• Nathalie LambrechtsEmail author
  • Greet Schoeters
  • Rosette Van Den Heuvel
  • Hilda Witters
  • Inge Nelissen
  • Jef Hooyberghs


VITOSENS™ is an in vitro assay based on dendritic cell (DC) activation that is a key event in the adverse outcome pathway (AOP) on skin sensitization. Exposure induced expression changes of gene transcripts are quantified in DC derived from CD34+ progenitor cells in human cord blood. The assay was initially designed as a classifier and it is able to discriminate chemical skin sensitizers from non-sensitizers. By combining different VITOSENS™ variables in vitro potency values are modelled that closely fit in vivo-derived data, and this over the entire range from weak to extremely sensitizing chemicals. As such the assay can provide valuable information in the context of chemical risk assessment. Furthermore, the biomarkers in the assay display a concentration-dependent response relation that shifts when non-sensitizing compounds (e.g. irritants, endotoxin, anti-oxidants) are added to the chemical sensitizer. This indicates that our assay can be applied for mixture assessment and efficacy testing. Finally, a reliable test system should be based on key events of the in vivo disease process it is screening for. The functional relevance of the VITOSENS™ gene markers in the skin sensitization pathways are demonstrated. In a first step their differential protein expression was shown, and in a second phase changes in DC surface molecules were altered by counteracting the sensitizer-induced activity of VITOSENS™ markers. In conclusion, these results point to the feasibility of applying VITOSENS™ in an integrated approach for in vitro assessment of the sensitizing risk of chemical ingredients and mixtures. The assay represents the key event of DC maturation in the AOP of chemical-induced skin sensitization.


Skin sensitization Dendritic cells VITOSENS 


  1. 1.
    Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P. Langerhans cells – dendritic cells of the epidermis. APMIS. 2003;111(7–8):725–40.CrossRefPubMedGoogle Scholar
  2. 2.
    dos Santos GG, Reinders J, Ouwehand K, Rustemeyer T, Scheper RJ, Gibbs S. Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound. Toxicol Appl Pharmacol. 2009;236(3):372–82.CrossRefPubMedGoogle Scholar
  3. 3.
    De Smedt ACA, Van Den Heuvel RL, Zwi Berneman N, Schoeters GER. Modulation of phenotype, cytokine production and stimulatory function of CD34+-derived DC by NiCl2 and SDS. Toxicol In Vitro. 2001;15(4-5):319.CrossRefPubMedGoogle Scholar
  4. 4.
    De Smedt AC, Van Den Heuvel RL, Van Tendeloo VF, Berneman ZN, Schoeters GE, Weber E, Tuschl H. Phenotypic alterations and IL-1beta production in CD34(+) progenitor- and monocyte-derived dendritic cells after exposure to allergens: a comparative analysis. Arch Dermatol Res. 2002;294(3):109–16.CrossRefPubMedGoogle Scholar
  5. 5.
    De Smedt AC, Van Den Heuvel RL, Van Tendeloo VF, Berneman ZN, Schoeters GE. Capacity of CD34+ progenitor-derived dendritic cells to distinguish between sensitizers and irritants. Toxicol Lett. 2005;156(3):377–89.CrossRefPubMedGoogle Scholar
  6. 6.
    Casati S, Aeby P, Basketter DA, Cavani A, Gennari A, Gerberick GF, Griem P, Hartung T, Kimber I, Lepoittevin JP, Meade BJ, Pallardy M, Rougier N, Rousset F, Rubinstenn G, Sallusto F, Verheyen GR, Zuang V. Dendritic cells as a tool for the predictive identification of skin sensitisation hazard. Altern Lab Anim. 2005;33(1):47–62.PubMedGoogle Scholar
  7. 7.
    Schoeters E, Verheyen GR, Nelissen I, Van Rompay AR, Hooyberghs J, Van Den Heuvel RL, Witters H, Schoeters GE, Van Tendeloo VF, Berneman ZN. Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol. 2007;44(12):3222–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Hooyberghs J, Schoeters E, Lambrechts N, Nelissen I, Witters H, Schoeters G, Van Den Heuvel R. A cell-based in vitro alternative to identify skin sensitizers by gene expression. Toxicol Appl Pharmacol. 2008;231(1):103–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Vocanson M, Hennino A, Rozieres A, Poyet G, Nicolas JF. Effector and regulatory mechanisms in allergic contact dermatitis. Allergy. 2009;64(12):1699–714.CrossRefPubMedGoogle Scholar
  10. 10.
    Willart MA, Lambrecht BN. The danger within: endogenous danger signals, atopy and asthma. Clin Exp Allergy. 2009;39(1):12–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Moreno CS, Beresford GW, Louis-Plence P, Morris AC, Boss JM. CREB regulates MHC class II expression in a CIITA-dependent manner. Immunity. 1999;10(2):143–51.CrossRefPubMedGoogle Scholar
  12. 12.
    Lambrechts N, Vanheel H, Hooyberghs J, De Boever P, Witters H, Van Den Heuvel R, Van Tendeloo V, Nelissen I, Schoeters G. Gene markers in dendritic cells unravel pieces of the skin sensitization puzzle. Toxicol Lett. 2010;196(2):95–103.CrossRefPubMedGoogle Scholar
  13. 13.
    Lambrechts N, Vanheel H, Nelissen I, Witters H, Van Den Heuvel R, Van Tendeloo V, Schoeters G, Hooyberghs J. Assessment of chemical skin sensitizing potency by an in vitro assay based on human dendritic cells. Toxicol Sci. 2010;116(1):122–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Grabbe S, Steinert M, Mahnke K, Schwartz A, Luger TA, Schwarz T. Dissection of antigenic and irritative effects of epicutaneously applied haptens in mice. Evidence that not the antigenic component but nonspecific proinflammatory effects of haptens determine the concentration-dependent elicitation of allergic contact dermatitis. J Clin Invest. 1996;98(5):1158–64.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pedersen LK, Johansen JD, Held E, Agner T. Augmentation of skin response by exposure to a combination of allergens and irritants – a review. Contact Dermat. 2004;50(5):265–73.CrossRefGoogle Scholar
  16. 16.
    Matzinger P. An innate sense of danger. Semin Immunol. 1998;10(5):399–415.CrossRefPubMedGoogle Scholar
  17. 17.
    Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol. 2001;13(1):114–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Noble A. Do we have memory of danger as well as antigen?. Trends in Immunology 2009;30 (4):150–156CrossRefPubMedGoogle Scholar
  19. 19.
    Lambrechts N, Nelissen I, Van TV, Witters H, Van Den Heuvel R, Hooyberghs J, Schoeters G. Functionality and specificity of gene markers for skin sensitization in dendritic cells. Toxicol Lett. 2011;203(2):106–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev. 2010;234(1):120–41.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    OECD. The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins – part 1. In: OECD environment, health and safety publications series on testing and assessment, vol. 168; 2012. p. 1–59.
  22. 22.
    OECD. The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins. Part 2: use of the AOP to develop chemical categories and integrated assessment and testing approaches. In: OECD environment, health and safety publications series on testing and assessment, vol. 168; 2012. p. 1–46.
  23. 23.
    Reisinger K, Hoffmann S, Alepee N, Ashikaga T, Barroso J, Elcombe C, Gellatly N, Galbiati V, Gibbs S, Groux H, Hibatallah J, Keller D, Kern P, Klaric M, Kolle S, Kuehnl J, Lambrechts N, Lindstedt M, Millet M, Martinozzi-Teissier S, Natsch A, Petersohn D, Pike I, Sakaguchi H, Schepky A, Tailhardat M, Templier M van VE, Maxwell G. Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicol In Vitro. 2015;29(1):259–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Aeby P, Wyss C, Beck H, Griem P, Scheffler H, Goebel C. Characterization of the sensitizing potential of chemicals by in vitro analysis of dendritic cell activation and skin penetration. J Invest Dermatol. 2004;122(5):1154–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Goebel C, Sieber T, Göttel O, Chassot L, Gerberick F, Aeby P. N-Acetylation of aromatic amine hair dyes antagonizes haptenization. Toxicol Lett. 2007;172:S31–2.CrossRefGoogle Scholar
  26. 26.
    Lambrechts N, Verstraelen S, Lodewyckx H, Felicio A, Hooyberghs J, Witters H, Van Tendeloo V, Van Cauwenberge P, Nelissen I, Van Den Heuvel R, Schoeters G. THP-1 monocytes but not macrophages as a potential alternative for CD34+ dendritic cells to identify chemical skin sensitizers. Toxicol Appl Pharmacol. 2009;236(2):221–30.CrossRefPubMedGoogle Scholar
  27. 27.
    Andersen ME, Krewski D. Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci. 2009;107(2):324–30.CrossRefPubMedGoogle Scholar
  28. 28.
    Basketter DA, Gerberick GF, Kimber I. Strategies for identifying false positive responses in predictive skin sensitization tests. Food Chem Toxicol. 1998;36(4):327–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Jowsey IR, Basketter DA, Westmoreland C, Kimber I. A future approach to measuring relative skin sensitising potency: a proposal. J Appl Toxicol. 2006;26(4):341–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Bauch C, et al. Putting the parts together: combining in vitro methods to test for skin sensitizing potentials. Regul Toxicol Pharmacol. 2012;63(3):489–504.CrossRefPubMedGoogle Scholar
  31. 31.
    Jaworska J, et al. Bayesian integrated testing strategy to assess skin sensitization potency: from theory to practice. J Appl Toxicol. 2013;33:1353–64.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Van der Veen JW, et al. Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regul Toxicol Pharmacol. 2014;69:371–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Rovida C. Integrated Testing Strategies (ITS) for safety assessment. ALTEX. 2014;32(1):25–40.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ashikaga T, et al. Database of h-CLAT (cell-based skin sensitization test) for clarification of applicability domain. Toxicol Lett. 2008;180S:S95.CrossRefGoogle Scholar
  35. 35.
    Emter R, Ellis G, Natsch A. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol Appl Pharmacol. 2010;245(3):281–90.CrossRefPubMedGoogle Scholar
  36. 36.
    Andersen KE. Guinea pig maximization test: effect of type of Freund’s complete adjuvant emulsion and of challenge site location. Dermatosen Beruf Umwelt. 1985;33(4):132–6.Google Scholar
  37. 37.
    Anderson SE, Siegel PD, Meade BJ. The LLNA: a brief review of recent advances and limitations. J Allergy (Cairo). 2011;2011:424203.Google Scholar
  38. 38.
    Arts JH, Mommers C, de Heer C. Dose-response relationships and threshold levels in skin and respiratory allergy. Crit Rev Toxicol. 2006;36(3):219–51.CrossRefPubMedGoogle Scholar
  39. 39.
    ECHA. Chapter R.7a: Endpoint specific guidance. In: Guidance on information requirements and chemical safety assessment. 2008.Google Scholar
  40. 40.
    Basketter DA, Kimber I. Updating the skin sensitization in vitro data assessment paradigm in 2009. J Appl Toxicol. 2009;29(6):545–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Balls M. Validation of alternative tests in the European Union. Curr Probl Dermatol. 1995;23:265–74.CrossRefPubMedGoogle Scholar
  42. 42.
    Hartung T, et al. A modular approach to the ECVAM principles on test validity. Altern Lab Anim. 2004;32(5):467–72.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nathalie Lambrechts
    • 1
    Email author
  • Greet Schoeters
    • 1
    • 2
    • 3
  • Rosette Van Den Heuvel
    • 1
  • Hilda Witters
    • 1
  • Inge Nelissen
    • 1
  • Jef Hooyberghs
    • 1
    • 4
  1. 1.Unit of Environmental Risk and HealthVITO NVAntwerpBelgium
  2. 2.Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
  3. 3.Dept of Environmental MedicineInstitute of Public Health, University of Southern DenmarkOdenseDenmark
  4. 4.Theoretical PhysicsHasselt UniversityHasseltBelgium

Personalised recommendations