Proteomics Testing for Sensitization Potency Using the Sensiderm™ TMT-SRM 10-Plex Assay

  • Petra Budde
  • Hans-Dieter Zucht
  • Ian PikeEmail author


Along with the rise in the use chemical allergens in in fragrances and cosmetic products, increased reporting of allergic contact dermatitis (ACD) continues to be a public health concern. So far, risk assessment of potential allergens essentially relies upon animal testing. New proteomics technologies combined with appropriate cell culture models and bioinformatics tools open up the window to transfer logical pathway information into biomarker assays. Sensiderm™ TMT-SRM 10-plex is a multiparametric assay, which is based on the established principles of selected reaction monitoring (SRM) mass spectrometry. The assay uses the human dendritic model MUTZ-3 exposed to chemical sensitizers to measure a response signature of ten proteins. In a model-building phase, the ten protein targets were initially discovered using a set of chemical sensitizers provided by the European Integrated Project Sens-it-iv. Currently, the Sensiderm assay has been pre-validated in two analytical laboratories, and a set of testing chemicals has been investigated in both non-blinded and blinded manner. In summary, the Sensiderm 10-plex assay reflects the activation of different sensitization-related pathways. A proper interpretation of this information may be integrated in decision-making processes of suspicious chemicals.


  1. 1.
    Ashton R, De Wever B, Fuchs HW, Gaca M, Hill E, Krul C, Poth A, Roggen EL. State of the art on alternative methods to animal testing from an industrial point of view: ready for regulation? ALTEX. 2014;31(3):357–63.CrossRefPubMedGoogle Scholar
  2. 2.
    Reisinger K, Hoffmann S, Alépée N, Ashikaga T, Barroso J, Elcombe C, Gellatly N, Galbiati V, Gibbs S, Groux H, Hibatallah J, Keller D, Kern P, Klaric M, Kolle S, Kuehnl J, Lambrechts N, Lindstedt M, Millet M, Martinozzi-Teissier S, Natsch A, Petersohn D, Pike I, Sakaguchi H, Schepky A, Tailhardat M, Templier M, van Vliet E, Maxwell G. Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicol In Vitro. 2015;29(1):259–70.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Weltzien H-U, Corsini E, Gibbs S, Lindstedt M, Borrebaeck CAK, Budde P, Schulz-Knappe P, Thierse H-J, Martin SF, Roggen EL. Safe cosmetics without animal testing? Contributions of the EU Project Sens-it-iv. J Verbr Lebensm. 2009;4(Suppl 2):S41–8.CrossRefGoogle Scholar
  4. 4.
    Casati S, Aeby P, Kimber I, Maxwell G, Ovigne JM, Roggen E, Rovida C, Tosti L, Basketter D. Selection of chemicals for the development and evaluation of in vitro methods for skin sensitisation testing. Altern Lab Anim. 2009;37(3):305–12.PubMedGoogle Scholar
  5. 5.
    Rovida C, Martin SF, Vivier M, Weltzien HU, Roggen E. Advanced tests for skin and respiratory sensitization assessment. ALTEX. 2013;30(2):231–52.CrossRefPubMedGoogle Scholar
  6. 6.
    Hitzler M, Bergert A, Luch A, Peiser M. Evaluation of selected biomarkers for the detection of chemical sensitization in human skin: a comparative study applying THP-1, MUTZ-3 and primary dendritic cells in culture. Toxicol In Vitro. 2013;27(6):1659–69.CrossRefPubMedGoogle Scholar
  7. 7.
    Johansson H, Lindstedt M, Albrekt AS, Borrebaeck CA. A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests. BMC Genomics. 2011;12:399.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nelissen I, Selderslaghs I, Heuvel RV, Witters H, Verheyen GR, Schoeters G. MUTZ-3-derived dendritic cells as an in vitro alternative model to CD34+ progenitor-derived dendritic cells for testing of chemical sensitizers. Toxicol In Vitro. 2009;23(8):1477–81.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Python F, Goebel C, Aeby P. Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde. Toxicol Appl Pharmacol. 2009;239(3):273–83.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hu ZB, Ma W, Zaborski M, MacLeod R, Quentmeier H, Drexler HG. Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3. Leukemia. 1996;10(6):1025–40.PubMedGoogle Scholar
  11. 11.
    Masterson AJ, Sombroek CC, De Gruijl TD, Graus YM, van der Vliet HJ, Lougheed SM, van den Eertwegh AJ, Pinedo HM, Scheper RJ. MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+ precursors. Blood. 2002;100(2):701–3.CrossRefPubMedGoogle Scholar
  12. 12.
    Palermo G, Piraino P, Zucht HD. Performance of PLS regression coefficients in selecting variables for each response of a multivariate PLS for omics-type data. Adv Appl Bioinform Chem. 2009;2:57–70.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Strathmann FG, Hoofnagle AN. Current and future applications of mass spectrometry to the clinical laboratory. Am J Clin Pathol. 2011;136(4):609–16.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Titz B, Elamin A, Martin F, Schneider T, Dijon S, Ivanov NV, Hoeng J, Peitsch MC. Proteomics for systems toxicology. Comput Struct Biotechnol J. 2014;11(18):73–90.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Končarević S, Lößner C, Kuhn K, Prinz T, Pike I, Zucht HD. In-depth profiling of the peripheral blood mononuclear cells proteome for clinical blood proteomics. Int J Proteom. 2014;2014:129259.CrossRefGoogle Scholar
  16. 16.
    Wold S. Chemometrics; what do we mean with it, and what do we want from it? Chemom Intell Lab Syst. 1995;30(1):109–15. doi: 10.1016/0169-7439(95)00042-9.CrossRefGoogle Scholar
  17. 17.
    Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002;62(18):5196–203.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Natsch A. The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers – functional relevance and a hypothesis on innate reactions to skin sensitizers. Toxicol Sci. 2010;113(2):284–92.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Tamura Y, Torigoe T, Kutomi G, Hirata K, Sato N. New paradigm for intrinsic function of heat shock proteins as endogenous ligands in inflammation and innate immunity. Curr Mol Med. 2012;12(9):1198–206.CrossRefPubMedGoogle Scholar
  20. 20.
    Yusuf N, Nasti TH, Huang CM, Huber BS, Jaleel T, Lin HY, Xu H, Elmets CA. Heat shock proteins HSP27 and HSP70 are present in the skin and are important mediators of allergic contact hypersensitivity. J Immunol. 2009;182(1):675–83.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Arnhold J, Flemmig J. Human myeloperoxidase in innate and acquired immunity. Arch Biochem Biophys. 2010;500(1):92–106.CrossRefPubMedGoogle Scholar
  22. 22.
    Cerezo LA, Remáková M, Tomčik M, Gay S, Neidhart M, Lukanidin E, Pavelka K, Grigorian M, Vencovský J, Šenolt L. The metastasis-associated protein S100A4 promotes the inflammatory response of mononuclear cells via the TLR4 signalling pathway in rheumatoid arthritis. Rheumatology (Oxford). 2014;53(8):1520–6.CrossRefGoogle Scholar
  23. 23.
    Bruhn S, Fang Y, Barrenäs F, Gustafsson M, Zhang H, Konstantinell A, Krönke A, Sönnichsen B, Bresnick A, Dulyaninova N, Wang H, Zhao Y, Klingelhöfer J, Ambartsumian N, Beck MK, Nestor C, Bona E, Xiang Z, Benson M. A generally applicable translational strategy identifies S100A4 as a candidate gene in allergy. Sci Transl Med. 2014;6(218):218ra4.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Petersen B, Wolf M, Austermann J, van Lent P, Foell D, Ahlmann M, Kupas V, Loser K, Sorg C, Roth J, Vogl T. The alarmin Mrp8/14 as regulator of the adaptive immune response during allergic contact dermatitis. EMBO J. 2013;32(1):100–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Cantor JM, Ginsberg MH. CD98 at the crossroads of adaptive immunity and cancer. J Cell Sci. 2012;125(Pt 6):1373–82.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Milani P, Gagliardi S, Cova E, Cereda C. SOD1 transcriptional and posttranscriptional regulation and its potential implications in ALS. Neurol Res Int. 2011;2011:458427.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Goldstein AL, Hannappel E, Sosne G, Kleinman HK. Thymosin β4: a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther. 2012;12(1):37–51.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Proteome Sciences PLCLondonUK

Personalised recommendations