Promising Test Systems Beyond the Current Status

  • Erwin L. Roggen


In addition to the mature animal-free testing methods for skin sensitization, several promising new test systems or modifications of existing systems are emerging. This chapter provides a non-exhaustive list of emerging tools for animal-free assessment of skin sensitization addressing skin bioavailability, haptenation, inflammatory mechanisms and dendritic cell activation, and migration. The exact added value of these emerging tools remains to be substantiated.


  1. 1.
    Groeber F, Engelhardt L, Egger S, Werthmann H, Monaghan M, Walles H, Hansmann J. Impedance spectroscopy for the non-desctructive evaluation of in vitro epidermal models. Pharm Res. 2014;32(5):1845–54. doi: 10.1007/s11095-014-1580-3.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brauchle E, Schenke-Layland K. Raman spectroscopy in biomedicine – non-invasive in vitro analysis of cells and extracelluilar matrix components in tissues. Biotechnol J. 2013;8(3):288–97. doi: 10.1002/biot.201200163.CrossRefPubMedGoogle Scholar
  3. 3.
    O’Brien PJ, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR, Gao B, Kaludercic N, Angeline A, Bernardi P, Brain P, Hougham C. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol. 2006;80(9):580–604.CrossRefPubMedGoogle Scholar
  4. 4.
    Tolosa L, Pinto S, Donato MT, Lahoz A, Castell JV, O’Connor JE, Gómez-Lechón MJ. Development of a multiparametric cell-based protocol to screen and classify the hepatoxicity potential of drugs. Toxicol Sci. 2012;127:187–98.CrossRefPubMedGoogle Scholar
  5. 5.
    Manchanda T, Hess D, Dale L, Ferguson SG, Rieder MJ. Haptenation of sulfonamide reactive metabolites to cellular proteins. Mol Pharmacol. 2002;62:1011–26.CrossRefPubMedGoogle Scholar
  6. 6.
    Dietz L, Kinzebach S, Ohnesorge S, Franke B, Goette I, Koenig-Gressel D, et al. Proteomic allergen-peptide/protein interaction assay for the identification of human skin sensitizers. Toxicol In Vitro. 2013;27:1157–62. doi: 10.1016/j.tiv.2012.08.013.CrossRefPubMedGoogle Scholar
  7. 7.
    Natsch A, Gfeller H. LC-MS-based characterization of the peptide reactivity of chemicals to improve the in vitro prediction of the skin sensitization potential. Toxicol Sci. 2008;106(2):464–78.CrossRefPubMedGoogle Scholar
  8. 8.
    Yamamoto Y, Tahara H, Usami R, Kasahara T, Jimbo Y, Hioki T, Fujita M. A novel in chemico method to detect skin sensitizers in highly diluted reaction conditions. J Appl Toxicol. 2015;35:1348–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Aptula AO, Patlewicz G, Roberts DW, Schultz TW. Non-enzymatic glutathione reactivity and in vitro toxicity: a non-animal approach to skin sensitization. Toxicol In Vitro. 2006;20:239–47.CrossRefPubMedGoogle Scholar
  10. 10.
    Jacquoilleot S, Sheffield D, Olayanju A, Sison-Young R, Kitteringham NR, Naisbitt DJ, Aleksic M. Glutathione metabolism in the HaCaT cell line as a model for the detoxification of the model sensitizers 2,4-dinitrohalobenzenes in human skin. Toxicol Lett. 2015;237:11–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Saito K, Nukada Y, Takenouchi O, Miyazawa M, Sakaguchi H, Nishiyama N. Development of a new in vitro skin sensitization assay (epidermal sensitization assay; EpiSensA) using reconstructed human epidermis. Toxicol In Vitro. 2013;27:2213–24.CrossRefPubMedGoogle Scholar
  12. 12.
    van der Veen JW, Pronk TE, van Loveren H, Ezendam J. Applicability of a keratinocyte gene signature to predict skin sensitizing potential. Toxicol In Vitro. 2013;27:314–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Nukada Y, Miyazawa M, Kosaka N, Ito Y, Sakaguchi H, Nishiyama N. Production of IL-8 in THP-1 cells following contact allergen stimulation via mitogen-activated protein kinase activation or tumor necrosis factor-alpha production. J Toxicol Sci. 2008;33:175–85.CrossRefPubMedGoogle Scholar
  14. 14.
    Python F, Goebel C, Aeby P. Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol. 2007;220:113–24.CrossRefPubMedGoogle Scholar
  15. 15.
    Toebak MJ, Gibbs S, Bruynzeel DP, Scheper RJ, Rustemeyer T. Dendritic cells: biology of the skin. Contact Dermatitis. 2009;60:2–20.CrossRefPubMedGoogle Scholar
  16. 16.
    Takahashi T, Kimura Y, Saito R, Nakajima Y, Ohmiya Y, Yamasaki K, Aiba S. An in vitro test to screen skin sensitizers using a stable THP-1-derived IL-8 reporter cell line, THP-G8. Toxicol Sci. 2011;124(2):359–69.CrossRefPubMedGoogle Scholar
  17. 17.
    Villablanca EJ, Russo V, Mora JR. Dendritic cell migration and lymphocyte homing imprinting. Histol Histopathol. 2008;23:897–910.PubMedGoogle Scholar
  18. 18.
    Ouwehand K, Scheper RJ, de Gruijl TD, Gibbs S. Epidermis-todermis migration of immature Langerhans cells upon topical irritant exposure is dependent on CCL2 and CCL5. Eur J Immunol. 2012;40:2026–34.CrossRefGoogle Scholar
  19. 19.
    Ouwehand K, Spiekstra SW, Waaijman T, Scheper RJ, de Gruijl TD, Gibbs S. Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. Tech Adv. 2011;90:1028–33.Google Scholar
  20. 20.
    Rees B, Spiekstra SW, Carfi M, Ouwehand K, Williams CA, Corsini E, McLeod JD, Gibbs S.Inter-laboratory study of the in vitro dendritic cell migration assay for identification of contact allergens. Toxicol In Vitro. 2011;25:2124–34.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.3Rs Management and Consulting ApSKongens LyngbyDenmark

Personalised recommendations