820–1827PubMedCrossRefGoogle Scholar
  60. Schwarz F, Bieling K, Nuesry E et al (2006b) Clinical and histological healing pattern of peri-implantitis lesions following non-surgical treatment with an Er:YAG laser. Lasers Surg Med 38(7):663–671PubMedCrossRefGoogle Scholar
  61. Schwarz F, Hegewald A, John G et al (2013) Four-year follow-up of combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination. J Clin Periodontol 40(10):962–967PubMedCrossRefGoogle Scholar
  62. Shafir R, Slutzki S, Bornstein LA (1977) Excision of buccal hemangioma by carbon dioxide laser beam. Oral Surg Oral Med Oral Pathol 4(3):347–350CrossRefGoogle Scholar
  63. Shin S-I, Min H-K, Park B-H et al (2011) The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci 26(6):767–776PubMedCrossRefGoogle Scholar
  64. Shin S-I, Lee E-K, Kim J-H et al (2013) The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis. Lasers Med Sci 28(3):823–831PubMedCrossRefGoogle Scholar
  65. Strong MS, Vaughan CE, Healy GB et al (1979) Transoral management of localized carcinoma of the oral cavity using the CO2 laser. Laryngoscope 89(6 Pt 1):897–905PubMedGoogle Scholar
  66. Stübinger S, Homann F, Etter C et al (2008) Effect of Er:YAG, CO2 and diode laser irradiation on surface properties of zirconia endosseous dental implants. Lasers Surg Med 40(3):223–228PubMedCrossRefGoogle Scholar
  67. Stübinger S, Etter C, Miskiewicz M et al (2010) Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants 25(1):104–111PubMedGoogle Scholar
  68. Takasaki AA, Aoki A, Mizutani K et al (2007) Er:YAG laser therapy for peri-implant infection: a histological study. Lasers Med Sci 22(3):143–157PubMedCrossRefGoogle Scholar
  69. Watanabe H, Ishikawa I, Suzuki M et al (1996) Clinical assessments of the erbium:YAG laser for soft tissue surgery and scaling. J Clin Laser Med Surg 14(2):67–75PubMedCrossRefGoogle Scholar
  70. White JM, Goodis HE, Rose CL (1991) Use of the pulsed Nd:YAG laser for intraoral soft tissue surgery. Lasers Surg Med 11(5):455–461PubMedCrossRefGoogle Scholar
  71. Wilcox CW, Wilwerding TM, Watson P et al (2001) Use of electrosurgery and lasers in the presence of dental implants. Int J Oral Maxillofac Implants 16(4):578–582PubMedGoogle Scholar
  72. Wooten CA, Sullivan SM, Surpure S (1999) Heat generation by superpulsed CO2 lasers on plasma-sprayed titanium implants: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 88(5):544–548PubMedCrossRefGoogle Scholar
  73. Yamamoto A, Tanabe T (2013) Treatment of peri-implantitis around TiUnite-surface implants using Er:YAG laser microexplosions. Int J Periodontics Restor Dent 33(1):21–29CrossRefGoogle Scholar
  74. Yu W, Naim JO, Lanzaframe RJ (1997) Effects of photostimulation on wound healing in diabetic mice. Lasers Surg Med 20(1):56–63PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Pennsylvania School of Dental Medicine and Temple University Maurice H Kornberg School of DentistryPhiladelphiaUSA
  2. 2.Private PracticeYardleyUSA

Personalised recommendations