Advertisement

Demodex Mites and Demodicosis

  • Gerd Plewig
  • Bodo Melnik
  • WenChieh Chen
Chapter

Abstract

Human skin provides a favorable habitat for the growth of bacteria, yeasts, and mites. These are mostly commensals; they nourish themselves on and flourish in hair follicles, but curiously not within sweat glands and their acrosyringa, where the secretion of IgA into the acrosyringium and the constitutive expression of antimicrobial peptides like dermcidin may provide protective effect. A certain kind of mutualistic interaction between human Demodex mites and humans is likely based on the speculation that Demodex mites may play a scavenger role by removing excess sebum products and proteins or by feeding on the P. acnes that inhabit the same sebaceous follicles. Our skin may be likened to a botanical and zoological garden, supporting a diversity of species.

Bibliography

  1. Annam V, Yelikar BR, Inamadar AC, et al. Clinicopathological study of itchy folliculitis in HIV-infected patients. Indian J Dermatol Venereol Leprol. 2010;76:259–62.CrossRefGoogle Scholar
  2. Arsenović M, Pezo L, Vasić N, et al. The main factors influencing canine demodicosis treatment outcome and determination of optimal therapy. Parasitol Res. 2015;114:2415–26.CrossRefGoogle Scholar
  3. Becskei C, Cuppens O, Mahabir SP. Efficacy and safety of sarolaner against generalized demodicosis in dogs in European countries: a non-inferiority study. Vet Dermatol. 2018;29:203–e72.CrossRefGoogle Scholar
  4. Borgo SN, Sattler EC, Hogardt M, et al. PCR analysis for Wolbachia in human and canine Demodex mites. Arch Dermatol Res. 2009;301:747–52.CrossRefGoogle Scholar
  5. Burian M, Schittek B. The secrets of dermcidin action. Int J Med Microbiol. 2015;305:283–6.CrossRefGoogle Scholar
  6. Casas C, Paul C, Lahfa M, et al. Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Exp Dermatol. 2012;21:906–10.CrossRefGoogle Scholar
  7. Chen W, Plewig G. Human demodicosis: revisit and a proposed classification. Br J Dermatol. 2014;170:1219–25.CrossRefGoogle Scholar
  8. Chen W, Plewig G. Are Demodex mites principal, conspirator, accomplice, witness or bystander in the cause of rosacea? Am J Clin Dermatol. 2015;16:67–72.CrossRefGoogle Scholar
  9. Cheng AM, Sheha H, Tseng SC. Recent advances on ocular Demodex infestation. Curr Opin Ophthalmol. 2015;26:295–300.CrossRefGoogle Scholar
  10. de Rojas M, Riazzo C, Callejon R, et al. Morphobiometrical and molecular study of two populations of Demodex folliculorum from humans. Parasitol Res. 2012;110:227–33.CrossRefGoogle Scholar
  11. Demirdağ HG, Özcan H, Gürsoy Ş, et al. The effects of sebum configuration on Demodex spp. density. Turk J Med Sci. 2016;46:1415–21.CrossRefGoogle Scholar
  12. Dheilly NM, Poulin R, Thomas F. Biological warfare: microorganisms as drivers of host-parasite interactions. Infect Genet Evol. 2015;34:251–9.CrossRefGoogle Scholar
  13. Ferreira D, Sastre N, Ravera I, et al. Identification of a third feline Demodex species through partial sequencing of the 16S rDNA and frequency of Demodex species in 74 cats using a PCR assay. Vet Dermatol. 2015;26:239–e53.CrossRefGoogle Scholar
  14. Forton FM. Papulopustular rosacea, skin immunity and Demodex: pityriasis folliculorum as a missing link. J Eur Acad Dermatol Venereol. 2012;26:19–28.CrossRefGoogle Scholar
  15. Gunning K, Pippitt K, Kiraly B, Sayler M. Pediculosis and scabies: treatment update. Am Fam Physician. 2012;86:535–41.PubMedGoogle Scholar
  16. Kumari P, Nigam R, Choudhury S, et al. Demodex canis targets TLRs to evade host immunity and induce canine demodicosis. Parasite Immunol. 2018;40(3).CrossRefGoogle Scholar
  17. Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol. 2007;157:474–81.CrossRefGoogle Scholar
  18. Liang L, Liu Y, Ding X, et al. Significant correlation between meibomian gland dysfunction and keratitis in young patients with Demodex brevis infestation. Br J Ophthalmol. 2018;102:1098–102.CrossRefGoogle Scholar
  19. Maier T, Sattler E, Braun-Falco M, et al. High-definition optical coherence tomography for the in vivo detection of demodex mites. Dermatology. 2012;225:271–6.CrossRefGoogle Scholar
  20. Mehlhorn H. Human parasites. 8th ed. Heidelberg: Springer; 2016a.CrossRefGoogle Scholar
  21. Mehlhorn H. Encyclopedia of parasitology, vol. 3. 4th ed. Heidelberg: Springer; 2016b.CrossRefGoogle Scholar
  22. Mehlhorn B, Mehlhorn H, Walldorf V. Schach! den Blutsaugern & Schädlingen. Erkennen—Vorbeugen—Bekämpfen. Leicht gemacht für daheim und unterwegs. Düsseldorf: Düsseldorf University Press; 2012.Google Scholar
  23. Metze D, Kersten A, Jurecka W, Gebhart W. Immunoglobulins coat microorganisms of skin surface: a comparative immunohistochemical and ultrastructural study of cutaneous and oral microbial symbionts. J Invest Dermatol. 1991;96:439–45.CrossRefGoogle Scholar
  24. Murillo N, Mediannikov O, Aubert J, Raoult D. Bartonella quintana detection in Demodex from erythematotelangiectatic rosacea patients. Int J Infect Dis. 2014;29:176–7.CrossRefGoogle Scholar
  25. Nashat MA, Luchins KR, Lepherd ML, et al. Characterization of Demodex musculi infestation, associated comorbidities, and topographic distribution in a mouse strain with defective adaptive immunity. Comp Med. 2017;67:315–29.PubMedPubMedCentralGoogle Scholar
  26. Palopoli MF, Minot S, Pei D, et al. Complete mitochondrial genomes of the human follicle mites Demodex brevis and D. folliculorum: novel gene arrangement, truncated tRNA genes, and ancient divergence between species. BMC Genomics. 2014;15:1124.CrossRefGoogle Scholar
  27. Palopoli MF, Fergus DJ, Minot S, et al. Global divergence of the human follicle mite Demodex folliculorum: persistent associations between host ancestry and mite lineages. Proc Natl Acad Sci U S A. 2015;112:15958–63.CrossRefGoogle Scholar
  28. Sastre N, Ravera I, Villanueva S, et al. Phylogenetic relationships in three species of canine Demodex mite based on partial sequences of mitochondrial 16S rDNA. Vet Dermatol. 2012;23:509–e101.CrossRefGoogle Scholar
  29. Sattler EC, Maier T, Hoffmann VS, et al. Noninvasive in vivo detection and quantification of Demodex mites by confocal laser scanning microscopy. Br J Dermatol. 2012;167:1042–7.CrossRefGoogle Scholar
  30. Seyhan ME, Karincaoğlu Y, Bayram N, et al. Density of Demodex folliculorum in haematological malignancies. J Int Med Res. 2004;32:411–5.CrossRefGoogle Scholar
  31. Snyder DE, Wiseman S, Liebenberg JE. Efficacy of lotilaner (Credelio™), a novel oral isoxazoline against naturally occurring mange mite infestations in dogs caused by Demodex spp. Parasit Vectors. 2017;10:532.CrossRefGoogle Scholar
  32. Taieb A, Ortonne JP, Ruzicka T, et al. Superiority of ivermectin 1% cream over metronidazole 0·75% cream in treating inflammatory lesions of rosacea: a randomized, investigator-blinded trial. Br J Dermatol. 2015;172:1103–10.CrossRefGoogle Scholar
  33. Tatu AL, Ionescu MA, Cristea VC. Demodex folliculorum associated Bacillus pumilus in lesional areas in rosacea. Indian J Dermatol Venereol Leprol. 2017;83:610–1.CrossRefGoogle Scholar
  34. Thoemmes MS, Fergus DJ, Urban J, et al. Ubiquity and diversity of human-associated Demodex mites. PLoS One. 2014;9:e106265.CrossRefGoogle Scholar
  35. Yamasaki K, Kanada K, Macleod DT, et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol. 2011;131:688–97.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Gerd Plewig
    • 1
  • Bodo Melnik
    • 2
  • WenChieh Chen
    • 3
  1. 1.Department of Dermatology and AllergyLudwig-Maximilian-University MunichMunichGermany
  2. 2.Department of Dermatology, Environmental Medicine and Health TheoryUniversity of OsnabrückOsnabrückGermany
  3. 3.Department of Dermatology and AllergyTechnical University of MunichMunichGermany

Personalised recommendations