Advertisement

Internal Natural Convection: Heating from Below

  • Donald A. Nield
  • Adrian Bejan
Chapter

Abstract

Detailed studies of some material in this chapter have been made in the books by Straughan (2008, 2015a, b, c, d).

References

  1. Aatif, H., Allali, K. and Karouni, K. 2010 Influence of vibrations on convective instability of reaction fronts in porous media. Math. Modell. Natural Phen. 5, 123-137. [6.24, 11.12.1]MathSciNetzbMATHCrossRefGoogle Scholar
  2. Aboubi, K., Robillard, L. and Vasseur, P. 1998 Natural convection in horizontal annulus filled with an anisotropic porous medium. Int. J. Numer. Meth. Heat Fluid Flow 8, 689-702. [6.16.2]zbMATHCrossRefGoogle Scholar
  3. Adamou-Graham, P. and Daniels, P. G. 2012 Plume flows in porous media driven by horizontal differential heating. J. Fluid Mech. 696, 263-284. [6.14]MathSciNetzbMATHCrossRefGoogle Scholar
  4. Adanhounme, V. and Olodo, E. T. 2015 Exact solutions for equations of flow and heat transfer in fluid saturated porous media. Afrika Math. 26, 913-921. [6.12]MathSciNetzbMATHCrossRefGoogle Scholar
  5. Adnani, P., Catton, I and Abdou, M. 1991 Influence of hydrodynamic dispersion on convection onset of a porous layer with volumetric heating. ASME HTD 181, 55-62. [6.11.2]Google Scholar
  6. Adrian, P. and Nicoleta, S. 2005 Effect of asymmetry on the steady convection in a vertical torus filled with a porous medium. Strojniski Vestnik—J. Mech. Engng. 51, 501-508. [6.17]Google Scholar
  7. Agarwal, S. and Bhadauria, B. S. 2011 Natural convection in a nanofluid saturated rotating porous layer with thermal non-equilibrium model. Transp. Porous Media 90, 627-654. [6.23, 9.7]MathSciNetCrossRefGoogle Scholar
  8. Agarwal, S., Bhadauria, B. S. and Siddheshwar, P. G. 2011 Thermal instability of a nanofluid saturating a rotating anisotropic porous medium Spec. Top. Rev. Porous Media 2, 53-64. [6.23, 9.7]CrossRefGoogle Scholar
  9. Aggarwal, A. K. and Makhija, S. 2014 Hall effect on thermal stability of ferromagnetic fluid in porous medium in the presence of horizontal magnetic field. Thermal Sci. 18, S503-S514. [6.21]CrossRefGoogle Scholar
  10. Aggarwal, A. K. and Verma, A. 2014 The effect of compressibility, rotation and magnetic field on thermal instability of Walters’ fluid permeated with suspended particles in porous medium. Thermal Sci. 18, S539-S550. [6.21]CrossRefGoogle Scholar
  11. Ahmad, S. and Rees, D. A. S. 2016 Effect of conducting sidewalls on the onset of convection in a porous cavity. Transp. Porous Media 111, 287-304. [6.15.3]MathSciNetCrossRefGoogle Scholar
  12. Aidun, C. K. 1987 Stability of convection rolls in porous media. ASME HTD 94, 31-36. [6.8]Google Scholar
  13. Aidun, C. K. and Steen, P. H. 1987 Transition of oscillatory convective heat transfer in a fluid-saturated porous medium. AIAA J. Thermophys. Heat Transfer 1, 268-273. [6.8]CrossRefGoogle Scholar
  14. Akbar, S. K., Narguna, A. L. and Manuthamanikandari, S. 2013 Convective instability in a horizontal porous layer saturated with a chemically reacting Maxwell fluid. AIP Conf. Proc. 1557, 130-136. [6.23]CrossRefGoogle Scholar
  15. Alchaar, S., Vasseur, P. and Bilgen, E. 1995a Effects of a magnetic field on the onset of convection in a porous medium. Heat Mass Transfer 30, 259-267. [6.21]CrossRefGoogle Scholar
  16. Alex, S. M. and Patil, P. R. 2000a Thermal instability in an anisotropic rotating porous medium. Heat Mass Transfer 36, 159–163. [6.22]CrossRefGoogle Scholar
  17. Alhashash, A., Saleh, H. and Hashim, I. 2013b Effect of conduction in bottom wall on Bénard convection in a porous enclosure with localized heating and lateral cooling. Transp. Porous Media 99, 493-513. 96, 305-318. [6.15.3]Google Scholar
  18. Alizadeh, M., Rostami, B. and Khosravie, M. 2014 Numerical analysis of solutal Marangoni convections in porous media. Canad. J. Chem. Engng. 92, 1999-2009. [6.19.3]CrossRefGoogle Scholar
  19. Allali, K. and Belhaq, M. 2013a Effect of amplitude modulation of gravitational vibration on convective instability of reaction fronts in porous media Appl. Math. Sci. 7, 1007-1022. [6.24, 11.12.1]MathSciNetCrossRefGoogle Scholar
  20. Allali, K. and Belhaq, M. 2013b Influence of periodic and quasi-periodic gravitational modulation on convective instability of reaction fronts in porous media. Understanding Complex Systems 71-93. [6.24, 11.12.1]Google Scholar
  21. Allali, K., Belhaq, M. and El Karouni, K. 2012 Influence of quasi-periodic gravitational modulation on convective instability of reaction fronts in porous media. Comm. Nonlinear Sci. Numer. Simul. 17, 1588-1596. [6.24]MathSciNetzbMATHCrossRefGoogle Scholar
  22. Allehiany, F. M. and Abdullah, A. A. 2009 Bènard convection in a horizontal porous layer permeated by a non-linear magnetic fluid under the influence of both magnetic field and Coriolis forces. Appl. Math. Inform. Sci. 3, 59-77. [6.21]zbMATHGoogle Scholar
  23. Alloui, Z. and Nguyen-Quang, T. 2015 Modeling approach for gradient-based motion of microorganisms in porous media and applications in biosystems. Handbook of Porous Media, 3rd ed. (K. Vafai, ed.), CRC Press, Boca Baton, FL, pp. 439-455. [6.25]Google Scholar
  24. Alloui, Z. and Vasseur, P. 2010 Convection in superposed fluid and porous layers. Acta Mech. 214, 245-260. [6.19.3]zbMATHCrossRefGoogle Scholar
  25. Alloui, Z. and Vasseur, P. 2016 Natural convection in tall and shallow porous rectangular enclosures heated from below. Comput. Therm. Sci. 8, 163-176. [6.15.2]CrossRefGoogle Scholar
  26. Alloui, Z., Ben Khelifa, N., Beji, H. and Vasseur, P. 2012 Onset of convection in a horizontal porous layer saturated by a power-law fluid. ASME J. Heat Transfer 134, 092502. [6.23]CrossRefGoogle Scholar
  27. Alloui, Z., Vasseur, P., Costa, V. A. E. and Sousa, A. 2013 Effect of a non-constant magnetic field on natural convection in a horizontal porous layer heated from the bottom. J. Engng. Math. 81, 141-155. [6.21]MathSciNetCrossRefzbMATHGoogle Scholar
  28. Al-Qurashi, M. S. 2012 A study of salt-finger convection in a nonlinear magneto-fluid overlying a porous layer affected by rotation. Int. J. Mech. Mech. 12, 32-40. [6.22]Google Scholar
  29. Al-Qurashi, M. S. and Bukhari, A. F. K. 2012 Salt finger convection in a horizontal porous layer superposed fluid layer effected by rotation and vertical linear magnetic field in both layers. Adv. Appl. Fluid Mech. 11, 119-146. [6.22]MathSciNetzbMATHGoogle Scholar
  30. Altimir, I. 1984 Convection naturelle tridimensionnelle en milieu poroeux sature par un fluide presentant un maximum de densité. Int. J. Heat Mass Transfer 27, 1813-1824. [6.11.4]zbMATHCrossRefGoogle Scholar
  31. Alves, L. S. de B., Barletta, A., Hirata, S. and Ouarzazi, M. N. 2014 Effects of viscous dissipation on the convective instability of viscoelastic mixed convection flows in porous media. Int. J. Heat Mass Transfer 70, 586-598. [6.23]Google Scholar
  32. Alves, L. S. de B. and Barletta, A. 2015 Convective to absolute instability transition in the Prats flow of a power law fluid. Int. J. Therm. Sci. 94, 270-282. [6.10.1]Google Scholar
  33. Alves, L. S. de B., Cotta, R. M. and Pontes, J. 2002 Stability analysis of natural convection in porous cavities through integral transforms. Int. J. Heat Mass Transfer 45, 1185-1195. [6.15.1]Google Scholar
  34. Alves, L. S. de B. and Barletta, A. 2013 Convective instability of the Darcy-Bénard problem with through flow in a porous layer saturated by a power-law fluid. Int. J. Heat Mass Transfer 62, 495-506. [6.23]Google Scholar
  35. Amari, B., Vasseur, P. and Bilgen, E. 1994 Natural convection of non-Newtonian fluids in a horizontal porous layer. Wärme-Stoffübertrag. 29, 185-193. [6.23]CrossRefGoogle Scholar
  36. Ames, K. A. and Cobb, S. S. 1994 Penetrative convection in a porous medium with internal heat sources. Int. J. Engng Sci., 32, 95-106. [6.11.2]MathSciNetzbMATHCrossRefGoogle Scholar
  37. Andres, J. T. H. and Cardoso, S. S. S. 2011 Onset of convection in a porous medium in the presence of chemical reaction. Phys. Rev. E 83, #046312. [6.11.2, 11.1]CrossRefGoogle Scholar
  38. Arifin N. M. and Pop, I. 2009 Stability of Marangoni convection in a composite porous-fluid with a boundary layer of finite conductivity. Fluid Dyn. Mater. Process. 5, 149-160. [6.19.3]zbMATHGoogle Scholar
  39. Artem’eva, E. L. and Stroganova, E. V. 1987 Stability of a nonuniformly heated fluid in a porous horizontal layer. Fluid Dyn. 21, 845-848. [6.10.2]CrossRefGoogle Scholar
  40. Auriault, J. L. 1999 Comments on the paper “Local and global transitions to chaos and hysteresis in a porous layer heated from below” by P. Vadasz. Transport in Porous Media 37, 247-249. [6.4]MathSciNetCrossRefGoogle Scholar
  41. Auriault, J. L., Geindreau, C. and Royer, P. 2002a Coriolis effects on filtration law in rotating porous media. Transport in Porous Media 48, 315-330. [6.22]MathSciNetzbMATHCrossRefGoogle Scholar
  42. Avduyevskiy, V. S., Kalashnik, V. D. and Kopyalkevich, R. M. 1978 Investigation of free-convection heat transfer in gas-filled porous media at high pressures. Heat Transfer Sov. Res. 10, (5) 136-144. [6.7]Google Scholar
  43. Avramenko, A. A. and Kuznetsov, A. V. 2004 Stability of a suspension of gyrotactic microorganisms in superposed fluid and porous layers. Int. Comm. Heat Mass Transfer 31, 1057-1066. [6.25]CrossRefGoogle Scholar
  44. Avramenko, A. A. and Kuznetsov, A. V. 2005 Linear stability analysis of a suspension of oxytactic bacteria in superposed fluid and porous layers. Transport Porous Media 61, 157-176. [6.25]CrossRefGoogle Scholar
  45. Avramenko, A. A. and Kuznetsov, A. V. 2006 The onset of convection in a suspension of gyrotactic microorganisms in superimposed fluid and porous layer: effect of throughflow. Transport Porous Media 65, 159-176. [6.25]MathSciNetCrossRefGoogle Scholar
  46. Babu, A. B., Ravi, R. and Tagare, S. C. 2012 Nonlinear rotating convection in a sparsely packed porous medium. Comm. Nonlinear Sci. Numer. Simul. 17, 5042-5063. [6.22]MathSciNetzbMATHCrossRefGoogle Scholar
  47. Baev, V. K., Fedorov, A. V., Fomin, V. M. and Khmel, T. A. 2006 Centrifugal convection in rapid rotation of bodies made of cellular-porous materials. J. Appl. Mech. Tech. Phys. 47, 36-46. [6.22]zbMATHCrossRefGoogle Scholar
  48. Bagchi, A. and Kulacki, F. 2012 Experimental study of natural convection in fluid-superposed porous layers heated locally from below. Int. J. Heat Mass Transfer 55, 1149-1153. [6.19.3]CrossRefGoogle Scholar
  49. Bagchi, A. and Kulacki, F. A. 2011 Natural convection in fluid-superposed porous layers heated locally from below. Int. J. Heat Mass Transfer 54, 3672-3682. [6.18]zbMATHCrossRefGoogle Scholar
  50. Bagchi, A. and Kulacki, F. A. 2014 Natural Convection in Superposed Fluid-Porous Layers, Springer, New York. [6.19]zbMATHCrossRefGoogle Scholar
  51. Balasubramanian, R. and Thangaraj, R. P. 1998 Thermal convection in a fluid layer sandwiched between two porous layers of different permeabilities. Acta Mech. 130, 81–93. [6.19.1]zbMATHCrossRefGoogle Scholar
  52. Banjer, H. and Abdullah, A. 2012 Thermal instability of superposed porous and fluid layers in the presence of a magnetic field using the Brinkman model. J. Porous Media 15, 1-10. [6.19.3]CrossRefGoogle Scholar
  53. Banu, N. and Rees, D. A. S. 2001 Effect of a traveling thermal wave on weakly nonlinear convection in a porous layer. J. Porous Media 4, 225-239. [6.4]zbMATHCrossRefGoogle Scholar
  54. Banu, N. and Rees, D. A. S. 2002 Onset of Darcy-Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transfer 45, 2221-2228. [6.5]zbMATHCrossRefGoogle Scholar
  55. Banu, N., Rees, D. A. S. and Pop, I. 1998 Steady and unsteady free convection in porous cavities with internal heat generation. Heat Transfer 1998, Proc. 11th IHTC, 4, 375-380. [6.17]Google Scholar
  56. Banyal, A. S. and Khanna, M. 2013 Bounds for the growth rate of perturbations in a couple-stress fluid in the presence of rotation and magnetic field in a porous medium. J. Porous Media 16, 637-646. [6.22]CrossRefGoogle Scholar
  57. Barbosa Mota, J. P. and Saatdjian, E. 1997 On the reduction of natural convection heat transfer in horizontal eccentric annuli containing saturated porous media. Int. J. Numer. Methods Heat Fluid Flow 7, 401-416. [6.16.2]zbMATHCrossRefGoogle Scholar
  58. Bardan, G. and Mojtabi, A. 2000 On the Horton-Rogers-Lapwood convective instability with vertical vibration: onset of convection. Phys. Fluids 12, 2723-2731. [6.24]MathSciNetzbMATHCrossRefGoogle Scholar
  59. Bardan, G., Pedram Razi, Y. and Mojtabi, A. 2004 Comments on the mean flow averaged model. Phys. Fluids 16, 4535-4538. [6.24]CrossRefGoogle Scholar
  60. Barletta, A. 2012 Thermal instability in a horizontal porous channel with horizontal through flow and symmetric wall heat fluxes. Transp. Porous Media 92, 419-437. [6.10.1]MathSciNetCrossRefGoogle Scholar
  61. Barletta, A. 2014b On the thermal instability induced by viscous dissipation. Int. J. Therm. Sci. 88, 238-247. [6.10.1]CrossRefGoogle Scholar
  62. Barletta, A. and Alves, L. S. de B. 2017 Absolute instability: A toy model and an application to the Rayleigh-Bénard problem with horizontal flow in porous media. Int. J. Heat Mass Transfer 104, 438-455. [6.10.1]Google Scholar
  63. Barletta, A. and Celli, M. 2011 Local thermal non-equilibrium flow with viscous dissipation in a plane horizontal layer. Int. J. Therm. Sci. 50, 53-60. [6.6]CrossRefGoogle Scholar
  64. Barletta, A. and Storesletten, L. 2010b Viscous dissipation and thermoconvective instabilities in a horizontal porous channel heated from below. Int. J. Therm. Sci. 49, 621-630. [6.6]CrossRefGoogle Scholar
  65. Barletta, A. and Storesletten, L. 2011a Onset of convective rolls in a circular porous duct with external heat transfer to a thermally stratified environment. Int. J. Therm. Sci. 50, 1374-1384. [6.16.1]CrossRefGoogle Scholar
  66. Barletta, A. and Celli, M. 2014 Onset of instability due to variable viscosity and dissipation in a plane porous channel. J. Phys. Conf. Ser. 547, 012038. [4.16.5]CrossRefGoogle Scholar
  67. Barletta, A. and Nield, D. A. 2010 Instability of Hadley-Prats flow with viscous heating in a horizontal porous layer. Transp. Porous Media 84, 241-256. [6.10.1, 7.9]MathSciNetCrossRefGoogle Scholar
  68. Barletta, A. and Nield, D. A. 2011a Linear instability of the horizontal throughflow in a plane porous layer saturated by a power-law fluid. Phys. Fluids 23, #013102. [6.10.1]CrossRefGoogle Scholar
  69. Barletta, A. and Nield, D. A. 2012b Variable viscosity effects on the dissipation instability in a porous layer with horizontal throughflow. Phys. Fluids 24, 104102. [6.10.1]CrossRefGoogle Scholar
  70. Barletta, A. and Rees, D. A. S. 2012a Local thermal non-equilibrium effects in the Darcy-Bénard instability with isoflux boundary conditions. Int. J. Heat Mass Transfer 55, 384-394. [6.5]zbMATHCrossRefGoogle Scholar
  71. Barletta, A. and Storesletten, L. 2010a Stability of flow with viscous dissipation in a horizontal porous layer with an open boundary having a prescribed temperature gradient. Transp. Porous Media 85, 723-741. [6.6]MathSciNetCrossRefGoogle Scholar
  72. Barletta, A. and Storesletten, L. 2012b Onset of convection in a porous rectangular channel with external heat transfer to upper and lower fluid environments. Transp. Porous Media 94, 659-681. [6.15.3]MathSciNetCrossRefGoogle Scholar
  73. Barletta, A. and Storesletten, L. 2012a A three-dimensional study of the onset of convection in a horizontal, rectangular porous channel heated from below. Int. J. Therm. Sci. 55, 1-15. [6.15.3]CrossRefGoogle Scholar
  74. Barletta, A. and Storesletten, L. 2013 Effect of a finite external heat transfer coefficient on the Darcy-Bénard instability in a vertical porous cylinder. Phys. Fluids 25, 044101. [6.16.1]CrossRefGoogle Scholar
  75. Barletta, A. and Storesletten, L. 2016 Linear instability of the vertical throughflow in a horizontal porous layer saturated by a power-law fluid. Int. J. Heat Mass Transfer 99, 293-302. [6.10.2, 6.23]CrossRefGoogle Scholar
  76. Barletta, A., Celli, M. and Kuznetsov, A. V. 2011a Transverse heterogeneity effects in dissipation induced instability of a horizontal porous layer. ASME J. Heat Transfer 133, #122601. [6.6]CrossRefGoogle Scholar
  77. Barletta, A., Celli, M. and Kuznetsov, A. V. 2012 Heterogeneity and onset of instability in Darcy’s flow with prescribed horizontal temperature gradient. ASME J. Heat Transfer 134, #042602. [6.13.2]CrossRefGoogle Scholar
  78. Barletta, A., Celli, M. and Lagziri, H. 2015c Instability of a horizontal porous layer with local thermal non-equilibrium: Effects of free surface and convective boundary conditions. Int. J. Heat Mass Transfer 89, 75-89. [6.5]CrossRefGoogle Scholar
  79. Barletta, A., Celli, M. and Nield, D. A. 2010a Unstably stratified Darcy flow with impressed horizontal temperature gradient, viscous dissipation and asymmetric thermal boundary conditions. Int. J. Heat Mass Transfer 53, 1621-1627. [6.6]zbMATHCrossRefGoogle Scholar
  80. Barletta, A., Celli, M. and Rees, D. A. S. 2009a Darcy-Forchheimer flow with viscous dissipation in a horizontal porous layer: onset of convective instabilities. ASME J. Heat Transfer 131, #072602. [6.6]Google Scholar
  81. Barletta, A., Celli, M. and Rees, D. A. S. 2009b The onset of convection in a porous layer induced by viscous dissipation: A linear stability analysis. Int. J. Heat Mass Transfer 52, 337-344. [6.6]zbMATHCrossRefGoogle Scholar
  82. Barletta, A., Rossi di Schio, E. and Celli, M. 2011b Instability and viscous dissipation in the horizontal Brinkman flow through a porous medium. Transp. Porous Media 87, 105-119. [6.6]MathSciNetCrossRefGoogle Scholar
  83. Barletta, A., Rossi di Schio, E. and Celli, M. 2015b Convection and instability phenomena in nano-fluid-saturated porous media, in: V. Bianco, O. Manca, S. Nardini and K. Vafai (Eds.) Heat Transfer Enhancement with Nanofluids, CRC Press, Boca Raton, FL, 2015, Chapter 12, pp. 341-364. [9.7]Google Scholar
  84. Barletta, A., Rossi di Schio, E. and Storesletten, L. 2010b Convective roll instabilities of vertical throughflow with viscous dissipation in a horizontal porous layer. Transp. Porous Media 81, 461-477. [6.6]MathSciNetCrossRefGoogle Scholar
  85. Barletta, A., Rossi di Schio, E. and Storesletten, L. 2013 Convective instability in a horizontal porous channel with permeable and conducting side boundaries. Transp. Porous Media 99, 515-533. [6.2]MathSciNetCrossRefGoogle Scholar
  86. Barletta, A., Rossi di Schio, E. and Storesletten, L. 2014b On the thermal instability in a horizontal rectangular porous channel heated from below by a constant flux. J. Phys. Conf. Ser. 501, 012003. [6.10.1]CrossRefGoogle Scholar
  87. Basu, A. J. and Khalili, A. 1999 Computation of flow through a fluid-sediment interface in a benthic chamber. Phys. Fluids 11, 1395-1405. [6.19.3]zbMATHCrossRefGoogle Scholar
  88. Bau, H. H. 1993 Controlling chaotic convection. Theoretical and Applied Mechanics 1992 (eds. S.R. Bodner, et al.), Elsevier, Amsterdam, 187-203. [6.11.3]CrossRefGoogle Scholar
  89. Bau, H. H. and Torrance, K. E. 1981 Onset of convection in a permeable medium between vertical coaxial cylinders. Phys. Fluids 24, 382-385. [6.16.1]zbMATHCrossRefGoogle Scholar
  90. Bau, H. H. and Torrance, K. E. 1982b Low Rayleigh number thermal convection in a vertical cylinder filled with porous materials and heated from below. ASME J. Heat Transfer 104, 166-172. [6.16.1]CrossRefGoogle Scholar
  91. Baytas, A. C. 2003 Thermal non-equilibrium natural convection in a square enclosure filled with a heat-generating solid phase, non-Darcy porous medium. Int. J. Energy Res. 27, 975-988. [6.5]CrossRefGoogle Scholar
  92. Baytas, A. C. 2007 Entropy generation for thermal nonequilibrium natural convection with non-Darcy flow model in a porous enclosure filled with a heat-generating solid phase. J. Porous Media 10, 261-275. [6.11.2]CrossRefGoogle Scholar
  93. Baytas, A.C. 2004a Entropy generation for free and forced convection in a porous cavity and a porous channel. In Emerging Technologies and Techniques in Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 259-270. [7.8]CrossRefzbMATHGoogle Scholar
  94. Beck, J. L. 1972 Convection in a box of porous material saturated with fluid. Phys. Fluids 15, 1377-1383. [1.5.1, 6.15.1]CrossRefGoogle Scholar
  95. Becker, S. M., Kuznetsov, A. V. and Avramenko, A. A. 2004 Numerical modeling of a falling bioconvection plume in a porous medium. Fluid Dyn. Res. 33, 323-339. [6.25]zbMATHCrossRefGoogle Scholar
  96. Bejan, A. 2013 Convection Heat Transfer, 4th ed. Wiley, Hoboken. [6.26.3]zbMATHCrossRefGoogle Scholar
  97. Bejan, A. 1997c Advanced Engineering Thermodynamics, 3rd ed., Wiley, New York. [4.19, 6.26]Google Scholar
  98. Bejan, A. 1980b Natural convection in a vertical cylindrical well filled with porous medium. Int. J. Heat Mass Transfer 23, 726-729. [6.16.1]CrossRefGoogle Scholar
  99. Bejan, A. 1984 Convection Heat Transfer, Wiley, New York. [1.1, 4.1, 4.2, 4.5, 4.17, 5.1.4, 5.11.1, 6.9.2, 7.1.1, 7.1.2, 7.3.3, 7.4.2, 9.2.1, 10.1.2]zbMATHGoogle Scholar
  100. Bejan, A. 1987 Convective heat transfer in porous media. Handbook of Single-Phase Convective Heat Transfer (eds. S. Kakaç, R. K. Shah, and W. Aung), Chapter 16, Wiley, New York. [6.20, 7.3.3, 7.3.4, 7.3.5]Google Scholar
  101. Bejan, A. 2000 Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, UK. [1.5.2, 4.18, 6.2, 6.26, 11.10]zbMATHGoogle Scholar
  102. Bejan, A., Dincer, I., Lorente, S., Miguel, A. F. and Reis, A. H. 2004 Porous and Complex Flow Structures in Modern Technologies. Springer, New York. [1.5.2, 2.1, 3.3, 3.7, 4.18, 4.19, 6.26, 10.1.7]CrossRefGoogle Scholar
  103. Ben Hamed, H. and Bennacer, R. 2008 Analytical development of disturbed matrix eigenvalue problem applied to mixed convection stability analysis in Darcy media. C. R. Mecanique 336, 656-663. [6.10.1]zbMATHCrossRefGoogle Scholar
  104. Bergman, M. I. and Fearn, D. R. 1994 Chimneys on the Earth’s inner-outer core boundary? Geophys. Res. Lett. 21, 477-480. [6.21,11.8.2]CrossRefGoogle Scholar
  105. Bergman, M. I., Fearn, D. R., Bloxam, J. and Shannon, M. C. 1997 Convection and channel formation in solidifying Pb-Sn alloys. Metall. Mat. Trans. A 28, 859–866. [10.2.3]Google Scholar
  106. Bertola, V. and Cafaro, E. 2006 Thermal instability of viscoelastic fluids in horizontal porous layers as initial value problems. Int. J. Heat Mass Transfer 49, 4003-4012. [6.23]zbMATHCrossRefGoogle Scholar
  107. Beukema, K. J. and Bruin, S. 1983 Three-dimensional natural convection in a confined porous medium with internal heat generation. Int. J. Heat Mass Transfer 26, 451-458. [6.15.3]zbMATHCrossRefGoogle Scholar
  108. Bhadauria, B. S and Kiran, P. 2013. Heat transport in an anisotropic porous medium saturated with variable viscosity liquid under temperature modulation. Transp. Porous Media 100, 279-295. [6.11.3]MathSciNetCrossRefGoogle Scholar
  109. Bhadauria, B. S. 2007a Magnetofluid convection in a rotating porous layer under modulated temperature on the boundaries. ASME J. Heat Transfer 129, 835-843. [6.21]CrossRefGoogle Scholar
  110. Bhadauria, B. S. 2007d Fluid convection in a rotating porous layer under modulated temperature on the boundaries. Transp. Porous Media 67, 297-315. [6.23]CrossRefMathSciNetGoogle Scholar
  111. Bhadauria, B. S. 2016 Chaotic convection in viscoelastic fluid saturated porous medium with a heat source. J. Appl. Math. #1487616. [6.23]Google Scholar
  112. Bhadauria, B. S. and Agarwal, S. 2011a Convective transport in a nanofluid saturated porous layer with thermal non-equilibrium model. Transp. Porous Media 88, 107-131. [6.23, 9.7.2]MathSciNetCrossRefGoogle Scholar
  113. Bhadauria, B. S. and Kiran, P. 2014a Nonlinear thermal Darcy convection in a nanofluid saturated porous medium under gravity modulation. Adv. Sci. Lett. 20, 903-910. [9.7.2]CrossRefGoogle Scholar
  114. Bhadauria, B. S. and Kiran, P. 2014b Weakly nonlinear oscillatory convection in a viscoelastic fluid saturating porous medium under temperature modulation. Int. J. Heat Mass Transfer 77, 843-851. [6.23]CrossRefGoogle Scholar
  115. Bhadauria, B. S. and Kiran, P. 2014c Weakly nonlinear oscillatory convection in a viscoelastic fluid saturating porous medium under gravity modulation. Transp. Porous Media 104, 451-467. [6.24]MathSciNetCrossRefGoogle Scholar
  116. Bhadauria, B. S. and Suthar, O. P. 2009 Effect of thermal modulation on the onset of centrifugally driven convection in a rotating vertical porous layer placed far away from the axis of rotation. J. Porous Media 12, 239-252. [6.22]CrossRefGoogle Scholar
  117. Bhadauria, B. S., Agarwal, S. and Kumar, A. 2011a Nonlinear two-dimensional convection in a nanofluid saturated porous medium. Transp. Porous Media 90, 606-625. [9.7.2]MathSciNetGoogle Scholar
  118. Bhadauria, B. S., Hashim, I. and Siddheshwar, P. G. 2012b Study of heat transport in a porous medium under g-jitter and internal heating effects. Transp. Porous Media 96, 21-37. [6.24]MathSciNetCrossRefGoogle Scholar
  119. Bhadauria, B. S., Hashim, I. and Siddheswar, P. G. 2013b Effects of time-periodic thermal boundary conditions and internal heating on heat transport in a porous medium. Transp. Porous Media 97, 185-200. [6.11.2]MathSciNetCrossRefGoogle Scholar
  120. Bhadauria, B. S., Hashim, I. and Siddheswar, P. G. 2013a Study of heat transport in a porous medium under G-jitter and internal heating effects. Transp. Porous Media 96, 21-37. [6.24]MathSciNetCrossRefGoogle Scholar
  121. Bhadauria, B. S., Kumar, A., Kumar, J., Sacheti, N. C. and Chandran, P. 2011 Natural convection in a rotating anisotropic porous layer with internal heat generation. Transp. Porous Media 90, 687-705. [6.22]MathSciNetCrossRefGoogle Scholar
  122. Bhadauria, B. S., Siddheshwar, P. G., Kumar, J. and Suthar, O. P. 2012a Weakly nonlinear stability analysis of temperature/gravity modulated stationary Rayleigh-Bénard convection in a rotating porous medium. Transp. Porous Media 92, 633-647. [6.24]MathSciNetCrossRefGoogle Scholar
  123. Bhadauria, B. S., Srivastava, A. K., Sacheti, N. C. and Chandran, P. 2012c Gravity modulation of thermal instability in a viscoelastic fluid saturated anisotropic porous medium. Zeit. Naturforsch. A. 67, 1-9. [6.24]CrossRefGoogle Scholar
  124. Bhattacharya, M. and Basak, T. 2013 On multiple steady states for natural convection flow (low Prandtl number fluid) within porous square enclosures: Effect of nonuniformity of wall temperature. Int. J. Heat Mass Transfer 59, 230-246. [7.1.7]CrossRefGoogle Scholar
  125. Bian, W., Vasseur, P. and Bilgen, E. 1996a Effect of an external magnetic field on buoyancy driven flow in a shallow porous cavity. Numer. Heat Transfer A 29, 625-638. [6.21]CrossRefGoogle Scholar
  126. Bidin, B. and Rees, D. A. S. 2016 The onset of convection in an unsteady thermal boundary layer in a porous medium. Fluids 2016, 1(4), 41. [6.11.3]Google Scholar
  127. Bilgen, E. and Mbaye, M. 2001 Bénard cells in fluid-saturated porous enclosures with lateral cooling. Int. J. Heat Fluid Flow 22, 561-570. [6.8]CrossRefGoogle Scholar
  128. Blake, K. R., Bejan, A. and Poulikakos, D. 1984 Natural convection near 4°C in a water saturated porous layer heated from below. Int. J. Heat Mass Transfer 27, 2355-2364. [6.20]zbMATHCrossRefGoogle Scholar
  129. Blythe, P. A. and Simpkins, P. G. 1981 Convection in a porous layer for a temperature dependent viscosity. Int. J. Heat Mass Transfer 24, 497-506. [6.7]zbMATHCrossRefGoogle Scholar
  130. Blythe, P. A., Daniels, P. G. and Simpkins, P. G. 1985a Convection in a fluid saturated porous medium due to internal heat generation. Int. Comm. Heat Mass Transfer 12, 493-504. [6.17]CrossRefGoogle Scholar
  131. Bogorodskii, P. V. and Nagurnyi, A. P. 2000 Under-ice meltwater puddles: a factor in the fast sea ice melting in the Arctic. Doklady Earth Sciences 373, 885-887. [6.19]Google Scholar
  132. Bories, S. 1970a Sur les méchanismes fondamentaux de la convection naturelle en milieu poreux. Rev. Gén. Therm. 9, 1377-1401. [6.9.1]Google Scholar
  133. Bories, S. 1970b Comparaison des prévisions d’une théorie non linéaire et des résultats expérimentaux en convection naturelle dans une couche poreuse saturée horizontale. C. R. Acad. Sci. Paris B 271, 269-272. [6.9.1]MathSciNetGoogle Scholar
  134. Bories, S. A. 1987 Natural convection in porous media. Advances in Transport Phenomena in Porous Media (eds. J. Bear and M. Y. Corapcioglu), Martinus Nijhoff, The Netherlands, 77-141. [6.3, 6.5]CrossRefGoogle Scholar
  135. Bories, S. and Deltour, A. 1980 Influence des conditions aux limites sur la convection naturelle dans un volume poreux cylindrique. Int. J. Heat Mass Transfer 23, 765-771. [6.16.1]zbMATHCrossRefGoogle Scholar
  136. Bories, S. and Thirriot, C. 1969 Échanges thermiques et tourbillons dans une couche poreuse horizontale. La Houille Blanche 24, 237-245. [6.9.1]CrossRefGoogle Scholar
  137. Borkowska-Pawlak, B. and Kordylewski, W. 1982 Stability of two-dimensional natural convection in a porous layer. Q. J. Mech. Appl. Math. 35, 279-290. [6.15.1]zbMATHCrossRefGoogle Scholar
  138. Borkowska-Pawlak, B. and Kordylewski, W. 1985 Cell-pattern sensitivity to box configuration in a saturated porous medium. J. Fluid Mech. 150, 169-181. [6.15.1]zbMATHCrossRefGoogle Scholar
  139. Bradshaw, S., Glasser, D. and Brooks, K. 1991 Self-ignition and convection patterns in an infinite coal layer. Chem. Engng Comm. 105, 255-278. [6.11.2]CrossRefGoogle Scholar
  140. Braester, C. and Vadasz, P. 1993 The effect of a weak heterogeneity of a porous medium on natural convection. J. Fluid Mech. 254, 345-362. [6.9.1, 6.13.4]MathSciNetzbMATHCrossRefGoogle Scholar
  141. Bratsun, D. A. and Lyubimov, D. V. 1995 Co-symmetry breakdown in problems of thermal convection in porous medium. Physica D 82, 398-417. [6.16.2]MathSciNetzbMATHCrossRefGoogle Scholar
  142. Bresch, D. and Sy, M. 2003 Convection in rotating porous media: The planetary geostrophic equations, used in geophysical fluid dynamics, revisited. Cont. Mech. Thermodyn. 15, 247-263. [6.22]MathSciNetzbMATHCrossRefGoogle Scholar
  143. Bringedal, C., Berra, I., Nordbotten, J. M. and Rees, D. A. S. 2011 Linear and nonlinear convection in porous media between coaxial cylinders. Phys. Fluids 23, #094109. [6.16.1]zbMATHCrossRefGoogle Scholar
  144. Bukhari, Abdul-Fattah, K., and Abdullah, A. 2007 Convection in a horizontal layer underlying a fluid layer in the presence of nonlinear magnetic field on both layers. J. Korean Soc. Indust. Appl. Math 11, 1-12. [6.19.3]zbMATHGoogle Scholar
  145. Buretta, R. J. and Berman, A. S. 1976 Convective heat transfer in a liquid saturated porous layer. ASME J. Appl. Mech. 43, 249-253. [6.3, 6.9.1, 6.9.2, 6.11.2]CrossRefGoogle Scholar
  146. Burns, A. S. and Stewart, W. E. 1992 Convection in heat generating porous media in a concentric annulus with a permeable outer boundary. Int. Comm. Heat Mass Transfer 19, 127-136. [6.17]CrossRefGoogle Scholar
  147. Bus, Z. and Cserepes, L. 1994 Three-dimensional forms of thermal convection in porous layers. Acta Geol. Geophys. Hungar. 29, 209-220. [6.4]Google Scholar
  148. Busse, F. H. 1985 Transition to turbulence in Rayleigh-Bénard convection. Hydrodynamic Instabilities and the Transition to Turbulence (eds. H. L. Swinney and J. Gollub), 2nd ed., Springer, Berlin, 97-137. [6.4]Google Scholar
  149. Busse, F. H. and Joseph, D. D. 1972 Bounds for heat transport in a porous layer. J. Fluid Mech. 54, 521-543. [6.3]zbMATHCrossRefGoogle Scholar
  150. Caltagirone, J. P. 1975 Thermoconvective instabilities in a horizontal porous layer. J. Fluid Mech. 72, 269-287. [6.8]zbMATHCrossRefGoogle Scholar
  151. Caltagirone, J. P. 1976a Stabilité d’une couche poreuse horizontale soumise a des conditions aux limites périodiques. Int. J. Heat Mass Transfer 19, 815-820. [6.11.3]zbMATHCrossRefGoogle Scholar
  152. Caltagirone, J. P. 1980 Stability of a saturated porous layer subject to a sudden rise in surface temperature: comparison between the linear and energy methods. Q. J. Mech. Appl. Math. 33, 47-58. [6.11.3]zbMATHCrossRefGoogle Scholar
  153. Caltagirone, J. P. and Fabrie, P. 1989 Natural convection in a porous medium at high Rayleigh numbers. Part 1—Darcy’s model. Eur. J. Mech. B 8, 207-227. [6.8]Google Scholar
  154. Caltagirone, J. P., Cloupeau, M. and Combarnous, M. 1971 Convection naturelle fluctuante dans une couche poreuse horizontale. C. R. Acad. Sci. Paris B 273, 833-836. [6.9.1]Google Scholar
  155. Caltagirone, J. P., Fabrie, P. and Combarnous, M. 1987 De la convection naturelle oscillante en milieu poreux au chaos temporel? C. R. Acad. Sci. Paris, Sér. II 305, 549-553. [6.8]MathSciNetGoogle Scholar
  156. Caltagirone, J. P., Meyer, G. and Mojtabi, A. 1981 Structurations thermoconvectives tridimensionnelles dans une couche poreuse horizontale. J. Mécanique 20, 219-232. [6.8, 6.15.1]zbMATHGoogle Scholar
  157. Capone, F. 2001 On the onset of convection in porous media: temperature depending viscosity. Bull. Unione Mat. Ital. 4B, 143-156. [6.7]MathSciNetzbMATHGoogle Scholar
  158. Capone, F. and Rionero, S 1999 Temperature-dependent viscosity and its influence on the onset of convection in a porous medium. Rend. Accad. Sci. Fiz. Matem. Napoli, 66, 159-172. [6.7]MathSciNetzbMATHGoogle Scholar
  159. Capone, F. and Rionero, S. 2003 Nonlinear stability of a convective motion in a porous layer driven by a horizontally periodic temperature gradient. Cont. Mech. Thermodyn. 15, 529-538. [6.14]MathSciNetzbMATHCrossRefGoogle Scholar
  160. Capone, F. and Rionero, S. 2013 Inertia effect on the onset of convection in rotating porous layers via the “auxiliary system method”. Int. J. Non-Linear Mech. 57, 192-200. [6.22]CrossRefGoogle Scholar
  161. Capone, F. and Rionero, S. 2016a Porous MHD convection: stabilizing effect of magnetic field and bifurcation analysis. Ricerche di Matematica 65, 163-186. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  162. Capone, F. and Rionero, S. 2016b Brinkman viscosity action in porous MHD convection. Int. J. Non-Linear Mech. 85, 109-117. [6.21]CrossRefGoogle Scholar
  163. Capone, F., Gentile, M. and Hill, A. A. 2012 Convection problems in anisotropic media with nonhomogeneous porosity and thermal diffusivity. Acta Appl. Math. 122, 85-91. [6.12]MathSciNetzbMATHGoogle Scholar
  164. Carr, M. 2003a Unconditional nonlinear stability for temperature-dependent density flow in a porous medium. Math. Mod. Meth. Appl. Sci. 13, 207-220. [6.4]MathSciNetzbMATHCrossRefGoogle Scholar
  165. Carr, M. 2004 Penetrative convection in a superposed porous-medium – fluid layer via internal heating. J. Fluid Mech. 509, 305-329. [6.19.3]MathSciNetzbMATHCrossRefGoogle Scholar
  166. Carr, M. and de Putter, S. 2003 Penetrative convection in a horizontally isotropic porous layer. Cont. Mech. Thermodyn. 15, 33-43. [6.11.4]MathSciNetzbMATHCrossRefGoogle Scholar
  167. Carr, M. and Straughan, B. 2003 Penetrative convection in a fluid overlying a porous layer. Adv. Water Res. 26, 263-276. [6.11.4]CrossRefGoogle Scholar
  168. Castinel, G. and Combarnous, M. 1975 Natural convection in an anisotropic porous layer. Rev. Gén. Therm. 168, 937-947. English translation, Int. Chem. Eng. 17, 605-614 (1977). [6.12]Google Scholar
  169. Castinel, G. and Combarnous, M. 1977 Natural convection in an anisotropic porous layer. Int. Chem. Engng. 17 , 605-616. [6.12]Google Scholar
  170. Catton, I. 1985 Natural convection heat transfer in porous media. Natural Convection: Fundamentals and Applications (eds. S. Kakaç, W. Aung, and R. Viskanta), Hemisphere, Washington, DC, 514-547. [6.9.2, 6.19.2]Google Scholar
  171. Celli, M., Barletta, A. and Storesletten, L. 2013 Local thermal non-equilibrium effects in Darcy-Bénard instability of a porous layer heated from below by a uniform flux. Int. J. Heat Mass Transfer 67, 902-912. [6.5]CrossRefGoogle Scholar
  172. Celli, M., Barletta, A. and Storesletten, L. 2014 Thermoconvective instability and local thermal non-equilibrium in a porous layer with isoflux-isothermal boundary conditions. J. Phys. Conf. Ser. 501, 012004. [6.5]CrossRefGoogle Scholar
  173. Celli, M., Brandao, P. V., Alves, L. S. de B. and Barletta, A. 2016b Convective instability in a Darcy flow heated from below with internal heat generation. Transp. Porous Media 112, 563-575. [6.11.2]Google Scholar
  174. Chakrabarti, A. and Gupta, A. S. 1981 Nonlinear thermohaline convection in a rotating porous medium. Mech. Res. Comm. 8, 9-22. [9.1.6.4]MathSciNetzbMATHCrossRefGoogle Scholar
  175. Chan, Y. T. and Banerjee, S. 1981 Analysis of transient three-dimensional natural convection in porous media. ASME J. Heat Transfer 103, 242-248. [6.9.2]CrossRefGoogle Scholar
  176. Chand, R. 2013 Thermal instability of rotating Maxwell visco-elastic fluid with variable gravity in porous medium. J. Indian Math. Soc. 80, 23-31. [6.22]MathSciNetzbMATHGoogle Scholar
  177. Chand, S. 2013 Linear stability of triple-diffusive convection in micropolar ferromagnetic fluid saturating porous medium. Appl. Math. Mech.- English ed. 34, 309-326. [9.1.6.4]MathSciNetzbMATHCrossRefGoogle Scholar
  178. Chang, M. H. 2004 Stability of convection induced by selective absorption of radiation in a fluid overlying a porous layer. Phys. Fluids 16, 3690-3698. [6.19.1]zbMATHCrossRefGoogle Scholar
  179. Chang, M. H. 2005 Thermal convection in superposed and porous layers subjected to a horizontal plane Couette flow. Phys. Fluids 17, Art. no. 064016. [6.19.3]zbMATHGoogle Scholar
  180. Chang, M. H. 2006 Thermal convection in superposed fluid and porous layers subjected to a plane Poiseuille flow. Phys. Fluids 18, art. # 035104. [6.19.3]MathSciNetzbMATHCrossRefGoogle Scholar
  181. Chang, M. H., Chen, F. and Straughan, B. 2006 Instability of Poiseuille flow in a fluid overlying a porous layer. J. Fluid Mech. 564, 287-303. [6.19.3]MathSciNetzbMATHCrossRefGoogle Scholar
  182. Chang, W. J. and Yang, D. F. 1995 Transient natural convection of water near its density extremum in a rectangular cavity filled with porous medium. Numer. Heat Transfer A 28, 619-633. [6.20]CrossRefGoogle Scholar
  183. Charrier-Mojtabi, M. C., Mojtabi, A., Azaiez, M. and Labrosse, G. 1991 Numerical and experimental study of multicellular free convection flows in an annular porous pipe. Int. J. Heat Mass Transfer 34, 3061-3074. [6.16.3]zbMATHCrossRefGoogle Scholar
  184. Charrier-Mojtabi, M. C., Pedram Razi, Y., Maliwan, K. and Mojtabi, A. 2006 The influence of mechanical vibration on convective motion in a confined porous cavity with emphasis on harmonic and sub-harmonic responses. Proc. 13th Int. Heat Transfer Conf., Sydney, Australia (CD Rom). [6.24]Google Scholar
  185. Chelghoum, D. E., Weidman, P. D. and Kassoy, D. R. 1987 Effect of slab width on the stability of natural convection in confined saturated porous media. Phys. Fluids 30, 1941-1947. [6.15.1]CrossRefGoogle Scholar
  186. Chen, F. 1991 Throughflow effects on convective instability in superposed fluid and porous layers. J. Fluid Mech, 231, 113-133. [6.19.1.2]zbMATHCrossRefGoogle Scholar
  187. Chen, F. and Chen, C. F. 1988c Onset of finger convection in a horizontal porous layer underlying a fluid layer. ASME J. Heat Transfer 110, 403-409. [6.19.1.1, 6.19.1.2, 9.4]CrossRefGoogle Scholar
  188. Chen, F. and Chen, C. F. 1989 Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below. J. Fluid Mech. 207, 311-321. [6.19.1.1]CrossRefGoogle Scholar
  189. Chen, F. and Chen, C. F. 1992 Natural convection in superposed fluid and porous layers. J. Fluid Mech. 234, 97-119. [1.6, 6.19.1.2]zbMATHCrossRefGoogle Scholar
  190. Chen, F. and Hsu, L. H. 1991 Onset of thermal convection in an anisotropic and inhomogeneous porous layer underlying a fluid layer. J. Appl. Phys. 69, 6289-6301. [6.19.1.2]CrossRefGoogle Scholar
  191. Chen, F. and Hsu, L. H. 1991 Onset of thermal convection in an anisotropic and inhomogeneous porous layer underlying a fluid layer. J. Appl. Phys. 69, 6289-6301. [6.19.3]CrossRefGoogle Scholar
  192. Chen, F. and Lu, J. W. 1992b Onset of salt-finger convection in anisotropic and inhomogeneous porous media. Int. J. Heat Mass Transfer 35, 3451-3464. [6.19.1.2, 9.1.6.2]CrossRefGoogle Scholar
  193. Chen, F., Chen, C. F. and Pearlstein, A. J. 1991 Convective instability in superposed fluid and anisotropic porous layers. Phys. Fluids A 3, 556–565. [6.19.1.2]Google Scholar
  194. Chen, H. T. and Chen, C. K. 1988a Free convection flows of non-Newtonian fluids along a vertical plate embedded in a porous medium. ASME J. Heat Transfer 110, 257-259. [5.1.9.2]CrossRefGoogle Scholar
  195. Chen, H. T. and Chen, C. K. 1988b Natural convection of a non-Newtonian fluid about a horizontal cylinder and a sphere in a porous medium. Int. Comm. Heat Mass Transfer 15, 605-614. [5.5.1, 5.6.1]CrossRefGoogle Scholar
  196. Chen, Q. S., Prasad, V. and Chatterjee, A. 1999b Modeling of fluid flow and heat transfer in a hydrothermal crystal growth system: use of fluid-superposed porous layer theory. ASME J. Heat Transfer 121, 1049-1058. [6.19.2]CrossRefGoogle Scholar
  197. Chen, X. B., Yu, P., Winoto, S. H. and Low, H. T. 2009b Numerical analysis for the flow past a trapezoidal-cylinder based on the stress-jump interfacial conditions. Int. J. Numer. Mech. Heat Fluid Flow 19, 223-241. [7.7]CrossRefGoogle Scholar
  198. Cheng, P. 1978 Convective heat transfer in porous layers by integral methods. Lett. Heat Mass Transfer 5, 243-252. [6.3]Google Scholar
  199. Cheng, P. 1978 Heat transfer in geothermal systems. Adv. Heat Transfer 14, 1-105. [3.5, 6.9.1, 6.26, 11, 11.7]CrossRefGoogle Scholar
  200. Cheng, P. and Chang, I. D. 1976 On buoyancy induced flows in a saturated porous medium adjacent to impermeable horizontal surfaces. Int. J. Heat Mass Transfer 19, 1267-1272. [5.2, 6.26]zbMATHCrossRefGoogle Scholar
  201. Chhuon, B. and Caltagirone, J. P. 1979 Stability of a horizontal porous layer with timewise periodic boundary conditions. ASME J. Heat Transfer 101, 244-248. [6.11.3]CrossRefGoogle Scholar
  202. Choi, E., Chamkha, A. and Nandakumar, K. 1998 A bifurcation study of natural convection in porous media with internal heat sources: the non-Darcy effects. Int. J. Heat Mass Transfer 41, 383-392. [6.11.2]zbMATHCrossRefGoogle Scholar
  203. Close, D. J. 1986 A general correlation for natural convection in liquid-saturated beds of spheres. ASME J. Heat Transfer 108, 983-985. [6.9.2]CrossRefGoogle Scholar
  204. Close, D. J., Symons, J. G. and White, R. F. 1985 Convective heat transfer in shallow gas-filled porous media: experimental investigation. Int. J. Heat Mass Transfer 28, 2371-2378. [6.9.1]CrossRefGoogle Scholar
  205. Combarnous, M. 1970 Convection naturelle et convection mixte dans une couche poreuse horizontale. Rev. Gén. Therm. 9, 1355-1375. [6.9.1]Google Scholar
  206. Combarnous, M. 1972 Description du transfert de chaleur par convection naturelle dans une couche poreuse horizontale à l’aide d’un coefficient de transfert solide-fluide. C. R. Acad. Sci. Paris A 275, 1375-1378. [6.5, 6.9.2]Google Scholar
  207. Combarnous, M. A. and Bories, S. A. 1975 Hydrothermal convection in saturated porous media. Adv. Hydroscience 10, 231-307. [6.9.1, 6.9.2]CrossRefGoogle Scholar
  208. Combarnous, M. and Bia, P. 1971 Combined free and forced convection in porous media. Soc. Petrol. Eng. J. 11, 399-405. [6.9.1, 8.2.1]CrossRefGoogle Scholar
  209. Combarnous, M. and Bories, S. 1974 Módelization de la convection naturelle au sein d’une couche poreuse horizontale à l’aide d’un coefficient de transfert solide-fluide. Int. J. Heat Mass Transfer 17, 505-515. [6.9.2]CrossRefGoogle Scholar
  210. Combarnous, M. and Le Fur, B. 1969 Transfert de chaleur par convection naturelle dans une couche poreuse horizontale. C. R. Acad. Sci. Paris B 269, 1009-1012. [6.3, 6.9.1]Google Scholar
  211. Cooper, C. A., Crewe, J. B., Schumer, R., Breitmeyer, R. L., Voepel, H. and Decker, D. L. 2014 Experimental investigation of transient thermal convection in porous media. Transp. Porous Media 104. 335-347. [6.11.3]CrossRefGoogle Scholar
  212. Czechowski, L. and Kossacki, K. J. 2012 Thermal convection in the porous methane soaked regolith in Titan: Finite amplitude convection. Icarus 217, 130-143. [6.8]CrossRefGoogle Scholar
  213. Daniel, D., Riaz, A. and Tchelepi, H. A. 2015 Onset of natural convection in layered aquifers. J. Fluid Mech. 767, 763-781. [6.11.3]MathSciNetCrossRefGoogle Scholar
  214. Daniel, D., Tilton, N. and Riaz, A. 2013 Optimal perturbations of gravitationally unstable transient boundary layers in porous media. J. Fluid Mech. 727, 456-487. [6.2]MathSciNetzbMATHCrossRefGoogle Scholar
  215. Das, S. 2012 Convection in fluid overlying porous layer; An application to Hall-Héroult cell. Mater. Perform. Charact. 1, 1-22. [6.19.3]Google Scholar
  216. Das, S., Sahoo, R. K. and Morsi, Y. S. 2003 Natural convection in heat generating porous enclosures: a non-Darcian model. Canad. J. Chem. Engng. 81, 289-296. [6.17]CrossRefGoogle Scholar
  217. Davidson, J. H., Kulacki, F. A. and Savela, D. 2009 Natural convection in water-saturated reticulated vitreous carbon foam. Int. J. Heat Mass Transfer 52, 4479-4483. [6.9.3]CrossRefGoogle Scholar
  218. De la Torre Juarez, M. and Busse, F. H. 1995 Stability of two-dimensional convection in a fluid-saturated porous medium. J. Fluid Mech. 292, 305-323. [6.8]MathSciNetzbMATHCrossRefGoogle Scholar
  219. De Luca, R. 2015 Global nonlinear stability and “cold convection instability” of non-constant porous throughflows, 2D in vertical planes. Ricerche di Matematica 64, 99-113. [6.10.2]MathSciNetzbMATHCrossRefGoogle Scholar
  220. de Vaik, C. F. and Raats, P. A. 1995 Lumped models of convective solute transport in heterogeneous porous media. 1. One-dimensional media. Water Resourc. Res. 31, 883-892. [6.13.2]CrossRefGoogle Scholar
  221. Debeda, V., Caltagirone, J. P. and Watremez, P. 1995 Local multigrid refinement method for natural convection in fissured porous media. Numer. Heat Transfer 28, 455-467. [6.13.4]CrossRefGoogle Scholar
  222. Deepika, N. and Narayana, P. A. L. 2015 Effects of vertical throughflow and variable gravity on Hadley-Prats flow in a porous medium. Transp. Porous Media 109, 455-468. [6.1.2]MathSciNetCrossRefGoogle Scholar
  223. Degan, G. and Vasseur, P. 2003 Influence of anisotropy on convection in porous media with nonuniform thermal gradient. Int. J. Heat Mass Transfer 46, 781-789. [6.12]zbMATHCrossRefGoogle Scholar
  224. Delache, A. and Quarzazi, M. N. 2008 Weakly nonlinear interaction of mixed convection patterns in porous media heated from below. Int. J. Therm. Sci. 47, 709-722. [6.10.1]CrossRefGoogle Scholar
  225. Delache, A., Ouarzazi, N. and Néel, M. C. 2002 Pattern formation of mixed convection in a porous medium confined laterally and heated from below: effect of inertia. Comptes Rendus Mécanique 330, 885-891. [6.10.1]zbMATHCrossRefGoogle Scholar
  226. Delache, A., Quarzazi, M. N. and Combarnous, M. 2007 Spatio-temporal stability analysis of mixed convection flows in porous media heated from below; comparison with experiments. Int. J. Heat Mass Transfer 50, 1485-1499. [6.10.1]zbMATHCrossRefGoogle Scholar
  227. Delmas, A. and Arquis, E. 1995 Early initiation of natural convection in an open porous layer due to the presence of solid conductive inclusions. ASME J. Heat Transfer 117, 733-739. [6.13.2]CrossRefGoogle Scholar
  228. Deltour, A., Bories, S. and Combarnous, M. 1977 Influence of shape ratio and lateral boundary conditions on the onset of natural convection in a vertical porous cylinder. Sci. Phys. 284, 135-138. [7.3.3]Google Scholar
  229. Desaive, T., Hennenberg, M. and Dauby, P. C. 2004 Stabilite thermomagneto-convective d’un ferrofluide dans une couche poreuse en rotation. Mecan. Industr. 5, 621-625. [6.21]CrossRefGoogle Scholar
  230. Desaive, T., Hennenberg, M. and Lebon, G. 2002 Thermal instability of a rotating saturated porous medium heated from below and submitted to rotation. Eur. Phys. J. B 29, 641-647. [6.22]CrossRefGoogle Scholar
  231. Desaive, T., Lebon, G. and Hennenberg, M. 2001 Coupled capillary and gravity-driven instability in a liquid film overlying a porous layer. Phys. Rev. E. 64, art. no. 066304 Part 2. [6.19.3]Google Scholar
  232. Devi, S.N.S., Nagaraju, P. and Hanumanthappa, A. R. 2002 Effect of radiation on Rayleigh-Bénard convection in an anisotropic porous medium. Indian J. Engng. Mater. Sci. 9, 163-171. [6.12]Google Scholar
  233. Dharma Rao, V., Naidu, S. V. and Sarma, P. K. 1998 Natural convection in a porous medium at high Rayleigh numbers—application of Prandtl’s analogy. Canad. J. Chem. Engng. 76, 717-721. [6.8]Google Scholar
  234. Dodgson, E. and Rees, D. A. S. 2013 The onset of Prandtl-Darcy-Prats convection in a horizontal porous layer. Transp. Porous Media 99, 175-189. [6.10.1]MathSciNetCrossRefGoogle Scholar
  235. Doering, C. R. and Constantin, P. 1998 Bounds for heat transport in a porous layer. J. Fluid Mech. 376, 263-296. [6.3]MathSciNetzbMATHCrossRefGoogle Scholar
  236. Dona, C. L. G. and Stewart, W. E. 1989 Variable property effects on convection in a heat generating porous medium. ASME J. Heat Transfer 111, 1100-1102. [6.17]CrossRefGoogle Scholar
  237. Donaldson, I. G. 1962 Temperature gradients in the upper layers of the Earth's crust due to convective water flows. J. Geophys. Res. 67, 3449-3459. [6.13.1]zbMATHCrossRefGoogle Scholar
  238. Dufour, F. and Néel, M. C. 1998 Numerical study of instability in a horizontal porous channel with bottom heating and forced horizontal flow. Phys. Fluids 10, 2198-2207. [6.10.1]CrossRefGoogle Scholar
  239. Dufour, F. and Néel, M. C. 2000 Time-periodic convection patterns in a horizontal porous layer with through-flow. Quart. Appl. Math. 58, 265-281. [6.10.1]MathSciNetzbMATHCrossRefGoogle Scholar
  240. Ekholm, T. C. 1983 Studies of convection using a Hele-Shaw cell. Project Report, School of Engineering, University of Auckland. [6.13.2]Google Scholar
  241. Elder, J. W. 1967a Steady free convection in a porous medium heated from below. J. Fluid Mech. 27, 29-48. [2.5, 6.9.1, 6.18]CrossRefGoogle Scholar
  242. Elder, J. W. 1967b Transient convection in a porous medium. J. Fluid Mech. 27, 609-623. [6.9.1, 6.18]CrossRefGoogle Scholar
  243. Eliasson, J. 2014 Eddy heat conduction and nonlinear stability of a Darcy Lapwood system analysed by the finite spectral method. J. Appl. Math. 695425. [6.4.1]Google Scholar
  244. El-Khatib, G. and Prasad, V. 1987 Effects of stratification on thermal convection in horizontal porous layers with localized heating from below. ASME J. Heat Transfer 109, 683-687. [6.18]CrossRefGoogle Scholar
  245. El-Kholy, S. A. E. A. and Gorla, R. S. R. 2005 Influence of magnetic field on the onset of convection in a porous medium. Int. J. Fluid Mech. Res. 32, 528-537. [6.21]MathSciNetCrossRefGoogle Scholar
  246. El-Sayed, M. F. 2008 Onset of electroconvective instability of Oldroydian viscoelastic liquid layer in a Brinkman porous medium. Arch. Appl. Mech. 78, 211-224. [6.23]zbMATHCrossRefGoogle Scholar
  247. Eltayeb, I. A. 2015 Stability of a porous Bénard-Brinkman layer in local thermal non-equilibrium with Cattaneo effects in solid. Int. J. Thermal Sci. 98, 208-218. [6.5]CrossRefGoogle Scholar
  248. Ene, H. I. and Polisevski, D. 1990 Steady convection in a porous layer with translational flow. Acta Mech. 84, 13-18. [6.10.1]MathSciNetCrossRefGoogle Scholar
  249. Ene, H. I. and Ungureanu-David, E. 1980 On a problem of electro-convection in a porous medium. Stud. Cercet. Mat. 32, 309-320. [6.21]zbMATHGoogle Scholar
  250. Engstrom, M. and Nordell, B. 2016 Temperature-driven groundwater convection in cold climates. Hydrogeology J. 24, 1245-1253. [6.11.3]CrossRefGoogle Scholar
  251. Ennis-King, J., Preston, I. and Paterson, J. 2005 Onset of convection in anisotropic porous media subject to a rapid change of boundary conditions. Phys. Fluids 17, art. no. 084107. [6.11.3]zbMATHCrossRefGoogle Scholar
  252. Epherre, J. F. 1975 Criterion for the appearance of natural convection in an anisotropic porous layer. Rev. Gén. Therm. 168, 949-950. English translation, Int. Chem. Engng. 17, 615-616, 1977. [6.12]Google Scholar
  253. Ergun, S. 1952 Fluid flow through packed columns. Chem. Engrg. Prog. 48, 89-94. [1.5.2, 6.9.2]Google Scholar
  254. Eswaramurthi, M., Kandaswamy, P. and Lee, J. 2008 Effect of density maximum of water on natural convection in a porous cavity. J. Porous Media 11, 179-191. [6.20]zbMATHGoogle Scholar
  255. Falsaperla, P., Mulone, G. and Straughan, B. 2010 Rotating porous convection with prescribed heat flux. Int. J. Engng. Sci. 48, 685-692. [6.22]MathSciNetzbMATHCrossRefGoogle Scholar
  256. Falsaperla, P., Mulone, G. and Straughan, B. 2011 Inertia effects on rotating porous convection. Int. J. Heat Mass Transfe 54, 52-1359. [6.22]Google Scholar
  257. Fatemeh, B. and Rezvantalab, S. 2015 Viscosity variation effects on heat transfer and fluid flow through two-layered porous media. J. Chem. Tech. Metall. 50, 35-38. [6.13.2]Google Scholar
  258. Fichot, F., Duval, F., Trègourés, N., Béchaud, C. and Quintard, M. 2006 The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability. Nuclear Energy Design 236, 2144-2163. [6.5]CrossRefGoogle Scholar
  259. Figueiredo, J. R. and Llagostera, T. 1999 Comparative study of the unified finite approach exponential-type scheme (UNIFAES) and its application to natural convection in a porous cavity. Numer. Heat Transfer B 35, 347-367. [6.8]CrossRefGoogle Scholar
  260. Florio, B. J. 2014 The interaction of convection modes in a box of a saturated porous medium. J. Engng. Math. 86, 71-88. [7.1.4]MathSciNetzbMATHCrossRefGoogle Scholar
  261. Florio, B. J., Bassom, A. P., Fowkes, N., Judd, K. and Stemler, T. 2015 The nonlinear interaction of convection modes in a box of a saturated porous medium. Physica D, 301-302, 31616, 48-58. [6.15.1]Google Scholar
  262. Friedrich, R. 1983 Einfluss der Prandtl-Zahl auf die Zellularkonvektion in einem rotierenden, mit Fluid gesättigten porösen Medium. ZAMM 63, T246-T249. [6.22]zbMATHGoogle Scholar
  263. Fu, C. J., Zhang, Z. Y. and Tan, W. C. 2007 Numerical simulation of thermal convection of a viscoelastic fluid in a porous square box heated from below. Phys. Fluids Art. # 104107. [6.23]Google Scholar
  264. Gaikwad, S. N. and Begum, I. 2014 Effect of gravity modulation on the onset of thermal convection in rotating viscoelastic fluid and porous layer. Int. J. Fluid Mech. Res. 39, 535-557. [6.24]CrossRefGoogle Scholar
  265. Gaikwad, S. N. and Javaji, A. V. 2016 Onset of Darcy-Brinkman convection in a Maxwell fluid saturated anisotropic porous layer. J. Appl. Fluid Mech. 9, 1709-1720. [6.23]CrossRefGoogle Scholar
  266. Ganapathy, R. and Purushothaman, R. 1992 Free convection in a saturated porous medium due to a traveling thermal wave. Z. Angew. Math. Mech. 72, 142-145. [6.11.3]zbMATHCrossRefGoogle Scholar
  267. Gangadharaiah, J. H. 2016 Onset of Bénard–Marangoni convection in a composite layer with anisotropic porous material. J. Appl. Fluid Mech. 9, 1551-1558. [6.19.3]CrossRefGoogle Scholar
  268. Gao, D., Chan, Z. and Chen, L. 2014 A thermal lattice Boltzmann model for natural convection in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transfer 70, 979-989. [6.5]CrossRefGoogle Scholar
  269. Gartling, D. K. and Hickox, C. E. 1985 Numerical study of the applicability of the Boussinesq approximation for a fluid-saturated porous medium. Int. J. Numer. Methods Fluids 5, 995-1013. [6.7]MathSciNetzbMATHCrossRefGoogle Scholar
  270. Gasser, R. D. and Kazimi, M. S. 1976 Onset of convection in a porous medium with internal heat generation. ASME J Heat Transfer 98, 49-54. Corrections, 302-302. [6.11.2]CrossRefGoogle Scholar
  271. Gatica, J. E., Viljoen, H. and Hlavacek, V. 1987 Stability analysis of chemical reaction and free convection in porous media. Int. Comm. Heat Mass Transfer 14, 391-403. [3.4]CrossRefGoogle Scholar
  272. Genc, G. and Rees, D. A. S. 2011 The onset of convection in horizontally partitioned porous layers. Phys. Fluids 23, #064107. [6.10.1]Google Scholar
  273. Gentile, M. and Rionero, S. 2000 A note on the global nonlinear stability for penetrative convection in porous media with fluids of cubic density. Rend. Accad. Sci. Fiz. Matem. Napoli, 67, 129-142. [6.4]zbMATHGoogle Scholar
  274. Gentile, M. and Straughan, B. 2013 Structural stability in resonant penetrative convection in a Forchheimer porous channel. Nonlinear Anal. Real World Appl. 14, 397-401. [6.4]MathSciNetzbMATHCrossRefGoogle Scholar
  275. Gentile, M. and Straughan, B. 2016 Hyperbolic diffusion with Christov-Morro theory. Math. Comput. Simul. 127, 94-100. [6.23]MathSciNetCrossRefGoogle Scholar
  276. Georgiadis, J. G. and Catton, I. 1986 Prandtl number effect on Bénard convection in porous media. ASME J. Heat Transfer 108, 284-290. [6.9.2]CrossRefGoogle Scholar
  277. Georgiadis, J. G. and Catton, I. 1988a Dispersion in cellular thermal convection in porous media. Int. J. Heat Mass Transfer 31, 1081-1091. [1.1, 6.6]zbMATHCrossRefGoogle Scholar
  278. Georgiadis, J. G. and Catton, I. 1988b Effective equation governing convective transport in porous media. ASME J. Heat Transfer 110, 635-641. [1.1]CrossRefGoogle Scholar
  279. Gershuni, G. Z. and Lyubimov, D. V. 1998 Thermal Vibration Convection. Wiley, New York. [6.24]Google Scholar
  280. Gjerde, K. M. and Tyvand, P. A. 1984 Thermal convection in a porous medium with continuous periodic stratification. Int. J. Heat Mass Transfer 27, 2289-2295. [6.13.2]zbMATHCrossRefGoogle Scholar
  281. Gobin, D. and Goyeau, B. 2008 Natural convection in partially porous media: a brief overview. Int. J. Numer. Meth. Heat Fluid Flow 18, 465-490. [6.9]MathSciNetzbMATHCrossRefGoogle Scholar
  282. Goel, A. K. and Agrawal, S. C. 1998 A numerical study of the hydromagnetic thermal convection in a visco-elastic dusty fluid in a porous medium. Indian J. Pure Appl. Math. 29, 929-940. [6.21]zbMATHGoogle Scholar
  283. Goldobin, D. S. and Shklyaeva, E. V. 2008 Large-scale thermal convection in a horizontal porous layer. Phys. Rev. E 78, #027301. [6.8]Google Scholar
  284. Gounot, J. and Caltagirone, J. P. 1989 Stabilité et convection naturelle au sein d'une couche poreuse non homogène. Int. J. Heat Mass Transfer 32, 1131-1140. [6.13.4]zbMATHCrossRefGoogle Scholar
  285. Govender, S. 2003a Oscillating convection induced by gravity and centrifugal forces in a rotating porous layer distant from the axis of rotation. Int. J. Engng. Sci. 41, 539-545. [6.22]zbMATHCrossRefGoogle Scholar
  286. Govender, S. 2003c Coriolis effect on the linear stability of convection in a porous layer placed far away from the axis of rotation. Transport Porous Media 51, 315-326. [6.22]MathSciNetCrossRefGoogle Scholar
  287. Govender, S. 2004b Stability of convection in a gravity modulated porous layer heated from below. Transport Porous Media 57, 113-123. [6.24]CrossRefGoogle Scholar
  288. Govender, S. 2005c Destabilizing a fluid saturated gravity modulated porous layer heated from above. Transport Porous Media 59, 215-225. [6.24]CrossRefGoogle Scholar
  289. Govender, S. 2005d Linear stability and convection in a gravity modulated porous layer heated from below: Transition from synchronous to subharmonic oscillations. Transport Porous Media 59, 227-238. [6.24]CrossRefGoogle Scholar
  290. Govender, S. 2005e Stability analysis of a porous layer heated from below and subjected to low frequency vibration: Frozen time analysis. Transport Porous Media 59, 239-247. [6.24]CrossRefGoogle Scholar
  291. Govender, S. 2006c Stability of gravity driven convection in a cylindrical porous layer subjected to vibration. Transp. Porous Media 63, 489-502. [6.24]MathSciNetCrossRefGoogle Scholar
  292. Govender, S. 2007c Linear stability of solutal convection in solidifying mushy layer: permeable mush-melt interface. Transp. Porous Media 67, 431-439. [10.2.3]Google Scholar
  293. Govender, S. 2007a An analogy between a gravity modulated porous layer heated from below and the inverted pendulum with an oscillating pivot point. Transport Porous Media 67, 323-328. [6.24]MathSciNetCrossRefGoogle Scholar
  294. Govender, S. 2007b Coriolis effect on the stability of centrifugally driven convection in a rotating anisotropic porous layer subjected to gravity. Transport Porous Media 67, 219-227. [6.22]MathSciNetCrossRefGoogle Scholar
  295. Govender, S. 2008b Natural convection in gravity-modulated porous layers. In P. Vadasz (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York, pp. 133-148. [6.24]CrossRefGoogle Scholar
  296. Govender, S. 2010 Vadasz number influence on vibration in a rotating porous layer placed far away from the axis of rotation. ASME J. Heat Mass Transfer 132, 112601. [6.24]CrossRefGoogle Scholar
  297. Govender, S. 2013 Coriolis effect on convection in a rotating porous layer subjected to variable gravity. Transp. Porous Media 98, 443-450. [6.24]MathSciNetCrossRefGoogle Scholar
  298. Govender, S. and Vadasz, P. 2007 The effect of mechanical and thermal anisotropy on the stability of gravity driven convection in rotating porous media in the presence of thermal non-equilibrium. Transp. Porous Media 69, 55-66. [6.22]CrossRefGoogle Scholar
  299. Govorukhin, V. N. 2014 On the action of internal heat sources on convective motion in a porous medium heated from below. J. Appl. Mech. Tech. Phys. 55, 225-233. [6.11.2]MathSciNetCrossRefGoogle Scholar
  300. Govorukhin, V. N. and Shevchenko, I. V. 2005 Numerical investigation of the second transition in the problem of plane convective flow through a porous medium. Fluid Dyn. 38, 760-771. [6.8, 6.10.1]zbMATHCrossRefGoogle Scholar
  301. Govorukhin, V. N. and Shevchenko, I. V. 2006 Scenarios of the unsteady regimes in the problem of plane convective flow through a porous medium. Fluid Dyn. 41, 967-975, 2006. [6.8]zbMATHCrossRefGoogle Scholar
  302. Graham, M. D. and Steen, P. H. 1991 Structure and mechanism of oscillatory convection in a cube of fluid-saturated porous material heated from below. J. Fluid Mech. 232, 591-609. [6.15.1]zbMATHCrossRefGoogle Scholar
  303. Graham, M. D. and Steen, P. H. 1992 Strongly interacting traveling waves and quasiperiodic dynamics in porous medium convection. Physica D 54, 331-350. [6.15.1]MathSciNetzbMATHCrossRefGoogle Scholar
  304. Graham, M. D. and Steen, P. H. 1994 Plume formation and resonant bifurcations in porous-media convection. J. Fluid Mech. 272, 67-89. [6.15.1]MathSciNetzbMATHCrossRefGoogle Scholar
  305. Graham, M. D., Steen, P. H. and Titi, S. 1993 Computational efficiency and approximate inertial manifolds for a Bénard convection system. J. Nonlinear Sci. 3, 153-167. [6.15.1]Google Scholar
  306. Graham, M., Müller, U. and Steen, P. 1992 Time-periodic thermal convection in Hele-Shaw slots: The diagonal oscillation. Phys. Fluids A. 4, 2382-2393. [2.5, 6.4]zbMATHCrossRefGoogle Scholar
  307. Green, T. 1990 The momentary instability of a saturated porous layer with a time-dependent temperature, and the most unstable disturbance. Water Resources Res. 26, 2015-2021. [6.11.3]CrossRefGoogle Scholar
  308. Green, T. and Freehill, R. L. 1969 Marginal stability in inhomogeneous porous media. J. Appl. Phys. 40, 1759-1762. [6.13.1]CrossRefGoogle Scholar
  309. Grosan, T., Revnic, C., Pop, I. and Ingham, D. B. 2009 Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int. J. Heat Mass Transfer 52, 1525-1533. [6.17]zbMATHCrossRefGoogle Scholar
  310. Grundmann, M. and Mojtabi, A. 1995 Solution asymptotique du problème de la convection naturelle dans la cavité carrée poreuse chaufée par le bas. C.R. Acad. Sci. Paris, Sér. II, 321, 401-406. [6.3]Google Scholar
  311. Grundmann, M., Mojtabi, A. and vant Hof, B. 1996 Asymptotic solution of natural convection problem in a square cavity heated from below. Int. J. Numer. Meth. Heat Fluid Flow 6, 29-36. [6.3]zbMATHCrossRefGoogle Scholar
  312. Guba, P. and Worster, M. G. 2006a Free convection in laterally solidifying mushy regions. J. Fluid Mech. 558, 69-78. [10.2.3]MathSciNetzbMATHCrossRefGoogle Scholar
  313. Guba, P. and Worster, M. G. 2006b Nonlinear oscillatory convection in mushy layers. J. Fluid Mech. 553, 419-443. [10.2.3]MathSciNetzbMATHCrossRefGoogle Scholar
  314. Guerrero-Martinez, F. J., Younger, P. L., Karimi, N. and Kyriakis, S. 2017 Three-dimensional numerical simulations of free convection in a layered porous enclosure. Int. J. Heat Mass Transfer, to appear. [6.13.2]Google Scholar
  315. Gupta, U. and Gupta, P. 2014 Magneto-convection in a stratified dusty Rivlin-Eriksen fluid in a porous medium: An analytical and computational study for moderate and high rotation. Recent Adv. Engng Comp. Sci. 6799565. [6.22]Google Scholar
  316. Gupta, V. P. and Joseph, D. D. 1973 Bounds for heat transport in a porous layer. J. Fluid Mech. 57, 491-514. [6.3, 6.9.1, 6.22]CrossRefGoogle Scholar
  317. Gustafson, M. R. and Howle, L. E. 1999 Effects of anisotropy and boundary plates on the critical values of a porous medium heated from below. Int. J. Heat Mass Transfer 42, 3419-3430. [6.12]zbMATHCrossRefGoogle Scholar
  318. Haajizadeh, M., Ozguc, A. F. and Tien, C. L. 1984 Natural convection in a vertical porous enclosure with internal heat generation. Int. J. Heat Mass Transfer 27, 1893-1902. [6.17]zbMATHCrossRefGoogle Scholar
  319. Haddad, S. A. M. 2013 Thermal convection in a Cattaneo-Fox porous material with Guyer-Krumhansl effects. Transp. Porous Media 100, 363-375. [2.2.6, 6.23]MathSciNetCrossRefGoogle Scholar
  320. Haddad, S. A. M. 2014a Thermal convection in a Darcy porous medium with anisotropic spatially varying permeability. Acta Appl. Math. 132, 359-370. [6.12]MathSciNetzbMATHCrossRefGoogle Scholar
  321. Haddad, S. A. M. 2014b Thermal instability in Brinkman porous media with Cattaneo-Christov heat flux. Int. J. Heat Mass Transfer 68, 659-668. [2.2.6, 6.6]CrossRefGoogle Scholar
  322. Haddad, S. A. M. and Straughan, B. 2012 Porous convection and thermal oscillations. Ricerche di Matematica 61, 307-320. [2.2.6, 6.23]MathSciNetzbMATHCrossRefGoogle Scholar
  323. Hadim, A. and Burmeister, L. C. 1988 Onset of convection in a porous medium with internal heat generation and downward flow. AIAA J. Thermophys. Heat Transfer 2, 343-351. [6.11.2]CrossRefGoogle Scholar
  324. Hadim, A. and Burmeister, L. C. 1992 Conceptual design of a downward-convecting solar pond filled with a water-saturated, porous medium. ASME J. Solar Energy Engng. 114, 240-245. [6.11.2]CrossRefGoogle Scholar
  325. Hardee, H. C. and Nilson, R. H. 1977 Natural convection in porous media with heat generation. Nucl. Sci. Engng. 63, 119-132. [6.11.2]CrossRefGoogle Scholar
  326. Harfash, A. J. 2014c Convection in a porous medium with variable gravity field and magnetic field effects. Transp. Porous Media 103, 361-379. [6.21]MathSciNetCrossRefGoogle Scholar
  327. Harfash, A. J. 2014d Structural stability of two concentric models in a reacting fluid with magnetic field effect. Ann. Henri Poincare 15, 2441-2465. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  328. Harfash, A. J. 2014e Three dimensional simulations of penetrative convection in a porous medium with internal heat sources. Acta Mech. Sinica 30, 144-152. [6.11.2]MathSciNetzbMATHCrossRefGoogle Scholar
  329. Harfash, A. J. 2014f Stability analysis of penetrative convection in anisotropic porous media with variable permeability. J. Non-Equil. Thermodyn. 39, 123-133. [6.12]Google Scholar
  330. Harfash, A. J. 2014g Structural stability for convection models in a reacting porous medium with magnetic field effect. Ricerche de Matematica 63, 1-13. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  331. Harfash, A. J. 2016a Magnetic effect on convection in a porous medium with chemical action effect. Transp. Porous Media 106, 163-179. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  332. Harfash, A. J. 2016b Three dimensional simulations for convection induced by the selective absorption of radiation for the Brinkman model. Meccanica 51, 501-515. [6.23]MathSciNetzbMATHCrossRefGoogle Scholar
  333. Harfash, A. J. 2016c Resonant penetrative convection in porous media with an internal heat source/sink effect. Appl. Math. Comput. 281, 323-342. [6.11.4]MathSciNetCrossRefzbMATHGoogle Scholar
  334. Harfash, A. J. and Alshara, A. K. 2015c A direct comparison between the negative and positive effects of throughflow on the thermal convection in an anisotropy and symmetry porous medium. Z. Naturforsh. A 70, 383-394. [6.10.2]CrossRefGoogle Scholar
  335. Hassanzadeh, H., Pooladi-Darvish, M. and Keith, D. W. 2006 Stability of a fluid in a horizontal porous layer: effect of nonlinear concentration profile, initial and boundary conditions. Transport Porous Media 65, 193-211. [6.11.3]MathSciNetCrossRefGoogle Scholar
  336. Hassanzadeh, H., Pooladi-Darvish, M. and Keith, D. W. 2009a The effect of natural flow of aquifers and associated dispersion on the onset of buoyancy-induced convection in a saturated porous medium. AIChE J. 55, 475-485. [6.6, 11.11]CrossRefGoogle Scholar
  337. Hassanzadeh, H., Pooladi-Darvish, M. and Keith, D. W. 2009b Accelerating CO2 dissolution in saline aquifers for geological storage—mechanistic and sensitivity studies. Energy Fuels 23, 3328-3336. [11.11]CrossRefGoogle Scholar
  338. Hayat, T., Abbas, Z. and Asghar, S. 2008a Effects of Hall current and heat transfer on rotating flow of a second grade fluid through a porous medium. Commun. Nonlinear Sci. Numer. Simul. 13, 2177-2192. [6.23]zbMATHCrossRefGoogle Scholar
  339. Hdhiri, N, Ben-Beya, B. and Lili, T. 2015 Effects of internal heat generation or absorption on heat transfer and fluid flow within partially heated square enclosure: homogeneous fluids and porous media. J. Porous Media 18, 415-435. [6.14]CrossRefGoogle Scholar
  340. He, X. S. and Georgiadis, J. G. 1990 Natural convection in porous media: effect of weak dispersion on bifurcation. J. Fluid Mech. 216, 285-298. [6.6, 6.11.2]zbMATHCrossRefGoogle Scholar
  341. Hennenberg, M., Saghir, M. Z., Rednikov, A. and Legros, J. C. 1997 Porous media and the Bénard-Marangoni problem. Transport Porous Media 27, 327-355. [6.19.3]CrossRefGoogle Scholar
  342. Henry, D., Touihri, R., Bouhlila, R. and Ben Hadid, H. 2012 Multiple flow solutions in buoyancy induced convection in a porous square box. Water Resources Res. 48, W10538. [6.15.1]CrossRefGoogle Scholar
  343. Hewitt, D. R., Neufeld, J. A. and Lister, J. R. 2012 Ultimate regime of high Rayleigh number convection in a porous medium. Phys. Rev. Lett. 108, 224503. [6.8]CrossRefGoogle Scholar
  344. Hewitt, D. R., Neufeld, J. A. and Lister, J. R. 2013a Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech. 719, 527–550. [6.8]MathSciNetzbMATHCrossRefGoogle Scholar
  345. Hewitt, D. R., Neufeld, J. A. and Lister, J. R. 2013b Stability of columnar convection in a porous medium. J. Fluid Mech. 737, 205–231. [6.8]MathSciNetzbMATHCrossRefGoogle Scholar
  346. Hewitt, D. R., Neufeld, J. A. and Lister, J. R. 2014 High Rayleigh number convection in a porous medium. J. Fluid Mech. 748, 879-895. [6.15.1]MathSciNetCrossRefGoogle Scholar
  347. Hewitt, D. R., Neufeld, J. A. and Lister, J. R. 2014 High Rayleigh number convection in a porous medium containing a thin low-permeability layer. J. Fluid Mech. 756, 844-869. [6.13.2]MathSciNetCrossRefGoogle Scholar
  348. Hickox, C. E. and Chu, T. Y. 1990 A numerical study of convection in a layered porous medium heated from below. ASME HTD-149, 13-21. [6.13.2]Google Scholar
  349. Hill, A. A. 2003 Convection due to the selective absorption of radiation in a porous medium. Cont. Mech. Thermodyn. 15, 451-462, erratum 629. [6.11.2]MathSciNetzbMATHCrossRefGoogle Scholar
  350. Hill, A. A. 2004a Convection induced by the selective absorption of radiation for the Brinkman model. Cont. Mech. Thermodyn. 16, 43-52. [6.11.2]MathSciNetzbMATHCrossRefGoogle Scholar
  351. Hill, A. A. 2004b Conditional and unconditional nonlinear stability for convection induced by absorption of radiation in a non-Darcy porous medium. Cont. Mech. Thermodyn. 16, 305-318. [6.11.2]zbMATHCrossRefGoogle Scholar
  352. Hill, A. A. 2007 Unconditional nonlinear stability for convection in a porous medium with vertical throughflow. Acta Mech. 193, 197-206. [6.10]zbMATHCrossRefGoogle Scholar
  353. Hill, A. A. and Carr, M. 2010a Nonlinear stability of the one-domain approach to modeling convection in superposed fluid and porous layers. Proc. Roy. Soc. A 466, 2695-2705. [6.19.2]zbMATHCrossRefGoogle Scholar
  354. Hill, A. A. and Carr, M. 2010b Sharp global nonlinear stability for a fluid overlying a highly porous material. Proc. Roy. Soc. A 466, 127-140. [6.19.2]MathSciNetzbMATHCrossRefGoogle Scholar
  355. Hill, A. A. and Straughan, B. 2006 A Legendre spectral element method for eigenvalues in hydrodynamic stability. J. Comp. Appl. Math. 193, 363-381. [6.4]MathSciNetzbMATHCrossRefGoogle Scholar
  356. Hill, A. A. and Straughan, B. 2008 Poiseuille flow in a fluid overlying a porous medium. J. Fluid Mech. 603, 137-149. [6.19.3]MathSciNetzbMATHCrossRefGoogle Scholar
  357. Hill, A. A. and Straughan, B. 2009a Global stability for thermal convection in a fluid overlying a highly porous material. Proc. Roy. Soc. Lond. A 465, 207-217. [6.19.2]MathSciNetzbMATHCrossRefGoogle Scholar
  358. Hill, A. A. and Straughan, B. 2009b Poiseuille flow in a fluid overlying a highly porous material. Adv. Water Resources 32, 1609-1614. [6.19.3]CrossRefGoogle Scholar
  359. Hill, A. A., Rionero, S. and Straughan, B. 2007 Global stability for penetrative convection with throughflow in a porous material. IMA J. Appl. Math. 72, 635-643. [6.10.2]MathSciNetzbMATHCrossRefGoogle Scholar
  360. Hirata, S. C. and Ouarzazi, M. N. 2010a Influence of horizontal throughflow on the linear properties of viscoelastic fluids convection in porous media. Compt. Rendus Mecanique 338, 538-544. [6.10.1]zbMATHCrossRefGoogle Scholar
  361. Hirata, S. C. and Ouarzazi, M. N. 2010b Three-dimensional absolute and convective instabilities in mixed convection of a viscoelastic fluid through a porous medium. Phys. Lett. A. 374, 2661-2666. [6.10.1]zbMATHCrossRefGoogle Scholar
  362. Hirata, S. C., Ella Eny, G. and Ouarzazi, M. N. 2015 Nonlinear pattern selection and heat transfer in thermal convection of a viscoelastic fluid saturating a porous medium. Int. J. Therm. Sci. 95. 136-146. [6.23]CrossRefGoogle Scholar
  363. Hirata, S. C., Goyeau, B. and Gobin, D. 2007a Stability of natural convection in superposed fluid and porous layers: Influence of the interfacial jump boundary condition. Phys. Fluids 19, #058102. [6.19.3]zbMATHCrossRefGoogle Scholar
  364. Hirata, S. C., Goyeau, B. and Gobin, D. 2009a The stability of thermosolutal natural convection in superposed fluid and porous layers. Transp. Porous Media 78, 525-536. [6.19.3]zbMATHCrossRefGoogle Scholar
  365. Hirata, S. C., Goyeau, B., Gobin, D, Chandresris, M. and Jamet, D. 2009b Stability of natural convection in superposed fluid and porous layers: equivalence of one- and two-domain approaches. Int. J. Heat Mass Transfer 52, 533-536. [6.19.3]zbMATHCrossRefGoogle Scholar
  366. Hirata, S. C., Goyeau, B., Gobin, D. and Cotta, R. M. 2006 Stability of natural convection in superposed fluid and porous layers using integral transforms. Numer. Heat Transfer B 50, 409-424. [6.19.3]zbMATHCrossRefGoogle Scholar
  367. Hirata, S. C., Goyeau, B., Gobin, D., Carr, M. and Cotta, R. M. 2007b Linear stability of natural convection in superposed fluid and porous layers: Influence of the interfacial modelling. Int. J. Heat Mass Transfer 50, 1356-1367. [6.19.3]zbMATHCrossRefGoogle Scholar
  368. Hitchen, J. and Wells, A. J. 2016 The impact of imperfect heat transfer on the instability of a thermal boundary layer in a porous medium. J. Fluid Mech., to appear. [6.11.5]Google Scholar
  369. Hitchen, J. and Wells, A. J. 2016 The impact of imperfect heat transfer on the convective instability of a thermal boundary layer in a porous medium. J. Fluid Mech. 794, 154-174. [6.11.3]MathSciNetCrossRefGoogle Scholar
  370. Holst, P. H. and Aziz, K. 1972 Transient three-dimensional natural convection in confined porous media. Int. J. Heat Mass Transfer 15, 73-90. [6.8]zbMATHCrossRefGoogle Scholar
  371. Holzbecher, E. 1997 Numerical studies on thermal convection in cold groundwater. Int. J. Heat Mass Transfer 40, 605-612. [6.20]zbMATHCrossRefGoogle Scholar
  372. Holzbecher, E. 2001 On the relevance of oscillatory convection regimes in porous media—review and numerical experiments. Computers and Fluids 30, 189-209. [6.4]zbMATHCrossRefGoogle Scholar
  373. Holzbecher, E. 2004b Free convection in open-top enclosures filled with a porous medium heated from below. Numer. Heat Transfer A 46, 241-254. [6.4]CrossRefGoogle Scholar
  374. Holzbecher, E. 2004c Free convection induced by oscillating conditions at the top. In Applications of Porous Media (ICAPM 2004), (eds. A. H. Reis and A. F. Miguel), Evora, pp. 147-152. [6.11.3]Google Scholar
  375. Holzbecher, E. 2005a Free and forced convection in porous media open at the top. Heat Mass Transfer 41, 606-614. [6.4]CrossRefGoogle Scholar
  376. Homsy, G. M. and Sherwood, A. E. 1976 Convective instabilities in porous media with throughflow. AIChE J. 22, 168-174. [6.10.2]CrossRefGoogle Scholar
  377. Hong, J. S. and Kim, M. C. 2008 Effect of anisotropy of porous media on the onset of buoyancy-driven convection. Transp Porous Media 72, 241-253. [6.12]CrossRefGoogle Scholar
  378. Hong, J. S., Kim, M. C., Yoon, D. Y., Chung, B. J. and Kim, S. 2008 Linear stability analysis of a fluid-saturated porous layer subjected to time-dependent heating. Int. J. Heat Mass Transfer 51, 3044-3051. [6.11.3]zbMATHCrossRefGoogle Scholar
  379. Hooman, K. and Gurgenci, H. 2008a Effects of temperature-dependent viscosity on Bénard convection in a porous medium using a non-Darcy model. Int. J. Heat Mass Transfer 51, 1139-1149. [6.7]zbMATHCrossRefGoogle Scholar
  380. Hooman, K. and Gurgenci, H. 2008c Heatline visualization of natural convection in a porous cavity occupied by a fluid with temperature-dependent viscosity. ASME J. Heat Transfer 130, #012501. [6.7]CrossRefGoogle Scholar
  381. Horne, R. N. 1979 Three-dimensional natural convection in a confined porous medium heated from below. J. Fluid Mech. 92, 751–766. [6.15.1]zbMATHCrossRefGoogle Scholar
  382. Horne, R. N. and Caltagirone, J. P. 1980 On the evaluation of thermal disturbances during natural convection in a porous medium. J. Fluid Mech. 100, 385-395. [6.8, 6.15.1]zbMATHCrossRefGoogle Scholar
  383. Horne, R. N. and O’Sullivan, M. J. 1974a Oscillatory convection in a porous medium heated from below. J. Fluid Mech. 66, 339-352. [6.8, 6.9.1, 6.18]zbMATHCrossRefGoogle Scholar
  384. Horne, R. N. and O’Sullivan, M. J. 1978a Origin of oscillatory convection in a porous medium heated from below. Phys. Fluids 21, 1260-1264. [6.8, 6.15.1]CrossRefGoogle Scholar
  385. Horne, R. N. and O'Sullivan, M. J. 1978b Convection in a porous medium heated from below: the effect of temperature dependent viscosity and thermal expansion coefficient. ASME J. Heat Transfer 100, 448-452. [6.18]CrossRefGoogle Scholar
  386. Horton, C. W. and Rogers, F. T. 1945 Convection currents in a porous medium. J. Appl. Phys. 16, 367-370. [6.1, 6.26]MathSciNetzbMATHCrossRefGoogle Scholar
  387. Hossain, M. A. and Rees, D. A. S. 2003 Natural convection flow of a viscous incompressible fluid in a rectangular porous cavity heated from below with cold sidewalls. Heat Mass Transfer 39, 657-663. [6.4]CrossRefGoogle Scholar
  388. Howle, L E., Behringer, R. P. and Georgiadis, J. G. 1997 Convection and flow in porous media. Part 2. Visualization by shadowgraph. J. Fluid Mech. 332, 247-262. [6.9.1]CrossRefGoogle Scholar
  389. Howle, L. and Georgiadis, J. G. 1994 Natural convection in porous media with anisotropic dispersive thermal conductivity. Int. J. Heat Mass Transfer 37, 1081-1094. [6.12]zbMATHCrossRefGoogle Scholar
  390. Howle, L. E. 2002 Convection in ordered and disordered porous layers. In Transport Phenomena in Porous Media II (D. B. Ingham and I. Pop, eds.) Elsevier, Oxford, pp. 155-176. [6.9.1]CrossRefzbMATHGoogle Scholar
  391. Hunt, M. L. and Tien, C. L. 1990 Non-Darcian flow, heat and mass transfer in catalytic packed-bed reactors. Chem. Engng. Sci. 45, 55-63. [6.19.2]CrossRefGoogle Scholar
  392. Idris, R. and Hashim, I. 2010 Effects of a magnetic field on chaos for low Prandtl number convection in a porous medium. Nonlinear Dyn. 62, 905-917. [6.21]zbMATHCrossRefGoogle Scholar
  393. Idris, R. and Hashim, I. 2011 On the effects of a cubic temperature profile on oscillatory Rayleigh-Bénard convection in a viscoelastic fluid-filled high-porosity medium. J. Porous Media 14, 437-447. [6.23]CrossRefGoogle Scholar
  394. Impey, M. D., Riley, D. S. and Winters, K. H. 1990 The effect of sidewall imperfections on pattern formation in Lapwood convection. Nonlinearity 3, 197-230. [6.15.1]MathSciNetzbMATHCrossRefGoogle Scholar
  395. Islam, M. R. 1993 Route to chaos in chemically enhanced thermal convection in porous media. Chem. Engng Comm. 124, 77-95. [6.17]MathSciNetCrossRefGoogle Scholar
  396. Islam, M. R. and Nandakumar, K. 1990 Transient convection in saturated porous layers. Int. J. Heat Mass Transfer 33, 151-161. [6.17]CrossRefGoogle Scholar
  397. Islam, M. R., Chamkha, A. and Nandakumar, K. 1990 Flow transition for natural convective heat transfer in a porous medium saturated with water near 4 degrees C. Canad. J. Chem. Engng. 68, 777-785. [6.11.2]CrossRefGoogle Scholar
  398. Israel-Cookey, C., Omubo-Pepple, V. B., Obi, B. I. and Eze, L. C. 2010 Onset of thermal instability in a low Prandtl number fluid with internal heat source in a porous medium. Amer. J. Sci. Indust. Res. 1, 18-24. [6.11.2]Google Scholar
  399. Jang, J. Y., Chou, W. C. and Leu, J. S. 2012 Natural convection in fluid/porous region heated from below with conductive partition. J. Thermophys. Heat Transfer 26, 367-374. [6.19.3]CrossRefGoogle Scholar
  400. Jang, J. Y. and Tsai, W. L. 1988 Thermal instability of two horizontal porous layers with a conductive partition. Int. J. Heat Mass Transfer 31, 993-1003. [6.13.2]zbMATHCrossRefGoogle Scholar
  401. Jawdat, J. M. and Hashim, I. 2010 Low Prandtl number chaotic convection in porous media with uniform internal heat generation. Int. Comm. Heat Mass Transfer 37, 629-636. [6.11.2]CrossRefGoogle Scholar
  402. Jena, M., Goswami, M. and Biswal, S. 2014 Heat and mass transfer in the MHD flow of a visco-elastic fluid in a rotating porous channel with radiative heat. Proc. Nat. Acad. Sci. India A 84, 527-534. [6.23]MathSciNetzbMATHGoogle Scholar
  403. Jimenez-Islas, H., Calderon-Ramirez, M., Navarret-Bolanos, J. L., Botello-Alvarez, J. E., Martinez-Gonzlaes, G. M. and Lopez-Isuna, F. 2009 Numerical study of natural convection in a 2-D square cavity with fluid-porous medium interface and heat generation. Rev. Mex. Ing. Quim. 8, 169-185. [6.19.3]Google Scholar
  404. Jiménez-Islas, H., Navarrete-Bolanos, J. L. and Botello-Alvarez, E. 2004 Numerical study of the natural convection of heat and 2-D mass of grain stored in cylindrical silos. Agrosciencia 38, 325-342. [6.11.2]Google Scholar
  405. Joly, N. and Bernard, D. 1995 Critère d'apparition de la convection naturelle dans une couch poreuse horizontale limitée par des frontièrs conductrices de la chaleur: effet des anisotropies. C.R. Acad. Sci. Paris, Ser. II, 320, 573-579. [6.12]Google Scholar
  406. Jones, M. C. and Persichetti, J. M. 1986 Convective instability in packed beds with throughflow. AIChE J. 32, 1555-1557. [6.10.2]CrossRefGoogle Scholar
  407. Jonsson, T. and Catton, I. 1987 Prandtl number dependence of natural convection in porous media. ASME J. Heat Transfer 109, 371-377. [S6.9.2]CrossRefGoogle Scholar
  408. Joseph, D. D. 1976 Stability of Fluid Motions II, Springer, Berlin. [2.3, 6.3, 6.4]zbMATHGoogle Scholar
  409. Jou, J. J. and Liaw, J. S. 1987a Thermal convection in a porous medium subject to transient heating and rotation. Int. J. Heat Mass Transfer 30, 208-211. [6.22]CrossRefGoogle Scholar
  410. Jou, J. J. and Liaw, J. S. 1987bs Transient thermal convection in a rotating porous medium confined between two rigid boundaries. Int. Comm. Heat Mass Transfer 14, 147-153. [6.22]CrossRefGoogle Scholar
  411. Jou, J. J., Kung, K. Y. and Hsu, C. H. 1996 Thermal stability of horizontally superposed porous fluid layers in a rotating system. Int. J. Heat Mass Transfer 39, 1847–1857. [6.19.1.2]CrossRefGoogle Scholar
  412. Jue, T. C. 2001a Analysis of oscillatory flow with thermal convection in a rectangular cavity filled with a porous medium. Int. Comm. Heat Mass Transfer 27, 985-994. [6.15.3]CrossRefGoogle Scholar
  413. Jue, T. C. 2001b Analysis of Bénard convection in rectangular cavities filled with a porous medium. Acta Mech. 146, 21-29. [6.8, 6.15.3]zbMATHCrossRefGoogle Scholar
  414. Kandaswamy, P., Eswaramurthi, M. and Ng, C. O. 2008b Transient buoyancy-driven convection of water around 4 degrees C in a porous cavity with internal heat generation. Phys. Fluids 20, #087104. [6.17]zbMATHGoogle Scholar
  415. Kaneko, T., Mohtadi, M. F., and Aziz, K. 1974 An experimental study of natural convection in inclined porous media. Int. J. Heat Mass Transfer 17, 485-496. [6.9.1, 7.8]CrossRefGoogle Scholar
  416. Kang, J. H., Fu, C. J. and Tan, W. C. 2011 Thermal convective instability of viscoelastic fluids in a rotating porous layer heated from below. J. Non-Newtonian Fluid Dyn. 166, 93-101. [6.22]zbMATHCrossRefGoogle Scholar
  417. Kang, J., Zhou, F., Tan, W. and Xiu, T. 2014b Thermal instability of a nonhomogeneous power-law fluid in a porous layer with horizontal throughflow. J. Non-Newtonian Fluid Mech. 213, 50-56. [6.10.1]CrossRefGoogle Scholar
  418. Karasozen, B. and Tsybulin, V. G. 2004 Cosymmetric families of steady states in Darcy convection and their collision. Phys. Lett. A. 323, 67-76. [6.4]MathSciNetzbMATHCrossRefGoogle Scholar
  419. Karasozen, B., Trofimova, A. V. and Tsybulin, V. G. 2012 Natural convection in porous annular domains: Mimetic scheme and family of steady states. J. Comput. Phys. 231, 2995-3005. [7.3.3]MathSciNetzbMATHCrossRefGoogle Scholar
  420. Kassoy, D. R. and Cotte, B. 1985 The effects of sidewall heat loss on convection in a saturated porous vertical slab. J. Fluid Mech. 152, 361-378. [6.15.2]zbMATHCrossRefGoogle Scholar
  421. Kassoy, D. R. and Zebib, A. 1975 Variable viscosity effects on the onset of convection in a saturated porous medium. Phys. Fluids 18, 1649-1651. [6.7]zbMATHCrossRefGoogle Scholar
  422. Kassoy, D. R. and Zebib, A. 1978 Convection fluid dynamics in a model of a fault zone in the earth's crust. J. Fluid Mech. 88, 769-792. [6.15.2]zbMATHCrossRefGoogle Scholar
  423. Kathare, V., Kulacki, F. A. and Davidson, J. H. 2009 Buoyant convection in superposed metal foam and water layers. ASME J. Heat Mass Transfer 132, #014503.[6.19.3]Google Scholar
  424. Kathare, V., Davidson, J. H. and Kulacki, F. A. 2008 Natural convection in water-saturated metal foam. Int. J. Heat Mass Transfer 51, 3794-3802. [6.16.1]zbMATHCrossRefGoogle Scholar
  425. Kathare, V., Kulacki, F. A. and Davidson, J. H. 2010 Buoyant convection in superposed metal foam and water layers. ASME J. Heat Transfer 132, 014503.[6.19.3]CrossRefGoogle Scholar
  426. Katto, Y. and Masuoka, T. 1967 Criterion for the onset of convective flow in a fluid in a porous medium. Int. J. Heat Mass Transfer 10, 297-309. [6.9.1]CrossRefGoogle Scholar
  427. Kaviany, M. 1984a Thermal convective instabilities in a porous medium. ASME J. Heat Transfer 106, 137-142. [6.11.2, 6.11.3]CrossRefGoogle Scholar
  428. Kaviany, M. 1984b Onset of thermal convection in a saturated porous medium: experiment and analysis. Int. J. Heat Mass Transfer 27, 2101-2110. [6.11.3]CrossRefGoogle Scholar
  429. Kaviany, M. 1995 Principles of Heat Transfer in Porous Media, Second Edition, Springer, New York. [1.5.2, 6.10]Google Scholar
  430. Kazmierczak, M. and Muley, A. 1994 Steady and transient natural convection experiments in a horizontal porous layer: The effects of a thin top fluid layer and oscillating bottom wall temperature. Int. J. Heat Fluid Flow 15, 30-41. [6.9.1, 6.19.1.2]CrossRefGoogle Scholar
  431. Keene, D. J. and Goldstein, R. J. 2015 Thermal convection in porous media at high Rayleigh numbers. ASME J. Heat Transfer 137, 034503. [6.9.3]CrossRefGoogle Scholar
  432. Khalili, A. and Shivakumara, I. S. 1998 Onset of convection in a porous layer with net through-flow and internal heat generation. Phys. Fluids 10, 315-317. [6.10.2]CrossRefGoogle Scholar
  433. Khalili, A. and Shivakumara, I. S. 2003 Non-Darcian effects on the onset of convection in a porous layer with throughflow. Transport Porous Media 53, 245-263. [6.10.2]MathSciNetCrossRefGoogle Scholar
  434. Khalili, A., Shivakumara, I. S. and Huettel, M. 2002 Effects of throughflow and internal heat generation on convective instabilities in an anisotropic porous layer. J. Porous Media 5, 187-198. [6.10.2]zbMATHCrossRefGoogle Scholar
  435. Khalili, A., Shivakumara, I. S. and Suma, S. P. 2003 Convective instability in superposed fluid and porous layers with vertical throughflow. Transport Porous Media 51, 1-18. [6.19.3]MathSciNetCrossRefGoogle Scholar
  436. Khallouf, H., Gershuni, G. Z. and Mojtabi, A. 1996 Some properties of convective oscillations in porous medium. Numer. Heat Transfer A 30, 605-618. [6.15.3]CrossRefGoogle Scholar
  437. Khandelwal, M. K. and Bera, D. 2012 Influence of non-uniform sinusoidal periodic bottom boundary condition on natural convection in an anisotropic porous enclosure. Appl. Mech. Mater. 110-116, 1571-1581. [6.14]Google Scholar
  438. Khandelwal, M. K. and Bera, P. 2012 A thermal non-equilibrium perspective on mixed convection in a vertical channel. Int. J. Therm. Sci. 56, 23-24. [8.3.1]CrossRefGoogle Scholar
  439. Khandelwal, M. K., Bera, P. and Chakrabati, A. 2012 Influence of periodicity of sinusoidal bottom boundary condition on natural convection in porous enclosure. Int. J. Heat Mass Transfer 55, 2889-2900. [6.15.3]CrossRefGoogle Scholar
  440. Khashan, S. A., Al-Amiri, A. M. and Pop, I. 2006 Numerical simulation of natural convection heat transfer in a porous cavity heated from below using a non-Darcian and thermal equilibrium model. Int. J. Heat Mass Transfer 49, 1039-1049. [6.5]zbMATHCrossRefGoogle Scholar
  441. Kim, G. B. and Hyun, J. M. 2004 Buoyant convection of a power-law fluid in an enclosure filled with heat-generating porous media. Numer. Heat Transfer A 45, 569-582. [6.11.2]CrossRefGoogle Scholar
  442. Kim, G.B., Hyun, J. M. and Kwak, H. S. 2001a Buoyant convection in a square cavity partially filled with a heat-generating porous medium. Numer. Heat Transfer A 40, 601-618. [6.19.3]CrossRefGoogle Scholar
  443. Kim, K. H., Hyun, J. M. and Kim, J. W. 2005 Transient buoyant convection in a porous medium enclosure by sudden imposition of gravity. J. Porous Med. 8, 311-326. [6.24]CrossRefGoogle Scholar
  444. Kim, K. H., Kim, S. J. and Hyun, J. M. 2004a Development of boundary layers in transient convection about a vertical plate in a porous medium. J. Porous Media 7, 249-259. [5.1.3]zbMATHCrossRefGoogle Scholar
  445. Kim, M. C, Kim, S., Chung, B. J. and Choi, C. K. 2003a Convective instability in a horizontal porous layer saturated with oil and a layer of gas underlying it. Int. Comm. Heat Mass Transfer 30, 225-234. [6.11.2]CrossRefGoogle Scholar
  446. Kim, M. C. 2010 Onset of buoyancy-driven convection in isotropic porous media heated from below. Korean J. Chem. Engng. 27, 741-747. [6.11.3]CrossRefGoogle Scholar
  447. Kim, M. C. 2013a Analysis of onset of buoyancy-driven convection in a fluid layer saturated in an anisotropic porous media by relaxed energy method. Korean J. Chem. Engn. 30, 1207-1212. [6.12]CrossRefGoogle Scholar
  448. Kim, M. C. 2013b Onset of buoyancy-driven convection in a fluid-saturated porous medium bounded by a long cylinder. Transp. Porous Media 97, 395-408. [6.16.1]MathSciNetCrossRefGoogle Scholar
  449. Kim, M. C. 2014b Onset of buoyancy-driven convection in a liquid-saturated cylindrical anisotropic porous layer supported by a gas phase. Transp. Porous Media 102, 31-42. [7.7]MathSciNetCrossRefGoogle Scholar
  450. Kim, M. C. and Choi, C. K. 2007 Relaxed energy stability analysis on the onset of buoyancy-driven instability in the horizontal porous layer. Phys. Fluids 19, #088103. [6.11.3]zbMATHGoogle Scholar
  451. Kim, M. C. and Choi, C. K. 2012 Linear stability analysis on the onset of buoyancy-driven convection in liquid-saturated porous medium. Phys. Fluids 24, 044102. [6.11.3, 9.1.6.4,11.11]CrossRefGoogle Scholar
  452. Kim, M. C. and Choi, C. K. 2013 Analysis on the onset of buoyancy-driven convection in a fluid-saturated porous medium heated uniformly from below. Chem. Engrg. Sci. 98, 255-264. [6.11.3]CrossRefGoogle Scholar
  453. Kim, M. C. and Choi, C. K. 2014a Density maximum effects on the onset of buoyancy-driven convection in a porous medium saturated with cold water. Int. J. Heat Mass Transfer 71, 313-320. [6.11.4]CrossRefGoogle Scholar
  454. Kim, M. C. and Choi, C. K. 2014b Effect of first-order chemical reaction on gravitational instability in a porous medium. Phys. Rev. E 90, 053016. [9.1.6.4]CrossRefGoogle Scholar
  455. Kim, M. C. and Choi, C. K. 2015 Some theoretical aspects on the onset of buoyancy-driven convection in a fluid-saturated porous medium heated impulsively from below. Korean J. Chem. Engng. 32, 2400-2405. [6.11.3]CrossRefGoogle Scholar
  456. Kim, M. C. and Kim, S. 2005 Onset of convective stability in a fluid-saturated porous layer subjected to time-dependent heating. Int. Comm. Heat Mass Transfer 32, 416-424. [6.11.3]CrossRefGoogle Scholar
  457. Kim, M. C. and Yadav, D. 2014 Linear and nonlinear analyses of the onset of buoyancy-induced instability in an unbounded porous medium saturated my miscible fluids. Transp. Porous Media 104, 407-433. [6.4]MathSciNetCrossRefGoogle Scholar
  458. Kim, M. C., Kim, K.Y. and Kim, S. 2004b The onset of transient convection in fluid-saturated porous layer. Int. Comm. Heat Mass Transfer 31, 53-62. [6.11.3]CrossRefGoogle Scholar
  459. Kim, M. C., Kim, S., and Choi, C. K. 2002a Convective instability in a horizontal fluid-saturated porous layer under uniform volumetric heat sources. Int. Comm. Heat Mass Transfer 29, 919-928. [6.11.3]CrossRefGoogle Scholar
  460. Kim, M. C., Kim, S., Chung, B. J. and Choi, C. K. 2003c Convective instability in a horizontal porous layer saturated with oil and with a layer of gas underlying it. Int. Comm. Heat Mass Transfer 30, 225-234. [6.11.2, 6.11.3]CrossRefGoogle Scholar
  461. Kim, M. C., Lee, S. B., Chung, B. J. and Kim, S. 2002b Heat transfer correlation in fluid-saturated porous layer under uniform volumetric heat sources. Int. Comm. Heat Mass Transfer 29, 1089-1097. [6.11.2]CrossRefGoogle Scholar
  462. Kim, M. C., Lee, S. B., Kim. and Chung, B. J. 2003b Thermal instability of viscoelastic fluids in porous media. Int. J. Heat Mass Transfer 46, 5065-5072. [6.23]zbMATHCrossRefGoogle Scholar
  463. Kim, M. C., Yoon, D. Y., Moon, J. H. and Choi, C. L. 2008c Onset of buoyancy-driven convection in porous media saturated with cold water cooled from above. Transp. Porous Media 74, 369-380. [60 porous layer with homogeneous heat sources. Int. Comm. Heat Mass Transfer 29, 127-134. [6.11.2]CrossRefGoogle Scholar
  464. Kim, S. J. and Choi, C. Y. 1996 Convective heat transfer in porous and overlying fluid layers heated from below. Int. J. Heat Mass Transfer 39, 319-329. [6.19.1.2, 6.19.2]CrossRefGoogle Scholar
  465. Kim, S., Lorente, S. and Bejan, A. 2007 Vascularized materials with heating from one side and coolant forced from the other side. Int. J. Heat Mass Transfer 50, 3498-3506. [4.19]zbMATHCrossRefGoogle Scholar
  466. Kimmich, R., Klemm, A. and Weber, M. 2001 Flow, diffusion, and thermal convection in percolation clusters: NMR experiments and numerical FEM/FVM simulations. Magnet. Reson. Imag. 19, 353-361. [6.9.1]CrossRefGoogle Scholar
  467. Kimura, S. 1998 Onset of oscillatory convection in a porous medium. Transport Phenomena in Porous Media (eds. D. B. Ingham and I. Pop), Elsevier, Oxford, pp. 77-102. [6.15.11]CrossRefGoogle Scholar
  468. Kimura, S., Ishikawa, N and Komatsu, N. 2016 On realizable convection patterns in a saturated porous square section. Int. J. Heat Tech. 34, S91-S94. [6.3]CrossRefGoogle Scholar
  469. Kimura, S., Schubert, G. and Straus, J. M. 1986 Route to chaos in porous-medium thermal convection. J. Fluid Mech. 166, 305-324. [6.8]MathSciNetzbMATHCrossRefGoogle Scholar
  470. Kimura, S., Schubert, G. and Straus, J. M. 1987 Instabilities of steady, periodic and quasi-periodic modes of convection in porous media. ASME J. Heat Transfer 109, 350-355. [6.8]CrossRefGoogle Scholar
  471. Kimura, S., Schubert, G. and Straus, J. M. 1989 Time-dependent convection in a fluid-saturated porous cube heated from below. J. Fluid Mech. 207, 153-189. [6.15.1]CrossRefGoogle Scholar
  472. Kimura, S., Vynnycky, M. and Alavyoon, F. 1995 Unicellular natural circulation in a shallow horizontal porous layer heated from below by a constant flux. J. Fluid Mech. 294, 231-257. [6.8]zbMATHCrossRefGoogle Scholar
  473. Kiran, P. 2016a Throughflow and gravity modulation effects on heat transport in a porous medium. J. Appl. Fluid Mech 9, 1105-1113. [6.24]CrossRefGoogle Scholar
  474. Kiran, P. 2016c Throughflow and non-uniform heating effects on double diffusive oscillatory convection in a porous medium. Ain Shams Engnrg, J. 7, 453-462. [9.1.6.4]CrossRefGoogle Scholar
  475. Kiran, P. and Bhadauria, B. S. 2015a Chaotic convection in a porous medium under temperature modulation. Transp. Porous Media 107, 745-763. [6.8]MathSciNetCrossRefGoogle Scholar
  476. Kiran, P. and Bhadauria, B. S. 2015b Nonlinear throughflow effects on thermally modulated porous medium. Ain Shams Engng. J 36, 1285-1304. [6.10.2]Google Scholar
  477. Kladias, N. and Prasad, V. 1989a Convective instabilities in horizontal porous layers heated from below: effects of grain size and its properties. ASME HTD 107, 369-379. [6.9.2]Google Scholar
  478. Kladias, N. and Prasad, V. 1989b Natural convection in horizontal porous layers: effects of Darcy and Prandtl numbers. ASME J. Heat Transfer 111, 926-935. [6.8, 6.9.2]CrossRefGoogle Scholar
  479. Kladias, N. and Prasad, V. 1990 Flow transitions in buoyancy-induced non-Darcy convection in a porous medium heated from below. ASME J. Heat Transfer 112, 675-684. [6.8, 6.9.2]CrossRefGoogle Scholar
  480. Klein, I. S. 1978 Natural convection in a porous bed with a permeable boundary. Fluid Dyn. 13, 606-609. [6.2]CrossRefGoogle Scholar
  481. Kochbar, B. and Chandrasekhara, B. C. 1984 Asymptotic solutions for nonlinear thermal convection in porous media. Int. J. Heat Mass Transfer 27, 1671-1678. [6.4]zbMATHCrossRefGoogle Scholar
  482. Kohl, M. J., Kristoffersen, M. and Kulacki, F. A. 2008 Stability and convection in impulsively heated layers. ASME J. Heat Transfer 130, #112601. [6.18]CrossRefGoogle Scholar
  483. Kolchanova, E. A. and Kolchanov, N. V. 2017 Vibration effect on the onset of thermal convection in an inhomogeneous porous layer underlying a fluid layer. Int. J. Heat Mass Transfer 106, 47–60. [6.24]CrossRefGoogle Scholar
  484. Kolchanova, E. A. and Lyubimova, T. P. 2016 Interface instability of methane hydrate deposits of variable permeability under permafrost conditions. Int. J. Heat Mass Transfer 98,329-340. [6.13.2]CrossRefGoogle Scholar
  485. Kolchanova, E., Lyubimov, D. and Lyubimova, T. 2013 Onset and nonlinear regimes of convection in a two-layer system of fluid and porous medium saturated by the fluid. Transp. Porous Media 97, 25-42. [6.19.3]MathSciNetCrossRefGoogle Scholar
  486. Kolesnikov, A. K. 1978 Convective instability of equilibrium in a chemically active fluid in a horizontal layer of a porous material (in Russian). Zh. Prikl. Mekh. Fiz. (1) 139-143. [6.11.2]Google Scholar
  487. Kong, X. Y., Chen, G. Q., Wu, J. B., Li, P. C., Lu, D. T. and Xu, X. Z. 2001 Stability of natural convection of power law fluid and non-Darcy flow in porous media. J. Therm. Sci. 10, 74-78. [6.23]CrossRefGoogle Scholar
  488. Kordylewski, W. and Borkowska-Pawlak, B. 1983 Stability of nonlinear thermal convection in a porous medium. Arch. Mech. 35, 95-106. [6.15.1]zbMATHGoogle Scholar
  489. Kordylewski, W., Borkowska-Pawlak, B. and Slany, J. 1987 Stability of three-dimensional natural convection in a porous layer. Arch. Mech. 38, 383-394. [6.15.1]zbMATHGoogle Scholar
  490. Kozak, R., Saghir, M. Z. and Viviani, A. 2004 Marangoni convection in a liquid layer overlying a porous layer with evaporation at the free surface. Acta Astronautica 55, 189-197. [6.19.3]CrossRefGoogle Scholar
  491. Krishna, C. V. S. 2001 Effects of non-inertial acceleration on the onset of convection in a second-order fluid-saturated porous medium. Int. J. Engng. Sci 39, 599-609. [6.22]zbMATHCrossRefGoogle Scholar
  492. Krishna, D. V., Prasada Rao, D. R. V. and Ramachandra Murthy, A. S. 2002 Hydromagnetic convection through a porous medium in a rotating channel. Inzhen. Fiz. Zhurn. 75, 12-21. [6.22]Google Scholar
  493. Kubitscheck, J. P. and Weidman, P. D. 2003 Stability of fluid-saturated porous medium heated from below by forced convection. Int. J. Heat Mass Transfer 46, 3697-3705. [6.10.1].zbMATHCrossRefGoogle Scholar
  494. Kuhn, M., Dobert, F. and Gessner, K. 2006 Numerical investigation of heterogeneous permeability distributions on free convection in the hydrothermal system at Mt. Isa, Australia. Earth Planet. Sci. Lett. 244, 655-671. [6.13]CrossRefGoogle Scholar
  495. Kulacki, F. A. and Freeman, R. G. 1979 A note on thermal convection in a saturated, heat generating porous layer. ASME J. Heat Transfer 101, 169-171. [6.11.2]CrossRefGoogle Scholar
  496. Kulacki, F. A. and Ramchandani, R. 1975 Hydrodynamic instability in porous layer saturated with heat generating fluid. Wärme-Stoffübertrag. 8, 179-185. [6.11.2]CrossRefGoogle Scholar
  497. Kumar, A. and Bhadauria, B. S. 2011a Thermal instability in a rotating anisotropic porous layer saturated by a viscoelastic fluid. Int. J. Non-linear Mech. 46, 47-56. [6.22]CrossRefGoogle Scholar
  498. Kumar, A., Alam, P. and Fartyal, P. 2015d Thermo-solutal natural convection in an anisotropic porous enclosure due to non-uniform temperature and concentration at the bottom wall. Adv. Appl. Math. Mech. 7, 644-662. [9.2.2]MathSciNetCrossRefGoogle Scholar
  499. Kumar, J. P., Umavathi, J. C. and Prema, H. 2014 Free convection of viscoelastic Walters’ fluid-saturated porous medium in a vertical double-passage wavy channel. J. Porous Media 17, 483-502. [7.3.7]CrossRefGoogle Scholar
  500. Kumar, K., Singh, V. and Sharma, S. 2015a Magneto-rotational convection for ferromagnetic fluids in the presence of compressibility and heat source through a porous medium. Spec. Topics Rev. Porous Media 5, 311-323. [6.21]CrossRefGoogle Scholar
  501. Kumar, K., Singh, V. and Sharma, S. 2015b On the onset of convection in a dusty couple-stressed fluid with variable gravity through a porous medium in hydromagnetics, J. Appl. Fluid Mech. 8, 55-63. [6.21]Google Scholar
  502. Kumar, K., Singh, V. and Sharma, S. 2015c Linear stability analysis for ferromagnetic fluids in the presence of magnetic field, compressibility, internal heat source and rotation through a porous medium. J. Theor. Appl. Mech. 53, 1067-1081. [6.21]CrossRefGoogle Scholar
  503. Kumar, K., Singh, V. and Sharma, S. 2016 Effects of horizontal magnetic field and rotation on thermal instability of a couple-stress fluid through a porous medium: A Brinkman model. J. Appl. Fluid Mech. 9, 1799-1806. [6.21]CrossRefGoogle Scholar
  504. Kumar, P. 1999 Thermal convection in Walters B' viscoelastic fluid permeated with suspended particles in porous medium. Indian J. Pure Appl. Math. 30, 1117-1132. [6.23]zbMATHGoogle Scholar
  505. Kumar, P. 2012a Hall current effect on thermal instability of compressible viscoelastic dusty fluid in porous medium. Heat Transfer Res. 43, 167-185. [6.23]CrossRefGoogle Scholar
  506. Kumar, P. 2013 Stability analysis of viscoelastic fluid in porous medium. Int. J. Fluid. Mech. Res. 40, 382-390. [6.23]CrossRefGoogle Scholar
  507. Kumar, P. and Mohan, H. 2012c Hall current effect on thermosolutal instability in a viscoelastic fluid through porous medium. J. Engng. Sci. Tech. 7, 219-231. [9.1.6.4]Google Scholar
  508. Kumar, P. and Mohan, H. 2012a On a heterogeneous viscoelastic fluid heated from below in a porous medium. Comm. Math. Anal. 13, 23-34. [6.23]MathSciNetzbMATHGoogle Scholar
  509. Kumar, P. and Singh, M. 2006 On a viscoelastic fluid heated from below in a porous medium. J. Non-Equil. Thermodyn. 31, 189-203. [6.23]zbMATHCrossRefGoogle Scholar
  510. Kumar, S. and Devi, R. 2012 Global stability for thermal convection in a couple stress-fluid saturating a porous medium with temperature-pressure dependent viscosity: Galerkin method. Int. J. Engng. Trans. A. 25, 221-229. [6.23]Google Scholar
  511. Kumar, S. and Kazarinoff, N. D. 1987 Stability of a free convection density-extremum flow in a porous medium. Int. J. Heat Mass Transfer 30, 351-361. [6.11.4]CrossRefGoogle Scholar
  512. Kumar, V. and Kumar, P. 2013 Thermal convection in a (Kuvshiniski type) viscoelastic rotating fluid in the presence of magnetic field through porous medium. Int. J. Engng. Trans. A. 26, 753-760. [6.23]Google Scholar
  513. Kumar, V. and Sharma, Y. D 2014 Instability analysis of gyrotactic microorganisms: A combined effect of high-frequency vertical vibration and porous media. Transp. Porous Media. 102. 153-165. [6.25]MathSciNetCrossRefGoogle Scholar
  514. Kumar, V., Kumar, P. and Awasthi, M. K. 2015e Hydrodynamic and hydromagnetic triple diffusive convection in a viscoelastic fluid through porous medium. Spec. Topics Rev. Porous Media 6, 297-311. [9.1.6.4]CrossRefGoogle Scholar
  515. Kumari, M. and Nath, G. 2014 Transient natural convection flow in a rectangular cavity filled with a porous material with localized heating from below and thermal stratification. J. Porous Media 17, 647-655. [7.5]CrossRefGoogle Scholar
  516. Kuznetsov, A. F. and Nield, D. A. 2013 The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: A revised model. Int. J. Heat Mass Transfer 65, 682-685. [9.7.3]CrossRefGoogle Scholar
  517. Kuznetsov, A. V. 2005 Modeling bioconvection in porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, New York, pp. 645-686. [6.25]Google Scholar
  518. Kuznetsov, A. V. 2006a The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in the presence of oxytactic microorganisms. Europ. J. Mech. B 25, 223-233. [6.23]zbMATHCrossRefGoogle Scholar
  519. Kuznetsov, A. V. 2006b Linear stability analysis of the effect of vertical vibration on bioconvection in a horizontal porous layer of finite length. J. Porous Media 9, 597-608. [6.25]CrossRefGoogle Scholar
  520. Kuznetsov, A. V. 2006c Thermo-bio-convection in porous media. J. Porous Media 9, 581-589. [6.25]CrossRefGoogle Scholar
  521. Kuznetsov, A. V. 2008 New developments in bioconvection in porous media: Bioconvection plumes, bio-thermal convection, and effects of vertical vibration. In P. Vadasz (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York, pp. 181-217. [6.25]CrossRefGoogle Scholar
  522. Kuznetsov, A. V. 2012a Nanofluid bioconvection in a horizontal fluid saturated porous layer. J. Porous Media 15, 11-27. [6.25]CrossRefGoogle Scholar
  523. Kuznetsov, A. V. 2012b Nanofluid bioconvection in porous media: Oxytactic microorganisms. J. Porous Media 15, 233-248. [6.25]CrossRefGoogle Scholar
  524. Kuznetsov, A. V. and Avramenko, A. A. 2002 A 2D analysis of stability of bioconvection in a fluid saturated porous medium – Estimation of the critical permeability value. Int. Comm. Heat Mass Transfer 29, 175-184. [6.25]CrossRefGoogle Scholar
  525. Kuznetsov, A. V. and Avramenko, A. A. 2003a The effect of deposition and declogging on the critical permeability in bioconvection in a porous medium. Acta Mech. 160, 113-125. [6.25]zbMATHCrossRefGoogle Scholar
  526. Kuznetsov, A. V. and Avramenko, A. A. 2003b Stability analysis of bioconvection of gyrotactic motile microorganisms in a fluid saturated porous medium. Transport Porous Media 53, 95-104. [6.25]CrossRefGoogle Scholar
  527. Kuznetsov, A. V. and Avramenko, A. A. 2003c Analysis of stability of bioconvection of motile oxytactic bacteria in a horizontal fluid saturated porous layer. Int. Comm. Heat Mass Transfer 30, 593-602s. [6.25]CrossRefGoogle Scholar
  528. Kuznetsov, A. V. and Avramenko, A. A. 2005 Effect of fouling on stability of bioconvection of gyrotactic micro-organisms in a porous medium. J. Porous Media 8, 45-53. [6.25]zbMATHCrossRefGoogle Scholar
  529. Kuznetsov, A. V. and Bubnovich, Y. 2012 Investigation of simultaneous gyrotactic and oxytactic microorganisms on nanofluid bio-thermal convection in porous media. J. Porous Media 15, 617-631. [6.25, 9.7]CrossRefGoogle Scholar
  530. Kuznetsov, A. V. and Jiang, N. 2001 Numerical investigation of bioconvection of gravitactic microorganisms in an isotropic porous medium. Int. Comm. Heat Mass Transfer 28, 877-866. [6.25]CrossRefGoogle Scholar
  531. Kuznetsov, A. V. and Jiang, N. 2003 Bioconvection of negatively geotactic microorganisms in a porous medium: The effect of cell deposition and declogging. Int. J. Numer. Meth. Heat Fluid Flow 13, 341-364. [6.25]zbMATHCrossRefGoogle Scholar
  532. Kuznetsov, A. V. and Nield, D. A. 2011a The onset of convection in a tridisperse porous medium. Int. J. Heat Mass Transfer 54, 3120-3127. [6.27]zbMATHCrossRefGoogle Scholar
  533. Kuznetsov, A. V. and Nield, D. A. 2011b The effect of local thermal nonequilibrium on the onset of convection in a porous medium layer saturated by a nanofluid: Brinkman model. J. Porous Media 14, 285-293. [6.23, 9.7]CrossRefGoogle Scholar
  534. Kuznetsov, A. V. and Nield, D. A. 2012c The onset of double-diffusive convection in a vertical cylinder occupied by a heterogeneous porous medium with vertical throughflow. Transp. Porous Media 95, 327-336. [6.10, 6.16.1, 9.1.6.4]MathSciNetCrossRefGoogle Scholar
  535. Kuznetsov, A. V. and Nield, D. A. 2013a The effect of strong heterogeneity on the onset of convection induced by internal heating in a porous medium: A layered model. Transp. Porous Media 99, 85–100. [6.11.2]MathSciNetCrossRefGoogle Scholar
  536. Kuznetsov, A. V. and Nield, D. A. 2013b The effect of vertical throughflow on the onset of convection induced by internal heating in a layered porous medium. Transp. Porous Media 100, 101–114. [6.11.2]MathSciNetCrossRefGoogle Scholar
  537. Kuznetsov, A. V. and Nield, D. A. 2014 Local thermal non-equilibrium and heterogeneity effects on the onset of convection in an internally heated porous medium. Transp. Porous Media 102, 15-30. [6.11.2]MathSciNetCrossRefGoogle Scholar
  538. Kuznetsov, A. V. and Nield, D. A. 2015 Local thermal equilibrium effects on the onset of convection in an internally heated layered porous medium with vertical throughflow. Int. J. Therm. Sci. 92, 97-105. [6.10.2]CrossRefGoogle Scholar
  539. Kuznetsov, A. V., Avramenko, A. A. and Geng, P. 2003a A similarity solution for a falling plume in bioconvection of oxytactic bacteria in a porous medium. Int. Comm. Heat Mass Transfer 30, 37-46. [6.25]CrossRefGoogle Scholar
  540. Kuznetsov, A. V., Avramenko, A. A. and Geng, P. 2004 Analytical investigation a falling plume caused by bioconvection of oxytactic bacteria in a fluid saturated porous medium. Int. J. Engng. Sci. 42, 557-569. [6.25]CrossRefGoogle Scholar
  541. Kuznetsov, A. V., Nield, D. A. and Simmons, C. T. 2010 The effect of strong heterogeneity on the onset of convection in a porous medium; Periodic and localized variation. Transp. Porous Media 81, 123-139. [6.13.5]CrossRefGoogle Scholar
  542. Kuznetsov, A. V., Nield, D. A. and Simmons, C. T. 2011 The onset of convection in a strongly heterogeneous porous medium with transient temperature profile. Transp. Porous Media 86, 851-865. [6.13.5]MathSciNetCrossRefGoogle Scholar
  543. Kvernvold, O. and Tyvand, P. A. 1979 Nonlinear thermal convection in anisotropic porous media. J. Fluid Mech. 90, 609-624. [6.12]zbMATHCrossRefGoogle Scholar
  544. Kvernvold, O. and Tyvand, P. A. 1980 Dispersion effects on thermal convection in porous media. J. Fluid Mech. 99, 673-686. [6.6]zbMATHCrossRefGoogle Scholar
  545. Lage, J. L. 1993a Natural convection within a porous medium cavity: predicting tools for flow regime and heat transfer. Int. Comm. Heat Mass Transfer 20, 501-513. [1.5.2, 6.6]CrossRefGoogle Scholar
  546. Lage, J. L., Bejan, A. and Georgiadis, J. G. 1992 The Prandtl number effect near the onset of Bénard convection in a porous medium. Int. J. Heat Fluid Flow 13, 408-411. [6.9.2, 6.12]CrossRefGoogle Scholar
  547. Lai, F. C. and Kulacki, F. A. 1991e Experimental study of natural convection in horizontal layers with multiple heat sources. AIAA J. Thermophys. Heat Transfer 5, 627-630. [6.9.3, 6.14,6.18]CrossRefGoogle Scholar
  548. Lai, F. C. and Kulacki, F.A. 1991a Non-Darcy mixed convection along a vertical wall in a saturated porous medium. ASME J. Heat Transfer 113, 252-255. [8.1.1]CrossRefGoogle Scholar
  549. Lai, F. C. and Kulacki, F.A. 1991c Oscillatory mixed convection in horizontal porous layers locally heated from below. Int. J. Heat Mass Transfer 34, 887-890. [8.2.2]CrossRefGoogle Scholar
  550. Lai, F. C. and Kulacki, F.A. 1991d Coupled heat and mass transfer by natural convection from vertical surfaces in porous media. Int. J. Heat Mass Transfer 34, 1189-1194. [9.2.1]CrossRefGoogle Scholar
  551. Lai, F. C. and Kulacki, F.A. 1991b Experimental study of free and mixed convection in horizontal porous layers locally heated from below. Int. J. Heat Mass Transfer 34, 525-541. [8.2.2]CrossRefGoogle Scholar
  552. Lam, P. A. K. and Prakash, K. A. 2014 A numerical study on natural convection and entropy generation in a porous enclosure with heat sources. Int. J. Heat Mass Transfer 69, 390-407. [6.11.1]CrossRefGoogle Scholar
  553. Lapwood, E. R. 1948 Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44, 508-521. [6.1, 6.26]MathSciNetzbMATHCrossRefGoogle Scholar
  554. Lebon, G. and Cloot, A. 1986 A thermodynamical modelling of fluid flows through porous media: application to natural convection. Int. J. Heat Mass Transfer 29, 381-390. [6.6]zbMATHCrossRefGoogle Scholar
  555. Lee, J. and Shivakumar, I. S. 2011 Onset of penetrative convection in a ferro-fluid saturated porous layer. Spec. Top. Rev. Porous Media 2, 217-225. [6.21]CrossRefGoogle Scholar
  556. Lee, J., Shivakumara, I. S. and Mamatha, A. L. 2011a Effect of nonuniform temperature gradients on thermogravitational convection in a porous layer using a nonequilibrium model. J. Porous Media 14, 659-669. [6.24]CrossRefGoogle Scholar
  557. Lee, J., Shivakumara, I. S. and Ravisha, M. 2011b Effect of thermal non-equilibrium on convective instability in a ferromagnetic fluid-saturated porous medium. Transp. Porous Media 86, 103-124. [6.21]MathSciNetCrossRefGoogle Scholar
  558. Lein, H. and Tankin, R. S. 1992a Natural convection in porous media — I. Nonfreezing. Int. J. Heat Mass Transfer 35, 175-186. [6.9.1]CrossRefGoogle Scholar
  559. Leong, J. C. and Lai, F. C. 2001 Effective permeability of a layered porous cavity. ASME J. Heat Transfer 123, 512-519. [6.13.2]CrossRefGoogle Scholar
  560. Leong, J. C. and Lai, F. C. 2004 Natural convection in rectangular layers porous cavities. J. Thermophys. Heat Transfer 18, 457-463. [6.13.2]CrossRefGoogle Scholar
  561. Leppinen, D. M. 2002 Natural convection in three-dimensional porous cavities: Integral transform method. Int. J. Heat Mass Transfer 45, 3013-3032. [7.3.7]zbMATHCrossRefGoogle Scholar
  562. Lewins, J. 2003 Bejan’s constructal theory of equal potential distribution. Int. J. Heat Mass Transfer 46, 1541-1543. [4.18, 4.20, 6.26, 11.10]zbMATHCrossRefGoogle Scholar
  563. Lewis, S., Rees, D. A. S. and Bassom, A. P. 1997 High wavenumber convection in tall porous containers heated from below. Quart. J. Mech. Appl. Math. 50, 545-563. [6.15.2]MathSciNetzbMATHCrossRefGoogle Scholar
  564. Lin, G., Zhao, C. B., Hobbs, B. E., Ord, A. and Muhlhaus, H. B. 2003 Theoretical and numerical analyses of convective instability in porous media with temperature-dependent viscosity. Comm. Numer. Meth. Engng. 19, 787-799. [6.7]zbMATHCrossRefGoogle Scholar
  565. Lister, C. R. B. 1990 An explanation for the multivalued heat transport found experimentally for convection in a porous medium. J. Fluid Mech. 214, 287-320. [6.4, 6.9.3]CrossRefGoogle Scholar
  566. Liu, D., Zhao, F. Y. and Tang, G. F. 2008b Thermosolutal convection in saturated porous enclosure with concentrated energy and solute sources. Energy Convers. Manag. 49, 16-31. [9.2.2]CrossRefGoogle Scholar
  567. Liu, P. C. 2003 Temperature distribution in a porous medium subjected to solar radiative incidence and downward flow: convective boundaries. ASME J. Solar Energy Engng. 125, 190-194. [6.11.2]CrossRefGoogle Scholar
  568. Liu, Y. 2012 Structural stability for the resonant porous penetrative convection. European J. Appl. Math. 23, 761-775. [6.11.2]MathSciNetzbMATHCrossRefGoogle Scholar
  569. Llagostera, J. and Figueiredo, J. R. 1998 Natural convection in porous cavity: application of UNIFAES discretization scheme. Heat Transfer 1998, Proc. 11th IHTC, 4, 465-470. [6.8]Google Scholar
  570. Lombardo, S. and Mulone, G. 2003 Nonlinear stability and convection for laminar flows in a porous medium with Brinkman law. Math. Meth. Appl. Sci. 26, 453-462. [6.10.1]MathSciNetzbMATHCrossRefGoogle Scholar
  571. Lowell, R. P. and Hernandez, H. 1982 Finite amplitude convection in a porous container with fault-like geometry: effect of initial and boundary conditions. Int. J. Heat Mass Transfer 25, 631-641. [6.15.2]zbMATHCrossRefGoogle Scholar
  572. Lowell, R. P. and Shyu, C. T. 1978 On the onset of convection in a water-saturated porous box: effect of conducting walls. Lett. Heat Mass Transfer 5, 371-378. [6.15.2]CrossRefGoogle Scholar
  573. Lu, N. and Zhang, Y. 1997 Onset of thermally induced gas convection in mine wastes. Int. J. Heat Mass Transfer 40, 2621-2636. [6.11.2]zbMATHCrossRefGoogle Scholar
  574. Lu, N., Zhang, Y. and Ross, B. 1999 Onset of gas convection in a moist porous layer with the top boundary open to the atmosphere. Int. Comm. Heat Mass Transfer 26, 33-44. [6.2]CrossRefGoogle Scholar
  575. Lu, W., Zhang, T. and Yang, M. 2016b Analytical solution of forced convection heat transfer in parallel-plate channel partially filled with metallic foams. Int. J. Heat Mass Transfer 100, 718-727. [4.11]CrossRefGoogle Scholar
  576. Ly, H. V. and Titi, E. S. 1999 Global Gevrey regularity for the Bénard convection in a porous medium with zero Darcy-Prandtl number. J. Nonlinear Sci. 9, 333-362. [6.15.1]MathSciNetzbMATHCrossRefGoogle Scholar
  577. Lyubimov, D. V. 1975 Convective motions in a porous medium heated from below. J. Appl. Mech. Tech. Phys. 16, 257-261. [6.16.2]CrossRefGoogle Scholar
  578. Lyubimov, D., Kolchanova, E. and Lyubimova, T. 2015 Vibration effect on the nonlinear regimes of thermal convection in a two-layer system of fluid and saturated porous medium. Transp. Porous Media 106, 237-257. [6.24]MathSciNetCrossRefGoogle Scholar
  579. Mackie, C. 2000 Thermal convection in a sparsely packed porous layer saturated with suspended particles. Int. Comm. Heat Mass Transfer 27, 315-324. [6.23]CrossRefGoogle Scholar
  580. Magyari, E. 2006 Paradox of the Darcy free convection over vertical plate with prescribed inverse linear surface heat flux. J. Porous Media 9, 663-670. [5.1.9.8]CrossRefGoogle Scholar
  581. Magyari, E. 2010c The Vadasz-Olek model regarded as a system of coupled oscillators. Transp. Porous Media 85, 415-435. [6.4]MathSciNetCrossRefGoogle Scholar
  582. Magyari, E., Rees, D. A. S. and Keller, B. 2005b Effect of viscous dissipation on the flow in fluid saturated porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, New York, pp. 373-406. [2.2.2, 5.1.9.4, 6.6]Google Scholar
  583. Mahidjiba, A., Robillard, L. and Vasseur, P. 2002 The horizontal anisotropic porous layer saturated with water near 4 degrees C – A peculiar stability problem. Heat Transfer 2002, Proc. 12 th Int. Heat Transfer Conf., Elsevier, Vol. 2, pp. 797-802. [6.11.4]Google Scholar
  584. Mahidjiba, A., Robillard, L. and Vasseur, P. 2003 Linear stability of cold water layer saturating an anisotropic porous medium – effect of confinement. Int. J. Heat Mass Transfer 46, 323-332. [6.11.4]zbMATHCrossRefGoogle Scholar
  585. Mahidjiba, A., Robillard, L. and Vasseur, P. 2000b Onset of convection in a horizontal porous layer saturated with water near 4 degrees C. Int. Comm. Heat Mass Transfer 27, 765-774. [6.11.4]CrossRefGoogle Scholar
  586. Mahidjiba, A., Robillard, L. and Vasseur, P. 2006 Onset of penetrative convection of cold water in a porous layer under mixed boundary conditions. Int. J. Heat Mass Transfer 49, 2820-2828. [6.20]zbMATHCrossRefGoogle Scholar
  587. Mahidjiba, A., Robillard, L., Vasseur, P. and Mamou, M. 2000c Onset of convection in an anisotropic porous layer of finite lateral extent. Int. Comm. Heat Mass Transfer 27, 333-342. [6.12]CrossRefGoogle Scholar
  588. Mahmud, M. N. and Hashim, I. 2010 Small and moderate Prandtl number chaotic convection in porous media in the presence of feedback control. Transp. Porous Media 84, 421-440. [6.11.3]MathSciNetCrossRefGoogle Scholar
  589. Mahmud, M. N. and Hashim, I. 2011 Small and moderate Vadasz number chaotic convection in porous media in the presence of non-Boussinesq effects and feedback control . Phys. Lett. A 375, 2382-2393. [6.11.3]CrossRefGoogle Scholar
  590. Malashetty, M. S. and Basavaraja, D. 2002 Rayleigh-Bénard convection subject to time dependent wall temperature/gravity in a fluid-saturated anisotropic porous medium Heat Mass Transfer 38, 551-563. [6.11.3]CrossRefGoogle Scholar
  591. Malashetty, M. S. and Basavaraja, D. 2003 Effect of thermal/gravity modulation on the onset of convection in a horizontal anisotropic porous layer. Int. J. Appl. Mech. Engng. 8, 425-439. [6.24]zbMATHGoogle Scholar
  592. Malashetty, M. S. and Begum, I. 2011b Effect of thermal/gravity modulation on the onset of convection in a Maxwell fluid saturated porous layer, Transp. Porous Media 90, 889-909. [6.24]MathSciNetCrossRefGoogle Scholar
  593. Malashetty, M. S. and Kulkarni, S. 2009 The convective instability of Maxwell-fluid-saturated porous layer using a thermal non-equilibrium model. J. Non-Newtonian Fluid Mech. 162, 29-37. [6.23]zbMATHCrossRefGoogle Scholar
  594. Malashetty, M. S. and Padmavathi, V. 1997 Effect of gravity modulation on onset of convection in a fluid and porous layer. Int. J. Engng. Sci. 35, 829-840. [6.24]MathSciNetzbMATHCrossRefGoogle Scholar
  595. Malashetty, M. S. and Padmavathi, V. 1998 Effect of gravity modulation on the onset of convection in a porous layer. J. Porous Media 1, 219-226. [6.24]zbMATHGoogle Scholar
  596. Malashetty, M. S. and Swamy, M. 2007c The effect of rotation on the onset of convection in a horizontal anisotropic porous layer. Int. J. Therm. Sci. 46, 1023-1032. [6.22]CrossRefGoogle Scholar
  597. Malashetty, M. S. and Swamy, M. 2007d The onset of convection in a viscoelastic liquid saturated anisotropic porous layer. Transp. Porous Media 67, 203-218. [6.23]MathSciNetCrossRefGoogle Scholar
  598. Malashetty, M. S. and Swamy, M. 2010a Effect of rotation on the onset of thermal convection in a sparsely packed porous layer using a thermal non-equilibrium model. Int. J. Heat Msass Transfer 53, 3088-3101. [6.22]zbMATHCrossRefGoogle Scholar
  599. Malashetty, M. S. and Swamy, M. S. 2011 Effect of gravity modulation on the onset of thermal convection in rotating fluid and porous layer. Phys. Fluids 23, 064108. [6.22]zbMATHCrossRefGoogle Scholar
  600. Malashetty, M. S. and Wadi, V. S. 1999 Rayleigh-Bénard convection subject to time-dependent wall temperature in a fluid saturated porous layer. Fluid Dyn. Res. 24, 293-308. [6.11.3]CrossRefGoogle Scholar
  601. Malashetty, M. S., and Swamy, M. S. 2011 Double-diffusive convection in a rotating anisotropic porous layer saturated with a viscoelastic fluid. Int. J. Therm. Sci. 50, 1757-1769. [9.1.6.4]CrossRefGoogle Scholar
  602. Malashetty, M. S., Cheng, P. and Chao, B. H. 1994 Convective instability in a horizontal porous layer saturated with a chemically reacting fluid. Int. J. Heat Mass Transfer 37, 2901-2908. [6.11.2]zbMATHCrossRefGoogle Scholar
  603. Malashetty, M. S., Shivakumara, I. S. and Kulkarni, S. 2005a The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Transport Porous Media 60, 199-215. [6.5]zbMATHCrossRefGoogle Scholar
  604. Malashetty, M. S., Shivakumara, I. S. and Kulkarni, S. 2005b The onset of Lapwood-Brinkman convection using a non-equilibrium model. Int. J. Heat Mass Transfer 48, 1155-1163. [6.5]zbMATHCrossRefGoogle Scholar
  605. Malashetty, M. S., Shivakumara, I. S. and Kulkarni, S. 2009b The onset of convection in a couple-stress fluid saturated porous layer using a thermal non-equilibrium model. Phys. Lett. A 373, 781-790. [6.23]zbMATHCrossRefGoogle Scholar
  606. Malashetty, M. S., Shivakumara, I. S., Kulkarnis, S. and Swamy, M. 2006a Convective instability of Oldroyd-B fluid saturated porous layer heated from below using a thermal non-equilibrium model. Transp. Porous Media 64, 123-139. [6.23]MathSciNetCrossRefGoogle Scholar
  607. Malashetty, M. S., Siddheshwar, P. G. and Swarmy, M. 2006b The effect of thermal modulation on the onset of convection in a viscoelastic fluid saturated porous layer. Transport Porous Media 62, 55-79. [6.23]MathSciNetCrossRefGoogle Scholar
  608. Malashetty, M. S., Swamy, M. and Kulkarni, S. 2007 Thermal convection in a rotating porous layer using a thermal nonequilibrium model. Phys. Fluids 19, #054102. [6.22]zbMATHCrossRefGoogle Scholar
  609. Malashetty, M. S., Swamy, M. and Sidram, W. 2010b Thermal convection in a rotating viscoelastic fluid saturated porous layer. Int. J. Heat Mass Transfer 53, 5747-5756. [6.22]zbMATHCrossRefGoogle Scholar
  610. Malkovski, V. I. and Pek, A. A. 1999 Onset conditions of free thermal convection of a single-phase fluid in a horizontal porous layer with depth-dependent permeability. Fizika Zemli (12): 27-31. [6.13.1]Google Scholar
  611. Malkovsky, V. I. and Pek, A. A. 1997 Conditions for the onset of convection of a homogeneous fluid in a vertical fault. Petrology 5 (4) , 381-387. [6.15.1]Google Scholar
  612. Malkovsky, V. I. and Pek, A. A. 2004 Onset of thermal convection of a single-phase fluid in an open vertical fault. Izv. Phys. Solid Earth 40, 672-679. [6.2]Google Scholar
  613. Malkovsky, V. I. and Pek, A. A. 2015 Onset of fault-bounded free thermal convection in a fluid-saturated horizontal permeable porous layer. Transp. Porous Media 110, 25-39. [6.15.3]MathSciNetCrossRefGoogle Scholar
  614. Malveev, L. V. 2016 Impurity transport in developed Rayleigh-Bénard convection. Int. J. Heat Mass Transfer 95, 15-21. [6.11.3]CrossRefGoogle Scholar
  615. Mamou, M., Hasnaoui, M., Amahmid, A. and Vasseur, P. 1998a Stability analysis of double diffusive convection in a vertical Brinkman porous enclosure. Int. Comm. Heat Mass Transfer 25, 491-500. [9.2.2]CrossRefGoogle Scholar
  616. Mamou, M., Robillard, L. and Vasseur, P. 1999 Thermoconvective instability in a horizontal porous cavity saturated with cold water. Int. J. Heat Mass Transfer 42, 4487-4500. [6.11.4]zbMATHCrossRefGoogle Scholar
  617. Mamou, M., Robillard, L., Bilgen, E. and Vasseur, P. 1996 Effects of a moving thermal wave on Bénard convection in a horizontal saturated porous layer. Int. J. Heat Mass Transfer 39, 347-354. [6.11.3]zbMATHCrossRefGoogle Scholar
  618. Marpu, D. R. and Satyamurty, V. V. 1989 Influence of variable fluid density on free convection in rectangular porous media. ASME J. Energy Res. Tech. 111, 214-220. [6.15.3]CrossRefGoogle Scholar
  619. Maryshev, B. S. 2015 The effect of sorption on linear stability for the solutal Horton-Rogers-Lapwood problem. Transp. Porous Media 109, 747-764. [6.15.3]MathSciNetCrossRefGoogle Scholar
  620. Maryshev, B. S. 2017 The linear stability of vertical mixture seepage into the close porous filter with clogging. Fluid Dyn. Res. 49, 105501. [6.15.3]MathSciNetCrossRefGoogle Scholar
  621. Maryshev, B., Lyubimova, T. and Lyubimov, D. 2016a The effect of solute immobilization on the stability of a diffusion front in porous media under gravity field. Transp. Porous Media 111, 239-251. [6.15.3]MathSciNetCrossRefGoogle Scholar
  622. Maryshev, B. S., Lyubimova, T. P. and Lyubimov, D. V. 2016b Stability of homogeneous seepage of a liquid mixture through a closed region of the saturated porous medium in the presence of the solute immobilization. Int. J. Heat Mass Transfer 102, 113-121. [6.15.3]CrossRefGoogle Scholar
  623. Masamoto, H. and Honda, S. 1992 Anisotropic modelings of the hydrothermal convection in layered porous media. J. Phys. Earth 40, 555-564. [6.13.2]CrossRefGoogle Scholar
  624. Massarotti, N., Nithiarasu, P. and Zienkiewicz, O. C. 2001 Natural convection in porous medium-fluid interface problems – A finite element analysis by using the CBS procedure. Int. J. Numer. Meth. Heat Fluid Flow 11, 473-490. [6.19.1]zbMATHCrossRefGoogle Scholar
  625. Masuda, Y., Kimura, S. and Hayashi, K. 1991a Natural convection heat transfer in a porous matrix with significant fluid property changes. Trans. Japan Soc. Mech. Engnrs. B. 57, 2065-2069. [6.7]CrossRefGoogle Scholar
  626. Masuda, Y., Kimura, S. and Hayashi, K. 1991b Natural convection heat transfer in an anisotropic porous matrix heated from below. Trans. Japan Soc. Mech. Engnrs. B. 57, 4203-4208. [6.12]CrossRefGoogle Scholar
  627. Masuda, Y., Kimura, S. and Hayashi, K. 1994 Three-dimensional numerical analysis of natural convection in a saturated porous matrix (stability of convection patterns). Trans. Japan Soc. Mech. Engnrs. B. 60, 960-964. [6.15.3]CrossRefGoogle Scholar
  628. Masuoka, T., Katsuhara, T., Nakazono, Y. and Isozaki, S. 1977 Flow patterns and onset of convection in porous media of two different layers. Trans. Japan Soc. Mech. Engnrs. 43, 1096-1102. [6.13.2]CrossRefGoogle Scholar
  629. Masuoka, T., Katsuhara, T., Nakazono, Y. and Isozaki, S. 1978 Onset of convection and flow patterns in a porous layer of two different media. Heat Transfer Japan Res. 7, 39-52. [6.13.2]Google Scholar
  630. Masuoka, T., Nishimura, T, Kawamoto, S. and Tsuruta, T. 1991a Effects of midheight heating or cooling through a thermal screen on natural convection in a porous layer. Trans. Japan Soc. Mech. Engrs. B 57, 243-249. [6.11.2]CrossRefGoogle Scholar
  631. Masuoka, T., Nishimura, T., Kawamotu, S. and Tsuruta, T. 1991b Effects of mid-height cooling on natural convection in a porous layer heated from below. Proc. ASME, JSME Thermal Engineering Joint Conference — 1991, vol. 4, pp. 325-330. [6.11.2]Google Scholar
  632. Masuoka, T., Shibata, K., Nakumura, H., Tanaka, T. and Tsuruta, T. 1988 Natural convection in porous insulation layers with peripheral gaps. Proc. 2nd Symposium on Heat Transfer, Tsinghua Univ. Beijing, China. [6.13.2]Google Scholar
  633. Masuoka, T., Takatsu, Y., Kawamoto, S., Koshino, H. and Tsuruta, T. 1995b Buoyant plume through a permeable porous layer located above a line heat source in an infinite fluid space. JSME Int. J., Series B 38, 79-85. [2.5, 5.10.1.2]CrossRefGoogle Scholar
  634. Masuoka, T., Takatsu, Y., Tsuruta, T. and Nakamura, H. 1994 Buoyancy-driven channeling flow in vertical porous layer. JSME Int. J., Series B 37, 915-923. [7.7]CrossRefGoogle Scholar
  635. Masuoka, T., Tanigawa, H. and Yamasaki, Y. 2003 Chaotic behavior of natural convection in multilayered porous system. Trans. Japan Soc. Mech. Engrs. 69, 938-945. [6.13.2]CrossRefGoogle Scholar
  636. McKay, G. 1998a Onset of buoyancy-driven convection in superposed reacting fluid and porous layers. J. Engng. Math. 33, 31–46. [6.19.1]zbMATHCrossRefMathSciNetGoogle Scholar
  637. McKibbin, R. 1983 Convection in an aquifer above a layer of heated impermeable rock. N. Z. J. Sci. 26, 49-64. [6.13.1]Google Scholar
  638. McKibbin, R. 1985 Thermal convection in layered and anisotropic porous media: a review. Convective Flows in Porous Media (eds. R. A. Wooding and I. White), Dept. Sci. Indust. Res., Wellington, New Zealand, pp. 113-127. [6.12]Google Scholar
  639. McKibbin, R. 1986a Thermal convection in a porous layer: effects of anisotropy and surface boundary conditions. Transport in Porous Media 1, 271-292. [6.12]CrossRefGoogle Scholar
  640. McKibbin, R. 1986b Heat transfer in a vertically-layered porous medium heated from below. Transport in Porous Media 1, 361-370. [6.13.4]Google Scholar
  641. McKibbin, R. and O'Sullivan, M. J. 1980 Onset of convection in a layered porous medium heated from below. J. Fluid Mech. 96, 375-393. [6.13.2]MathSciNetzbMATHCrossRefGoogle Scholar
  642. McKibbin, R. and O'Sullivan, M. J. 1981 Heat transfer in a layered porous medium heated from below. J. Fluid Mech. 111, 141-173. [6.13.2]zbMATHCrossRefGoogle Scholar
  643. McKibbin, R. and Tyvand, P. A. 1982 Anisotropic modelling of thermal convection in multilayered porous media. J. Fluid Mech. 118, 315-339. [6.13.3]zbMATHCrossRefGoogle Scholar
  644. McKibbin, R. and Tyvand, P. A. 1983 Thermal convection in a porous medium composed of alternating thick and thin layers. Int. J. Heat Mass Transfer 26, 761-780. [6.13.3]CrossRefGoogle Scholar
  645. McKibbin, R. and Tyvand, P. A. 1984 Thermal convection in a porous medium with horizontal cracks. Int. J. Heat Mass Transfer 27, 1007-1023. [6.13.3, 6.13.4]CrossRefGoogle Scholar
  646. McKibbin, R., Tyvand, P. A. and Palm, E. 1984 On the recirculation of fluid in a porous layer heated from below. N. Z. J. Sci. 27, 1-13. [6.12]Google Scholar
  647. Mealey, L.R. and Merkin, J. H. 2009 Steady finite Rayleigh number convective flows in a porous medium with internal heat generation. Int. J. Therm. Sci. 48, 1068-1080. [6.11.2]CrossRefGoogle Scholar
  648. Mehdaoui, R., Elmir, M. and Ghomri, T. 2009 Effect of thermal conductivity ratio on natural convection in a partially porous cavity. Int. Rev. Mech. Engng. 3, 646-652. [6.14]Google Scholar
  649. Mehta, C. B., Singh, M. and Kumar, S. 2016 Thermal convection of magneto compressible couple-stress fluid saturated in a porous medium with Hall current. Int. J. Appl. Mech. Engng. 21, 83-93. [6.23]CrossRefGoogle Scholar
  650. Merkin, J. H. and Zhang, G. 1990b Free convection in a horizontal porous layer with a partly heated wall. J. Engrg Math. 24, 125-149. [6.18]MathSciNetzbMATHCrossRefGoogle Scholar
  651. Merrikh, A. A. and Lage, J. L. 2004 Effect of distributing a fixed amount of solid constituent inside a porous medium enclosure on the heat transfer process. In Proc. 2nd Int. Conf. Appl. Porous Media, University of Evora, Portugal, May 24-27, 2004 (eds. A. H. Reis and A. F. Miguel), pp. 51-57. [6.15.3]Google Scholar
  652. Meshram, P., Bhardwaj, S. and Dalal, A. 2016a Numerical investigation of two-dimensional natural convection and entropy generation inside a porous square enclosure with sinusoidally heated wall. Prog. Comput. Fluid Dyn. 16, 88-101. [6.14]MathSciNetCrossRefGoogle Scholar
  653. Mishra, A. K., Kumar, S. and Sharma, R. V. 2016 Non-Darcy effects on three-dimensional natural convection in a rectangular box containing a heat-generating porous medium. J. Porous Media 19, 1033–1043. [6.11.2]CrossRefGoogle Scholar
  654. Misra, A. and Kumar, M. 2015 A weakly nonlinear stability analysis of heat transport in anisotropic porous cavity under time periodic temperature modulation. J. Appl. Fluid Mech. 8, 815-824. [6.11.3]CrossRefGoogle Scholar
  655. Mittal, R. and Rana, U. S. 2009 Effect of dust particles on a layer of micropolar ferromagnetic fluid heated from below saturating a porous medium. Appl. Math. Comput. 215, 2591-2607. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  656. Mohammad, A. N., Rees, D. A. S and Mojtabi, A. 2016 The effect of conducting boundaries on the onset of convection in a porous layer which is heated from below by internal heating. Transp. Porous Media, to appear. [6.4]Google Scholar
  657. Mojtabi, A. 2002 Influence of vibrations on the onset of thermo-convection in porous medium. Proc. 1 st Int. Conf. Applications of Porous Media, 704-721. [6.24]Google Scholar
  658. Mojtabi, A. and Rees, D. A. S. 2011 The effect of conducting bounding plates on the onset of Horton-Rogers-Lapwood convection. Int. J. Heat Mass Transfer 54, 293-305.[6.2]zbMATHCrossRefGoogle Scholar
  659. Mojtabi, A., Charrier-Mojtabi, M. C., Maliwan, K. and Pedram Razi, Y. 2004 Active control of the onset of convection in a porous medium. In Emerging Technologies and Techniques in Porous Media (D. B. Ingham, A. Bejan, E. Mamut and I. Pop, eds), Kluwer Academic, Dordrecht, pp. 195-207. [6.24]CrossRefzbMATHGoogle Scholar
  660. Mokhtar, N. M., Arifin, N. M., Nazar, R., Ismail, F. and Suleiman, M. 2008 Marangoni convection in a fluid saturated porous layer with a prescribed heat flux at its lower boundary. European J. Sci. Res. 24, 477-486. [6.19.3]Google Scholar
  661. Mokhtar, N. M., Arifin, N. M., Nazar, R., Ismail, F. and Suleiman, M. 2009a Effects of non-uniform temperature gradient and magnetic field on Bénard convection in saturated porous medium. European J. Sci. Res. 34, 365-374. [6.21]CrossRefGoogle Scholar
  662. Mokhtar, N. M., Arifin, N. M., Nazar, R., Ismail, F. and Suleiman, M. 2009b Marangoni convection in a fluid saturated porous layer with a deformable free surface. World Acad. Sci. Engng. Tech. 38, 835-840. [6.19.3]Google Scholar
  663. Mokhtar, N. M., Arifin, N. M., Nazar, R., Ismail, F. and Suleiman, M. 2010 Effect of internal heat generation on Marangoni convection in a fluid saturated porous medium. Int. J. Appl. Math. Stat. 19, 112-122, and Int. J. Phys. Sci. 6, 5550-5563. [6.19.3]zbMATHGoogle Scholar
  664. Mokhtar, N. M., Arifin, N. M., Nazar, R., Ismail, F. and Suleiman, M. 2011 Effect of internal heat generation on the onset of Marangoni convection in superposed fluid-porous layers of fluid and saturated porous medium. Int. J. Pure Appl. Math. 67, 387-405. [6.19.3]MathSciNetzbMATHGoogle Scholar
  665. Molla, M., Sana, S. C. and Khan, M. A. I. 2012 Natural convection flow in a porous enclosure with localized heating from below. JP J. Heat Mass Transfer 6, 1-16. [7.3.9]zbMATHGoogle Scholar
  666. Morland, L. W., Zebib, A. and Kassoy, D. R. 1977 Variable property effects on the onset of convection in an elastic porous matrix. Phys. Fluids 20, 1255-1259. [6.7]CrossRefGoogle Scholar
  667. Morrison, H. L., Rogers, F. T., jr. and Horton, C. W. 1949 Convection currents in porous media. II. Observations of conditions at the onset of convection. J. Appl. Phys. 20, 1027-1029. [6.1]Google Scholar
  668. Morrison, H. L. and Rogers, F. T., jr. 1952 Significance of flow patterns for initial convection in porous media J. Appl. Phys. 23, 1058-1059. [6.1]Google Scholar
  669. Mousa, M. M., Kaitayev, A. and Ragab, S. F. 2009 Investigation of a transition from steady convection to chaos in porous media using piecewise variational iteration method. World Acad. Engng. Tech. 58, 1088-1097. [6.8]Google Scholar
  670. Murphy, H. D. 1979 Convective instabilities in vertical fractures and faults. J. Geophys. Res. 84, 6121-6130. [6.15.2]CrossRefGoogle Scholar
  671. Murthy, P. V. S. N., Rathish Kumar, B. V. and Singh, P. 1997 Natural convection from a horizontal wavy surface in a porous enclosure. Numer. Heat Transfer 31, 207-221. [6.15.3]CrossRefGoogle Scholar
  672. Muthamilselvan, M., Das, M. K. and Kandaswamy, P. 2010 Convection in a lid-driven heat generating porous cavity with alternative thermal boundary conditions. Transp. Porous Media 82, 337-346. [6.17]CrossRefGoogle Scholar
  673. Muthtamilselvan, M. 2011 Transient buoyancy-driven convection of water saturated porous cavity near its density maximum. Int. J. Comp. Meth. Eng. Sci. Mech. 12, 270-277. [6.11.4]MathSciNetzbMATHCrossRefGoogle Scholar
  674. Nagano, K., Mochida, T. and Ochifuji, K. 2002 Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage. Appl. Therm. Engng. 22, 1299-1311. [6.10.1]CrossRefGoogle Scholar
  675. Nagano, K., Mochida, T. and Ochifuji, K. 2002 Influence of natural convection on forced horizontal flow in saturated porous media for aquifer thermal energy storage. Appl. Therm. Engng. 22, 1299-1311. [6.10.1]Google Scholar
  676. Nagouda, S. S. and Maruthamanikandan, S. 2013 Stability of porous medium convection in polarized dielectric fluids with non-classical heat conduction. Int. J. Mater. Arch. 4, 136-144. [2.2.6, 6.21]Google Scholar
  677. Nanjundappa, C. E. and Naturaj, R. 2013 Thermal convective instability in a micropolar ferromagnetic fluid saturated porous layer heated from below. Magnetohydrodynamics 49, 454-460. [6.23]CrossRefGoogle Scholar
  678. Nanjundappa, C. E. and Savitha, B. 2013 Effect of temperature dependent viscosity on the ferroconvection onset in a ferrofluid saturated porous medium. Magnetohydrodynamics 49, 461-467. [6.21]CrossRefGoogle Scholar
  679. Nanjundappa, C. E., Ravisha, M., Lee, J. and Shivakumara, I. S. 2011a Penetrative ferroconvection in a porous layer. Acta Mech. 216, 243-257. [6.21]zbMATHCrossRefGoogle Scholar
  680. Nanjundappa, C. E., Savitha, B., Baju, B. A. and Shivakumara, I. S. 2014a Effect of temperature-dependent viscosity on the onset of Bénard-Marangoni ferroconvection in a ferrofluid saturated porous layer. Acta Mech. 225, 835-850. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  681. Nanjundappa, C. E., Shivakumara, I. S. and Prakash, H. N. 2014b Effect of Coriolis force on thermomagnetic convection in a ferrofluid saturating porous medium: A weakly nonlinear stability analysis. J. Magnet. Magnet. Mater. 370, 140-149. [6.21]CrossRefGoogle Scholar
  682. Nanjundappa, C. E., Shivakumara, I. S., Lee, J. and Ravisha, M. 2011b The onset of ferroconvection in an anisotropic porous medium. Int. J. Engng. Sci. 49, 497-508. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  683. Nanjundappa, C. E., Shivakumara, I. S. and Prakash, H. N. 2012 Penetrative ferroconvection via internal heating in a saturated porous layer with constant heat flux at the lower boundary. J. Magnet. Magnet. Mater. 324, 1670-1678. [6.21]CrossRefGoogle Scholar
  684. Nanjundappa, C. E., Shivakumara, I. S. and Ravisha, M. 2010 The onset of buoyancy-driven convection in a ferromagnetic fluid saturated porous medium. Meccanica 45, 213-226. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  685. Nanjundappa, C. E., Shivakumara, I. S., Arunkumar, R. and Tadmor, R. 2015 Ferroconvection in a porous medium with vertical throughflow. Acta Mech. 226. 1515-1528. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  686. Nanjundappa, C. E., Shivakumara, I. S. and Arun Kumar, R. 2016 Effect of cubic temperature profiles on ferro convection in a Brinkman porous medium. J. Appl. Fluid Mech. 9, 1955-1962. [6.21]CrossRefGoogle Scholar
  687. Nanjundappa, C. E., Shivakumara, I. S., Lee, J. and Ravisha, M. 2011c Effect of internal heat generation on the onset of Brinkman-Bénard convection in a ferrofluid saturated porous layer. Int. J. Therm. Sci. 50, 160-168. [6.21]CrossRefGoogle Scholar
  688. Néel, M. C. 1990a Convection in a horizontal porous layer of infinite extent. Eur. J. Mech. B 9, 155-176. [6.15.1]MathSciNetzbMATHGoogle Scholar
  689. Néel, M. C. 1990b Convection naturelle dans une couche poreuse horizontale d'extension infinie: chauffage inhomogène. C. R. Acad. Sci. Paris, Sér. II 309, 1863-1868. [6.15.1]zbMATHGoogle Scholar
  690. Néel, M. C. 1992 Inhomogeneous boundary conditions and the choice of convective patterns in a porous layer. Int. J. Engng Sci. 30, 507-521. [6.14]MathSciNetzbMATHCrossRefGoogle Scholar
  691. Néel, M. C. and Lyubimov, D. 1995 Periodic solutions for differential equations of order three, with applications to heat-flux induced convection. Math. Meth. Appl. Sci. 18, 1133–1164. [6.4]MathSciNetzbMATHCrossRefGoogle Scholar
  692. Néel, M. C. 1998 Driven convection in porous media: deviations from Darcy’s law. C. R. Acad, Sci. Paris II B 326, 615-620. [6.10.1]zbMATHCrossRefGoogle Scholar
  693. Néel, M. C. and Nemrouch, F. 2001 Instabilities in an open top horizontal porous layer subjected to pulsating thermal boundary conditions. Cont. Mech. Thermodyn. 13, 41-58. [6.11.3]MathSciNetzbMATHCrossRefGoogle Scholar
  694. Neichloss, H. and Dagan, G. 1975 Convection currents in a porous layer heated from below: the influence of hydrodynamic dispersion. Phys. Fluids 18, 757-761. [6.6]zbMATHCrossRefGoogle Scholar
  695. Niederau, J., Ebigbo, A., Marquart, G., Arnold, J. and Clauer, C. 2017 On the impact of specially heterogeneous permeability on the free convection in the Perth Basin, Australia. Geothermics 66, 119–133. [6.13.6]CrossRefGoogle Scholar
  696. Nelson, R. A., Jr, and Bejan, A. 1998 Constructal optimization of internal flow geometry in convection. ASME J. Heat Transfer 120, 357-364. [6.2, 6.26]CrossRefGoogle Scholar
  697. Nemtsev, A. D. and Tsibulin, V. G. 2007 Numerical investigation of the first transition in the three-dimensional problem of convective flow in a porous medium. Fluid Dyn. 42, 186-192. [6.8]zbMATHCrossRefGoogle Scholar
  698. Ngo, C. C. and Lai, F. C. 2000 Effective permeability for natural convection in a layered porous annulus, J. Thermophys. Heat Transfer 14, 363-367. [6.13.2]CrossRefGoogle Scholar
  699. Nguyen, T. H., Lepalec, G., Nguyen-Quang, T. and Bahloul, A. 2004 Bioconvection: spontaneous pattern formation of micro-organisms. In Applications of Porous Media (ICAPM 2004), (eds. A. H. Reis and A. F. Miguel), Évora, Portugal, pp. 521-526. [6.25]Google Scholar
  700. Nguyen, V. T., Graf, T. and Guevara Morel, C. R. 2016 Free thermal convection in heterogeneous porous media. Geothermics 64, 152-162. [6.18]CrossRefGoogle Scholar
  701. Nguyen-Quang, T. 2008 Onset of gravitactic bioconvection in a square anisotropic porous medium with arbitrary orientation of the principal axes. Int. J. Heat Mass Transfer 51, 1497-1504. [6.25]zbMATHCrossRefGoogle Scholar
  702. Nguyen-Quang, T., Bahloul, A. and Nguyen, T. H. 2005 Stability of gravitactic microorganisms in a fluid-saturated porous medium. Int. Comm. Heat Mass Transfer 32, 54-63. [6.25]CrossRefGoogle Scholar
  703. Nguyen-Quang, T., Guichard, F. and Nguyen, T. H. 2011 Spatial pattern formation of motile microorganisms: From gravitactic bioconvection to protozoan culture dynamics. In K. Vafai (ed.), Porous Media: Applications in Biological Systems and Biotechnology, CRC Press, Baton Roca, FL, pp. 535-567. [6.25]Google Scholar
  704. Nguyen-Quang, T., Nguyen, H, Guichard, F., Nicolau, A., Szatmari, G., LePalec, G., Dusser, M., Lafossee, J., Bonnet, J. L. and Bohatier, J. 2009 Two-dimensional gravitactic bioconvection in a protozoan (Tetrahymena pyriformis) culture. Zoological Science 26, 54-65. [2.5, 6.25]CrossRefGoogle Scholar
  705. Nguyen-Quang, T., Nguyen, H. and Lepalec, G. 2008 Gravitactic bioconvection in a fluid saturated porous medium with double diffusion. J. Porous Media 11, 751-764. [6.25]CrossRefGoogle Scholar
  706. Nield, D. A. 1968 Onset of thermohaline convection in a porous medium. Water Resources Res. 4, 553-560. [6.2, 9.1.1, 11.4]CrossRefGoogle Scholar
  707. Nield, D. A. 1975 The onset of transient convective instability. J. Fluid Mech. 71, 441-454. [6.11.1]zbMATHCrossRefGoogle Scholar
  708. Nield, D. A. 1977 Onset of convection in a fluid layer overlying a layer of a porous medium. J. Fluid Mech. 81, 513-522. [6.19.1.2]zbMATHCrossRefGoogle Scholar
  709. Nield, D. A. 1982 Onset of convection in a porous layer saturated by an ideal gas. Int. J. Heat Mass Transfer 25, 1605-1606. [6.7]zbMATHCrossRefGoogle Scholar
  710. Nield, D. A. 1983 The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37-46. Corrigendum 150, 503. [1.6, 6.19.1.2]Google Scholar
  711. Nield, D. A. 1987a Convective instability in porous media with throughflow. AIChE J. 33, 1222-1224. [6.10.2]CrossRefGoogle Scholar
  712. Nield, D. A. 1987b Convective heat transfer in porous media with columnar structure. Transport in Porous Media 2, 177-185. [6.3, 6.13.4]CrossRefGoogle Scholar
  713. Nield, D. A. 1994a The effect of channeling on heat transfer across a horizontal layer of a porous medium. Int. J. Heat Fluid Flow 15, 247-248. [6.9.1, 6.19.1.2]CrossRefGoogle Scholar
  714. Nield, D. A. 1994c Estimation of an effective Rayleigh number for convection in a vertically inhomogeneous porous medium or clear fluid. Int. J. Heat Fluid Flow 15, 337-340. [5.4, 6.7, 6.13.2]CrossRefGoogle Scholar
  715. Nield, D. A. 1995a Onset of convection in a porous medium with nonuniform time-dependent volumetric heating. Int. J. Heat Fluid Flow 16, 217-222. [6.11.3]CrossRefGoogle Scholar
  716. Nield, D. A. 1996 The effect of temperature-dependent viscosity on the onset of convection in a saturated porous medium. ASME J. Heat Transfer 118, 803-805. [6.7]CrossRefGoogle Scholar
  717. Nield, D. A. 1997b Notes on convection in a porous medium: (i) an effective Rayleigh number for an anisotropic layer, (ii) the Malkus hypothesis and wavenumber selection. Transport in Porous Media 27, 135-142. [6.4, 6.9.1, 6.12]CrossRefGoogle Scholar
  718. Nield, D. A. 1998c Modeling the effect of surface tension on the onset of natural convection in a saturated porous medium. Transport Porous Media 31, 365-368. [6.19.3]MathSciNetCrossRefGoogle Scholar
  719. Nield, D. A. 1999 Modeling the effects of a magnetic field or rotation on flow in a porous medium: momentum equation and anisotropic permeability analogy. Int. J. Heat Mass Transfer 42, 3715-3718. [6.22]zbMATHCrossRefGoogle Scholar
  720. Nield, D. A. 2001a Comments on ‘Fully developed free convection in open-ended vertical channels partially filled with porous material’ by M. A. Al-Nimr and O. M. Hadad. J. Porous Media 4, 97-99. [7.7]Google Scholar
  721. Nield, D. A. 2004a Comments on ‘The onset of transient convection in bottom heated porous media’ by K. K. Tan, T. Sam and H. Jamaludin: Rayleigh and Biot numbers. Int. J. Heat Mass Transfer 47, 641-643. [6.11.3]Google Scholar
  722. Nield, D. A. 2004c Forced convection in a plane plate channel with asymmetric heating. Int. J. Heat Mass Transfer 47, 5609-5612. (Erratum 51 (2008), 2108-2108,.) [4.9]Google Scholar
  723. Nield, D. A. 2008c General heterogeneity effects on the onset of convection in a porous medium. In P. Vadasz, (ed.), Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York, pp. 63–84. [6.13.5]CrossRefGoogle Scholar
  724. Nield, D. A. 2011b A note on the onset of convection in a layer of a porous medium saturated by a non-Newtonian nanofluid of power-law type. Transp. Porous Media 87, 121-123. [6.23]CrossRefGoogle Scholar
  725. Nield, D. A. 2011c A further note on the onset of convection in a layer of a porous medium saturated by a non-Newtonian nanofluid of power-law type. Transp. Porous Media 88, 187-191. [6.23]MathSciNetCrossRefGoogle Scholar
  726. Nield, D. A. 2015b A note on convection in fracture loops. Transp. Porous Media 109, 195-199. [6.13.6]CrossRefMathSciNetGoogle Scholar
  727. Nield, D. A. and Kuznetsov, A. V. 2010e The effect of local thermal non-equilibrium on the onset of convection in a nanofluid. ASME Journal of Heat Transfer 132, 052405,.CrossRefGoogle Scholar
  728. Nield, D. A. and Barletta, A. 2009 The Horton-Rogers-Lapwood problem revisited: The effect of pressure work, Transp. Porous Media 77, 143-156. [6.1]CrossRefGoogle Scholar
  729. Nield, D. A. and Barletta, A. 2010a Comment on the comment by V. A. F. Costa, IJTS 49(9) (2010) 1874-1875, on the paper by I. A. Badruddin, Z.A. Zainal, Z. A. Khan, Z. Mallick “Effect of viscous dissipation and radiation on natural convection in a porous medium embedded within vertical annulus” IJST 46(3)(2007) 221-227, Int. J. Therm. Sci. 49, 2491-2492. [2.2.2]Google Scholar
  730. Nield, D. A. and Joseph, D. D. 1985 Effects of quadratic drag on convection in a saturated porous medium. Phys. Fluids 28, 995-997. [6.6]CrossRefGoogle Scholar
  731. Nield, D. A. and Kuznetsov, A. V. 2006a Forced convection with slip-flow in a channel or duct occupied by a hyper-porous medium saturated by a rarefied gas. Transp. Porous Media 64, 161-170. [4.9]CrossRefGoogle Scholar
  732. Nield, D. A. and Kuznetsov, A. V. 2007a Reply to comments on ‘Forced convection with slip-flow in a channel or duct occupied by a hyper-porous medium saturated by a rarefied gas. Transp. Porous Media 67, 169-170. [4.9]Google Scholar
  733. Nield, D. A. and Kuznetsov, A. V. 2007c The effects of combined horizontal and vertical heterogeneity on the onset of convection in a bidisperse porous medium. Int. J. Heat Mass Transfer 50, 3329-3339. Erratum s 4512-4512. [6.13.5]Google Scholar
  734. Nield, D. A. and Kuznetsov, A. V. 2007d The effects of combined horizontal and vertical heterogeneity and anisotropy on the onset of convection in a porous medium. Int. J. Therm. Sci. 46, 1211-1218. [6.13.5]zbMATHCrossRefGoogle Scholar
  735. Nield, D. A. and Kuznetsov, A. V. 2007e The onset of convection in a shallow box occupied by a heterogeneous porous medium with constant flux boundaries. Transp. Porous Media 67, 441-451. [6.13.5]MathSciNetCrossRefGoogle Scholar
  736. Nield, D. A. and Kuznetsov, A. V. 2007f The onset of convection in a porous medium occupying an enclosure of variable width or height. ASME J. Heat Transfer 129, 1714-1718. [6.13.5]CrossRefGoogle Scholar
  737. Nield, D. A. and Kuznetsov, A. V. 2008c The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium: Moderate heterogeneity. Int. J. Heat Mass Transfer 51, 2361-2367. [6.13.5]zbMATHCrossRefGoogle Scholar
  738. Nield, D. A. and Kuznetsov, A. V. 2008d The effects of combined horizontal and vertical heterogeneity on the onset of transient convection in a porous medium: J. Porous Media 11, 377-387. [6.13.5]zbMATHCrossRefGoogle Scholar
  739. Nield, D. A. and Kuznetsov, A. V. 2010d The onset of convection in a heterogeneous porous medium with transient temperature profile. Transp. Porous Media 85, 691-702. [6.18]MathSciNetCrossRefGoogle Scholar
  740. Nield, D. A. and Kuznetsov, A. V. 2011a The Cheng-Minkowycz problem for the double-diffusive natural convection boundary layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transfer 54, 374-378. [9.7.3]zbMATHCrossRefGoogle Scholar
  741. Nield, D. A. and Kuznetsov, A. V. 2011b A three-velocity three-temperature model for a tridisperse porous medium. Forced convection in a channel. Int. J. Heat Mass Transfer 54, 2490-2498. [4.16.4]zbMATHCrossRefGoogle Scholar
  742. Nield, D. A. and Kuznetsov, A. V. 2011c The Cheng-Minkowycz problem for natural convection about a vertical plate embedded in a tri-disperse porous medium. Int. J. Heat Mass Transfer 54, 3505-3513. [5.1.9.4]zbMATHCrossRefGoogle Scholar
  743. Nield, D. A. and Kuznetsov, A. V. 2011d Effect of vertical throughflow on thermal instability in a porous medium layer saturated by a nanofluid. Transp. Porous Media 87, 765-775. [9.7.2]MathSciNetCrossRefGoogle Scholar
  744. Nield, D. A. and Kuznetsov, A. V. 2011e The onset of convection in a heterogeneous porous medium with vertical throughflow. Transp. Porous Media 88, 347-355. [6.13.5]MathSciNetzbMATHCrossRefGoogle Scholar
  745. Nield, D. A. and Kuznetsov, A. V. 2011f Onset of convection in a porous medium with strong vertical throughflow. Transp. Porous Media 90, 883-888. [6.10.2]MathSciNetzbMATHCrossRefGoogle Scholar
  746. Nield, D. A. and Kuznetsov, A. V. 2011g Effect of vertical throughflow on the onset of convection in a porous medium in a rectangular box. Transp. Porous Media 90, 993-1000. [6.10.2]MathSciNetzbMATHCrossRefGoogle Scholar
  747. Nield, D. A. and Kuznetsov, A. V. 2011h Forced convection in a channel partly occupied by a bidisperse porous medium: Symmetric case. ASME J. Heat Transfer 133, 072601. [4.16.4]CrossRefGoogle Scholar
  748. Nield, D. A. and Kuznetsov, A. V. 2011i The effects of combined horizontal and vertical heterogeneity on the onset of convection in a porous medium with horizontal throughflow. Int. J. Heat Mass Transfer 54, 5595-5601. [6.10.1, 6.13.5]zbMATHCrossRefGoogle Scholar
  749. Nield, D. A. and Kuznetsov, A. V. 2012b The onset of strong heterogeneity and strong throughflow on the onset of convection in a porous medium: Non-periodic global variation. Transp. Porous Media 91, 927-938. [6.13.6]CrossRefGoogle Scholar
  750. Nield, D. A. and Kuznetsov, A. V. 2013b Onset of convection with internal heating in a weakly heterogeneous porous medium. Transp. Porous Media 98, 543-552. [6.11.2]MathSciNetCrossRefGoogle Scholar
  751. Nield, D. A. and Kuznetsov, A. V. 2013c Onset of convection with internal heating in a porous medium saturated by a nanofluid. Transp. Porous Media 99, 73-83. [9.7.2]MathSciNetCrossRefGoogle Scholar
  752. Nield, D. A. and Kuznetsov, A. V. 2013f The effect of pulsating deformation on the onset of convection in a porous medium Transp. Porous Media 98, 713-724. [6.23]MathSciNetCrossRefGoogle Scholar
  753. Nield, D. A. and Kuznetsov, A. V. 2013h A historical and topical note on convection in porous media. ASME J. Heat Transfer 135, 061201. [6.1]CrossRefGoogle Scholar
  754. Nield, D. A. and Kuznetsov, A. V. 2014a Local thermal non-equilibrium and heterogeneity effects on the onset of convection in a layered porous medium. Transp. Porous Media 102, 1-13. [6.13.2]MathSciNetCrossRefGoogle Scholar
  755. Nield, D. A. and Kuznetsov, A. V. 2015a Modeling convection in nanofluids: From clear fluids to porous media, in: V. Bianco, O. Manca, S. Nardini and K. Vafai (Eds.) Heat Transfer Enhancement with Nanofluids, CRC Press, Boca Raton, FL, 2015, Chapter 11, pp. 325-340. [9.7]Google Scholar
  756. Nield, D. A. and Kuznetsov, A. V. 2016a The onset of convection in a horizontal porous layer with spatially non-uniform internal heating. Transp. Porous Media 111, 541-553. [6.11.2]MathSciNetCrossRefGoogle Scholar
  757. Nield, D. A. and Kuznetsov, A. V. 2016b The effect of pulsating throughflow on the onset of convection in a horizontal porous layer. Transp. Porous Media 111, 731-740. [6.10.2]MathSciNetCrossRefGoogle Scholar
  758. Nield, D. A. and Simmons, C. T. 2007 A discussion on the effect of heterogeneity on the onset of convection in a porous medium. Transp. Porous Media 68, 413-421. [6.13.6]MathSciNetCrossRefGoogle Scholar
  759. Nield, D. A., Kuznetsov, A. V. and Simmons, C. T. 2009 The effect of strong heterogeneity on the onset of convection in a porous medium. Transp. Porous Media 77, 169-186. [6.13.6]CrossRefGoogle Scholar
  760. Nield, D. A., Kuznetsov, A. V. and Simmons, C. T. 2010b The effect of strong heterogeneity on the onset of convection in a porous medium: 2D/3D localization and spatially correlated random permeability fields. Transp. Porous Media 83, 465-477. [6.13.6]CrossRefGoogle Scholar
  761. Nilsen, T. and Storesletten, L. 1990 An analytical study on natural convection in isotropic and anisotropic porous channels. ASME J. Heat Transfer 112, 396-401. [6.15.3]CrossRefGoogle Scholar
  762. Nisse, L. and Neél, M. C. 2005 Spectral stability of convective rolls in porous media. ZAMM 85, 366-383. [6.4]MathSciNetzbMATHCrossRefGoogle Scholar
  763. Niu, J., Fu, C. J. and Tan, W. C. 2010b Stability of thermal convection of an Oldroyd-B fluid in a porous medium with Newtonian heating. Phys. Lett. A. 374, 4607-4613. [6.23]zbMATHCrossRefGoogle Scholar
  764. Niu, J., Shi, Z. H. and Tan, W. C. 2013 The viscoelastic effects on thermal convection in an Oldroyd-B fluid in open-top porous media. J. Hydrodyn. 25, 639-642. [6.23]CrossRefGoogle Scholar
  765. Noghrehabadi, A., Behseresht, A., and Ghalambaz, M. 2013c Natural convection of nanofluid over vertical plate embedded in porous medium: prescribed surface heat flux. Appl. Math. Mech. (English ed.) 34, 669-686. [9.7.3]MathSciNetCrossRefzbMATHGoogle Scholar
  766. Noghrehabadi, A., Behseresht, A., Ghalambaz, M. and Behseresht, J. 2013a Natural convection flow of nanofluids over vertical cone embedded in non-Darcy porous media. J. Thermophys. Heat Transfer 27, 334-341. [9.7.3]CrossRefzbMATHGoogle Scholar
  767. Noghrehabadi, A., Rees, D. A. S. and Bassom, A. P. 2013b Linear stability of a thermally developing front induced by a constant heat flux. Transp. Porous Media 99, 493-513. [6.11.3]MathSciNetCrossRefGoogle Scholar
  768. Nouri-Borujerdi, A., Noghrehabadi, A. R. and Rees, D. A. S. 2007c Onset of convection in a horizontal porous channel with uniform heat generation using a thermal nonequilibrium model. Transport Porous Media 69, 343-357. [6.11.2]MathSciNetCrossRefGoogle Scholar
  769. Nygard, H. S. and Tyvand, P. A. 2010 Onset of convection in a porous box with partly conducting and partly penetrative sidewalls. Transp. Porous Media 84, 55-73. [6.15.3]MathSciNetCrossRefGoogle Scholar
  770. Nygard, H. S. and Tyvand, P. A. 2011a Onset of convection in a vertical porous cylinder with partly conducting and partly penetrative cylindrical wall. Transp. Porous Media 86, 224-241. [6.15.3]CrossRefGoogle Scholar
  771. Nygard, H. S. and Tyvand, P. A. 2011b Onset of convection in a porous rectangle with buoyancy along an open sidewall. Transp. Porous Media 90, 403-420. [6.15.1]MathSciNetCrossRefGoogle Scholar
  772. Oliver, M. and Titi, E. S. 2000 Gevrey regularity for the attractor of a partially dissipative model of Bénard convection in a porous medium. J. Differ. Equations 163, 292-311. [6.15.1]zbMATHCrossRefGoogle Scholar
  773. Or, A. C. 1989 The effects of temperature-dependent viscosity and the instabilities in convection rolls of a layer of fluid-saturated porous medium. J. Fluid Mech. 206, 497-515. [6.8]MathSciNetzbMATHCrossRefGoogle Scholar
  774. O'Sullivan, M. J. and McKibbin, R. 1986 Heat transfer in an unevenly heated porous layer. Transport in Porous Media 1, 293-312. [6.14]CrossRefGoogle Scholar
  775. Otero, J., Dontcheva, L. A., Johnston, H., Worthing, R. A., Kurganov, A., Petrova, G. and Doering, C. R. 2004 High-Rayleigh number convection in a fluid saturated porous layer. J. Fluid Mech. 500, 263-282. [6.8]MathSciNetzbMATHCrossRefGoogle Scholar
  776. Ozaki, K. and Inaba, H. 1997 Convective heat transfer of horizontal spherical particle layer heated from below and cooled above—Part II. Effect of thickness of the layer. Heat Transfer Japan Res. 26, 176-192. [6.9.2]CrossRefGoogle Scholar
  777. Pakdee, W. and Rattanadecho, P. 2006 Unsteady effects on natural convective heat transfer through porous media in cavity due to top surface partial convection. Appl. Thermal Engng. 26, 2316-2326. [6.18]CrossRefGoogle Scholar
  778. Pakdee, W. and Rattanadecho, P. 2009 Numerical analysis of natural convection in porous cavities with partial convective cooling conditions. J. Porous Media 12, 1083-1100. [6.18]CrossRefGoogle Scholar
  779. Palm, E. and Tyvand, P. 1984 Thermal convection in a rotating porous layer. J. Appl. Math. Phys. (ZAMP) 35, 122-123. [6.22]zbMATHCrossRefGoogle Scholar
  780. Palm, E., Weber, J. E. and Kvernvold, O. 1972 On steady convection in a porous medium. J. Fluid Mech. 54, 153-161. [6.3, 6.6]zbMATHCrossRefGoogle Scholar
  781. Panda, J. P., Patnaik, A. B. and Acharya, A. 2006b Free convection of conducting viscous fluid between two vertical walls filled with a porous material. Modell. Meas. Control B 75, (3-4) 31-43. [6.15.2]Google Scholar
  782. Papalexandris, M. V. and Antoniadis, P. D. 2015 A thermo-mechanical model for flows in superposed porous and fluid layers with interphasial heat and mass exchange. Int. J. Heat Mass Transfer 88, 42-54. [6.19.3]CrossRefGoogle Scholar
  783. Park, H. M., Lee, H. S. and Cho, D. H. 1996 Thermal convective instability in translucent porous media with radiative heat transfer. Chem. Engng. Comm. 145, 155-171. [6.11.2]CrossRefGoogle Scholar
  784. Park, J. H., Chung, T. J., Choi, C. K. and Kim, M. C. 2006 The onset of mixed convection in a porous layer heated with a constant heat flux. AIChE J. 52, 2677-2683. [6.10.1]CrossRefGoogle Scholar
  785. Parthiban, C. and Patil, P. R. 1995 Effect of non-uniform boundary temperatures on thermal instability in a porous medium with internal heat source. Int. Comm. Heat Mass Transfer 22, 683-692. [6.11.2, 7.9]CrossRefGoogle Scholar
  786. Parthiban, C. and Patil, P. R. 1996 Convection in a porous medium with velocity slip and temperature jump boundary conditions. Heat Mass Transfer 32, 7-31. [6.7]CrossRefGoogle Scholar
  787. Patil, P. M. and Rees, D. A. S. 2013 Linear instability of a horizontal thermal boundary layer formed by vertical throughflow in a porous medium: The effect of local thermal nonequilibrium. Transp. Porous Media 99, 207-227. [6.10.2]MathSciNetCrossRefGoogle Scholar
  788. Patil, P. M. and Rees, D. A. S. 2014 The onset of convection in a porous layer with multiple horizontal solid partitions. Int. J. Heat Mass Transfer 68, 234-246. [6.13.2]CrossRefGoogle Scholar
  789. Patil, P. R. 1982b Convection in a porous medium with nonlinear density effects. Lett. Heat Mass Transfer 9, 131-140. [6.11.4]CrossRefGoogle Scholar
  790. Patil, P. R. and Rudraiah, N. 1973 Stability of hydromagnetic thermoconvective flow through porous medium. Trans. ASME. J. Appl. Mech. E 40, 879-884. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  791. Patil, P. R. and Vaidyanathan, G. 1981 Effect of variable viscosity on the setting up of convection currents in a porous medium. Int. J. Engng. Sci. 19, 421-426. [6.7]zbMATHCrossRefGoogle Scholar
  792. Patil, P. R. and Vaidyanathan, G. 1983 On setting up of convective currents in a rotating porous medium under the influence of variable viscosity. Int. J. Engng Sci. 21, 123-130. [6.22]zbMATHCrossRefGoogle Scholar
  793. Payne, L. E. and Straughan, B. 2000b Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium. Stud. Appl. Math. 105, 59-81. [6.7]MathSciNetzbMATHCrossRefGoogle Scholar
  794. Pedram Razi, Y., Charrier-Mojtabi, M. C. and Mojtabi, A. 2008 Thermal vibration convection in a porous medium saturated by a pure or binary fluid. In P. Vadasz (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, Springer, New York, pp. 149-179 [6.24]CrossRefGoogle Scholar
  795. Pedram Razi, Y., Maliwan, K. and Mojtabi, A. 2002 Two different approaches for studying the Horton-Rogers-Lapwood problem under the effect of vertical vibration. Proc. 1st Int. Conf. Applications of Porous Media. pp. 479-488. [6.24]Google Scholar
  796. Pedram Razi, Y., Maliwan, K., Charrier-Mojtabi, M. C. and Mojtabi, A. 2005 Influence of vibrations on buoyancy induced convection in porous media. Handbook of Porous Media (ed. K. Vafai), 2nd ed., Taylor and Francis, New York, pp. 321-370. [6.24]Google Scholar
  797. Pedram Razi, Y., Mojtabi, I. and Charrier-Mojtabi, M.C. 2009 A summary of new predictive high frequency thermo-vibrational modes in porous media. Transp. Porous Media 77, 207-208. [6.24]CrossRefGoogle Scholar
  798. Pek, A. A. and Malkovsky, V. I. 2016 Linked convection of the basement and basinal fluids in formation of the unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada. Geofluids, to appear. [6.15.3]Google Scholar
  799. Perdikis, C. 1983 Free convection flow through a porous medium bounded by two horizontal walls. Int. Comm. Heat Mass Transfer 10, 357-359. [6.14]CrossRefGoogle Scholar
  800. Petit, F., Fichot, F. and Quintard, M. 1999a Écoulement diphasique en milieu poreux: modèle á non-équilibre local. Int. J. Therm. Sci. 38, 239-249. [2.2.3, 6.5]CrossRefGoogle Scholar
  801. Petit, F., Fichot, F. and Quintard, M. 1999b Two-phase flow in porous media: local non-equilibrium model. Rev Gén. Therm. 38, 250-257. [2.2.3, 6.5]Google Scholar
  802. Pieters, G. J. M. and van Duijn, C. J. 2006 Transient growth in linearly stable gravity-driven flow in porous media. European J. Mech. 25, 83-94. [6.10.2]MathSciNetzbMATHCrossRefGoogle Scholar
  803. Pillatsis, G., Taslim, M. E. and Narusawa, U. 1987 Thermal instability of a fluid-saturated porous medium bounded by thin fluid layers. ASME J. Heat Transfer 109, 677-682. [6.19.1.2]CrossRefGoogle Scholar
  804. Pillay, S. K and Govender, S. 2005 Stability of convection in a gravity modulated mushy layer during solidification of binary alloys. Transp. Porous Media 60, 183-197. [6. 24, 10.2.3]CrossRefGoogle Scholar
  805. Polisevski, D. 1985a Steady convection in porous convection in porous media. I. The solutions and their regularity. Int. J. Engng. Sci. 23, 733-739. [6.16.3]MathSciNetzbMATHCrossRefGoogle Scholar
  806. Polisevski, D. 1985b Steady convection in porous convection in porous media. II. The case of low Rayleigh numbers and asymptotic expansions. Int. J. Engng. Sci. 23, 741-749. [6.16.3]MathSciNetzbMATHCrossRefGoogle Scholar
  807. Polisevski, D. 1985c Steady convection in porous convection in porous media. III. The structure of the solutions. Int. J. Engng. Sci. 23, 751-757. [6.16.3]MathSciNetzbMATHCrossRefGoogle Scholar
  808. Politano, H. 1985 Competing convective patterns in a porous medium. Phys. Lett. A 107, 169-172. [6.8]MathSciNetzbMATHCrossRefGoogle Scholar
  809. Polonskii, D. G. 1995 Compressibility effects under conditions of convective instability of miscible fluids in a porous medium. Fluid Dynamics 30, 11-17. [6.7]MathSciNetCrossRefGoogle Scholar
  810. Pop, S. R., Grosan, T. and Pop, I. 2008 Effect of variable viscosity on free convection flow in a horizontal porous channel with a partially heated or cooled wall. Revista Chim. 59, 1210-1212. [6.18]Google Scholar
  811. Popov, V. N., Tsivinskaya, Y. S., Bekker, T. B., Kokh, K. A. and Kokh, A. E. 2006 Numerical investigation of heat-mass transfer processes in hydrothermal growth system J. Crystal Growth 289, 652-658. [6.19.3]zbMATHCrossRefGoogle Scholar
  812. Postelnicu, A. 2007a Effect of inertia on the onset of mixed convection in a porous layer using a thermal nonequilibrium model. J. Porous Media 10, 515-524. [6.10.1]CrossRefGoogle Scholar
  813. Postelnicu, A. 2008 The onset of convection using a thermal nonequilibrium model. Part II. Int. J. Therm. Sci. 47¸1587-1594. [6.5]Google Scholar
  814. Postelnicu, A. 2010b The effect of a horizontal pressure gradient on the onset of a Darcy-Bénard convection in thermal non-equilibrium conditions. Int. J. Heat Mass Transfer 53, 68-75. [6.10.1]zbMATHCrossRefGoogle Scholar
  815. Postelnicu, A. and Rees, D. A. S. 2003 The onset of Darcy-Brinkman convection in a porous layer using a thermal nonequilibrium model – Part I: Stress free boundaries. Int. J. Energy Res. 27, 961-973. [6.5]CrossRefGoogle Scholar
  816. Poulikakos, D. 1985a On buoyancy induced heat and mass transfer from a concentrated source in an infinite porous medium. Int. J. Heat Mass Transfer 28, 621-629. [9.3.1]MathSciNetzbMATHCrossRefGoogle Scholar
  817. Poulikakos, D. 1987a Buoyancy driven convection in a horizontal fluid layer extending over a porous substrate. Phys. Fluids 29, 3949-3957. [6.19.2]CrossRefGoogle Scholar
  818. Poulikakos, D. 1987b Thermal instability in a horizontal fluid layer superposed on a heat-generating porous bed. Numer. Heat Transfer 12, 83-100. [6.19.2]CrossRefGoogle Scholar
  819. Poulikakos, D., Bejan, A., Selimos, B. and Blake, K. R. 1986 High Rayleigh number convection in a fluid overlying a porous bed. Int. J. Heat Fluid Flow 7, 109-116. [6.19.2]CrossRefGoogle Scholar
  820. Pradhan, G. K. and Patra B. 1987 Onset of convection in a porous mantle. Proc. Indian Acad. Sci. Math. Sci. 96, 1-25. [6.16.3]zbMATHCrossRefGoogle Scholar
  821. Prakash, J. 2013a On arresting the complex growth rates in ferromagnetic convection in a ferrofluid saturated porous layer. J. Porous Media 16, 217-226. [6.21]CrossRefGoogle Scholar
  822. Prakash, J. 2013b On exchange of stabilities in ferromagnetic convection in a rotating porous medium. Int. J. Fluid Mech. Res. 40, 391-404. [6.22]CrossRefGoogle Scholar
  823. Prakash, J. 2014 On exchange of stabilities in ferromagnetic convection in a rotating ferrofluid saturated porous layer. J. Appl. Fluid Mech. 7, 147-154. [6.21]Google Scholar
  824. Prakash, J. and Bala, R. 2016 On estimating the complex growth rates in ferromagnetic convection with magnetic-field-dependent viscosity in a rotating sparsely distributed porous medium. J. Appl. Mech. Tech. Phys. 57, 623–636. [6.21]CrossRefzbMATHMathSciNetGoogle Scholar
  825. Prakash, K. and Kumar, N. 1999a Effects of suspended particles, rotation and variable gravity field on the thermal instability of Rivlin-Ericksen visco-elastic fluid in porous medium. Indian J. Pure Appl. Math. 30, 1157-1166. [6.2.3]zbMATHGoogle Scholar
  826. Prakash, K. and Kumar, N. 1999b Thermal instability in Rivlin-Ericksen elastico-viscous fluid in the presence of finite Larmor radius and variable gravity in porous medium. J. Phys. Soc. Japan 68, 1168-1172. [6.23]CrossRefGoogle Scholar
  827. Prasad, V. 1987 Thermal convection in a rectangular cavity filled with a heat-generating, Darcy porous medium. ASME J. Heat Transfer 109, 697-703. [6.17]CrossRefGoogle Scholar
  828. Prasad, V. 1991 Convective flow interaction and heat transfer between fluid and porous layers. Convective Heat and Mass Transfer in Porous Media (eds. S. Kakaç, B. Kilkis, F. A. Kulacki and F. Arinç), Kluwer Academic, Dordrecht, pp. 563-615. [6.19.2]Google Scholar
  829. Prasad, V. 1993 Flow instabilities and heat transfer in fluid overlying horizontal porous layers. Exp. Therm. Fluid Sci., 6, 135-146. [6.19.2]CrossRefGoogle Scholar
  830. Prasad, V. and Chui, A. 1989 Natural convection in a cylindrical porous enclosure with internal heat generation. ASME J. Heat Transfer 111, 916-925. [6.17]CrossRefGoogle Scholar
  831. Prasad, V. and Kulacki, F. A. 1986 Effects of size of heat source on natural convection in horizontal porous layers heated from below. Heat Transfer 1986, Hemisphere, Washington, DC, vol. 5, pp. 2677-2682. [6.18]Google Scholar
  832. Prasad, V. and Kulacki, F. A. 1987 Natural convection in horizontal fluid layers with localized heating from below. ASME J. Heat Transfer 109, 795-796. [6.18]CrossRefGoogle Scholar
  833. Prasad, V. and Tian, Q. 1990 An experimental study of thermal convection in fluid-superposed porous layers heated from below. Heat Transfer 1990, Hemisphere, Washington, DC, vol. 5, pp. 207-212. [6.19.2]Google Scholar
  834. Prasad, V., Brown, K. and Tian, G. 1989a Flow visualization and heat transfer experiments in fluid-superposed porous layers heated from below. ASME HTD 117, 75-83. [6.19.2]Google Scholar
  835. Prasad, V., Brown, K. and Tian, Q. 1991 Flow visualization and heat transfer experiments in fluid-superposed packed beds heated from below. Exp. Therm. Fluid Sci. 4, 12-24. [6.19.2]CrossRefGoogle Scholar
  836. Prasad, V., Kulacki, F. A. and Keyhani, M. 1985 Natural convection in porous media. J. Fluid Mech. 150, 89-119. [6.9.2, 7.3.3, 7.6.2]CrossRefGoogle Scholar
  837. Prats, M. 1966 The effects of horizontal fluid flow on thermally induced convection currents in porous mediums. J. Geophys. Res. 71, 4835-4837. [6.10.1]CrossRefGoogle Scholar
  838. Qin, Y. and Chadam, J. 1995 A nonlinear stability problem for ferromagnetic fluids in a porous medium. Appl. Math. Lett. 8, 25-29. [6.21]MathSciNetzbMATHCrossRefGoogle Scholar
  839. Qin, Y. and Chadam, J. 1996 Nonlinear convective stability in a porous medium with temperature-dependent viscosity and inertial drag. Stud. Appl. Math. 96, 273-288. [6.7]MathSciNetzbMATHCrossRefGoogle Scholar
  840. Qin, Y. and Kaloni, P. N. 1994 Convective instabilities in anisotropic porous media. Stud. Appl. Math. 91, 189-204. [6.12]MathSciNetzbMATHCrossRefGoogle Scholar
  841. Qin, Y. and Kaloni, P. N. 1995 Nonlinear stability problem of a rotating porous layer. Quart. Appl. Math. 53, 129-142. [6.22]MathSciNetzbMATHCrossRefGoogle Scholar
  842. Qin, Y. and Kaloni, P. N. 1992 Steady convection in a porous medium based upon the Brinkman model. IMA J. Appl. Math. 48, 85-95. [6.6]MathSciNetzbMATHCrossRefGoogle Scholar
  843. Quintard, M. 1984 Convection naturelle en milieu poreux: systemes non-stationnaires, deplacements. Ann. Mines 191, 85-92. [6.11.3]Google Scholar
  844. Quintard, M. and Prouvost, L. 1982 Instabilités de zones de diffusion thermique instationnaires en milieu poreux. Int. J. Heat Mass Transfer 25, 37-44. [6.10.2]zbMATHCrossRefGoogle Scholar
  845. Rabinowicz, M., Sempéré, J. C. and Genthon, P. 1999 Thermal convection in a vertical permeable slot: implications for hydrothermal circulation along mid-ocean ridges. J. Geophys. Res. 104, 29275-29292. [6.15.2]CrossRefGoogle Scholar
  846. Raffensperger, J. P. and Vlassopoulos, D. 1999 The potential for free and mixed convection in sedimentary basins. Hydrol. J. 7, 505-520. [6.10.1]Google Scholar
  847. Rajagopal, K. R., Saccomandi, G. and Vergori, L. 2011 Stability analysis of Rayleigh-Bénard convection in a porous medium. Zeit. Ang. Math. Phys. 62, 149-160. [6.7]zbMATHCrossRefGoogle Scholar
  848. Rajen, G. and Kulacki, F. A. 1987 Natural convection in a porous layer locally heated from below – a regional laboratory model for a nuclear waste repository. ASME HTD 67, 19-26. [6.18]Google Scholar
  849. Ramanathan, A. and Surendra, P. 2003 Effect of magnetic field on viscosity of ferroconvection in an anisotropic sparsely distributed porous medium. Indian J. Pure Appl. Phys. 41, 522-526. [6.21]Google Scholar
  850. Ramanathan, A. and Suresh, G. 2004 Effect of magnetic field dependent viscosity and anisotropy of porous medium on ferroconvection. Int. J. Engng. Sci. 42, 411-425. [6.21]CrossRefGoogle Scholar
  851. Ramazanov, M. M. 2000 Convection in a obliquely heated thin porous elliptic ring. Fluid Dyn. 35, 910-917. [7.3.7]zbMATHCrossRefGoogle Scholar
  852. Ramazanov, M. M. 2012 Analytical investigation of steady convection of a near-critical Van der Waals gas in a porous thin annular cylinder embedded in a heat-conducting medium. Fluid Dynamics 47, 192-205. [6.16.2]MathSciNetzbMATHCrossRefGoogle Scholar
  853. Ramazanov, M. M. 2013 Investigation of filtration convection in a near-critical Van der Waals gas for substantial temperature differences. Fluid Dynamics 48, 533-542. [6.16.2]MathSciNetzbMATHCrossRefGoogle Scholar
  854. Ramazanov, M. M. 2014 Conditions for the absence and occurrence of filtration convection in a compressible gas. Fluid Dynamics 49, 541-547. [6.7]CrossRefGoogle Scholar
  855. Rameshwar, Y., Sultana, S. and Tagare, S. G. 2013 Kuppers-Lortz instability in rotating Rayleigh-Bénard convection in a porous medium. Meccanica 48, 2401-2414. [6.22]MathSciNetzbMATHCrossRefGoogle Scholar
  856. Rana, G. C. 2014 The onset of thermal convection in couple-stress fluid in hydromagnetics saturating a porous medium. Bull. Polish Acad. Sci. Tech. Sci. 62, 357-362. [6.21]Google Scholar
  857. Rana, G. C. and Kumar, S. 2012 Effect of rotation and suspended particles on the instability of an incompressible Walters’ (Model B’) fluid heated from below under variable gravity field in a porous medium. Engng. Trans. 60, 55-68. [6.23]Google Scholar
  858. Rana, G. C. and Sharma, V. 2012 Effect of rotation on the onset of convection in Rivlin-Ericksen fluid heated from below in a Brinkman porous medium. Int. J. Fluid Mech. Res. 39, 4667-477. [6.22]CrossRefGoogle Scholar
  859. Rana, G. C. and Thakur, R. C. 2012 A mathematical theorem on the onset of couple-stress fluid permeated with suspended dust particles saturating a porous medium. Int. J. Multiphys. 6, 61-72. [6.23]CrossRefGoogle Scholar
  860. Rana, G. C., Kango, S. K. and Kumar, S. 2012a Effect of rotation on the onset of convection in Walter’s (model B’) fluid heated from below in a Darcy-Brinkman porous medium. J. Porous Media 15, 1149-1153. [6.23]CrossRefGoogle Scholar
  861. Rana, R., Horne, R. N. and Cheng, P. 1979 Natural-convection in a multi-layered geothermal reservoir. ASME Heat Transfer 101, 411-416. [6.13.2]CrossRefGoogle Scholar
  862. Rapaka, S., Chen, S. Y., Pawar, R. J., Stauffer, P. H. and Zhang, D. X. 2008 Non-modal growth of perturbations in density-driven convection in porous media. J. Fluid Mech. 609, 285-303. [6.18]MathSciNetzbMATHCrossRefGoogle Scholar
  863. Rapaka, S., Pawar, R. J., Stauffer, P. H, Zhang, D. X. and Chen, S. Y. 2009 Onset of convection over a transient base-state in anisotropic and layered porous media. J. Fluid Mech. 641, 227-244. [6.18]MathSciNetzbMATHCrossRefGoogle Scholar
  864. Rashidi, F. and Bahrami, A. 2000 Mathematical modeling of onset of convection in a porous layer with viscosity variation. J. Therm. Sci. 9, 141-145. [6.7]CrossRefGoogle Scholar
  865. Rashidi, F., Bahrami, A. and Soroush, H. 2000 Prediction of time required for onset of convection in a porous medium saturated with oil and a layer of gas underlying the oil. J. Petrol. Sci. Engng. 26, 311-317. [6.11.3]CrossRefGoogle Scholar
  866. Rathish Kumar, B. V. 2000 A study of free convection induced by a vertical wavy surface with heat flux in a porous enclosure. Numer. Heat Transfer A 37, 493-510. [6.14]CrossRefGoogle Scholar
  867. Rathish Kumar, B. V. and Shalini 2003b Natural convection in a thermally stratified wavy vertical porous enclosure. Numer. Heat Transfer A 43, 753-776. [6.14]CrossRefzbMATHGoogle Scholar
  868. Rathish Kumar, B. V. and Shalini 2004c Non-Darcy free convection induced by a vertical wavy surface in a thermally stratified porous medium. Int. J. Heat Mass Transfer 47, 2353-2363. [6.14]zbMATHCrossRefGoogle Scholar
  869. Rathish Kumar, B. V., Singh, P. and Murthy, P. V. S. N. 1997 Effect of surface undulations on natural convection in a porous square cavity. ASME J. Heat Transfer 119, 848-851. [6.14]