Advertisement

Glycogen as Key Energy Storehouse and Possibly Responsible for Multidrug Resistance in Mycobacterium tuberculosis

  • Anil Kumar Gupta
  • Amit Singh
  • Sarman Singh
Chapter

Abstract

Tuberculosis (TB) is a major public health problem with a high mortality rate worldwide due to Mycobacterium tuberculosis (M. tuberculosis) pathogen, claiming 9.6 million total cases were estimated in 2014 and more than 1.5 million people dead. M. tuberculosis and other pathogenic mycobacterial species produce a variety of glycogen or glycogen-associated molecules like lipoarabinomannan (LAM), trehalose monomycolate (TMM), phenolic glycolipids (PGLs), trehalose dimycolate (TDM), phosphatidylinositol-containing mannosides (PIMs), etc., that represent as major glycans present in the outermost layer of M. tuberculosis. The M. tuberculosis accumulate glycogen during harsh environmental condition, i.e. presence of reactive oxygen and nitrogen intermediates, limited nutrients availability and depletion of other essential elements required for their survival within the host. The glycosyltransferases (GTs) enzyme involves two families, glycogen transferase-3 (eukaryotes) and GTs-5 (eubacterial and archaeal), that play a major role in the regulation of glycogen metabolism. In bacteria, regulation of glycogen anabolism involves several glycogen synthase enzymes, i.e.α-d-glycogen synthase A (glgA), 1,4-α-d-glucan 6-glucosyltransferase (glgB) and glucose-1-phosphate adenylyltransferase (glgC), while catabolism involves glycogen phosphorylase (glgP) enzyme. In recent years, role of glycogen was investigated enormously in the pathogenesis of M. tuberculosis. Two major glycogen conjugates present in the cell wall of M. tuberculosis are TDM and TMM. These conjugates serve as precursors for the synthesis of mycolic acid that plays a key role in the invasion and pathogenesis of M. tuberculosis. This chapter summarizes the current updates of the presence of glycogen/glycoconjugates and their physiological role in the survival and pathogenesis mechanisms of M. tuberculosis during antagonistic conditions. Also, the chapter summarizes evidence of the putative GTs in the Mycobacterium spp.

Keywords

M. tuberculosis Drug resistance Glycogen accumulation GarA Protein kinase 

Abbreviations

ACP reductase

Enoyl-acyl carrier protein reductase

ADP

Adenosine diphosphate

AM

Arabinomannan

CR-3

Complement receptor 3

G1P

Glucose-1-phosphate

G6P

Glucose-6-phosphate

glgA

α-d-Glycogen synthase A

glgB

1,4-α-d-Glucan 6-glucosyltransferase

glgC

Glucose-1-phosphate adenylyltransferase

glgP

Glycogen phosphorylase

glgX

Glucan hydrolase

GS

Glycogen synthase

GTB

Glycosyltransferase B

GTs

Glycosyltransferases

KGD

α-Ketoglutarate decarboxylase

LAM

Lipoarabinomannan

LPS

Lipopolysaccharide

M. tuberculosis

Mycobacterium tuberculosis

MGLP

6-O-Methylglucosyl-containing lipopolysaccharides

NPP

Nucleotide pyrophosphate

ODHc

2-Oxoglutarate dehydrogenase complex

PAMP

Pathogen-associated molecular patterns

PGLs

Phenolic glycolipids

PGM

Phosphoglucomutase

PI

Phosphatidyl-myo-inositol

PIMs

Phosphatidylinositol-containing mannosides

STRE

Cis-element stress response element

TB

Tuberculosis

TLR2

Toll-like receptor

TMM

Trehalose monomycolate

UDP

Uridine diphosphate

References

  1. Alonso-Casajús N, Dauvillée D, Viale AM, Muñoz FJ, Baroja-Fernández E, Morán-Zorzano MT, Eydallin G, Ball S, Pozueta-Romero J (2006) Glycogen phosphorylase, the product of the glgP Gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli. J Bacteriol 188:5266–5272. doi: 10.1128/JB.01566-05 PubMedPubMedCentralGoogle Scholar
  2. Antoine AD, Tepper BS (1969) Environmental control of glycogen and lipid content of Mycobacterium phlei. J Gen Microbiol 55:217–226. doi: 10.1099/00221287-55-2-217 PubMedGoogle Scholar
  3. Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224PubMedGoogle Scholar
  4. Asención Diez MD, Demonte AM, Syson K, Arias DG, Gorelik A, Guerrero SA, Bornemann S, Iglesias AA (2015) Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim Biophys Acta 1850:13–21. doi: 10.1016/j.bbagen.2014.09.023 PubMedPubMedCentralGoogle Scholar
  5. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233. doi: 10.1146/annurev.arplant.54.031902.134927 PubMedGoogle Scholar
  6. Ballicora MA, Iglesias AA, Preiss J (2003) ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67:213–225. doi: 10.1128/MMBR.67.2.213-225.2003 PubMedPubMedCentralGoogle Scholar
  7. Baskaran S, Roach PJ, DePaoli-Roach AA, Hurley TD (2010) Structural basis for glucose-6-phosphate activation of glycogen synthase. Proc Natl Acad Sci U S A 107:17563–17568. doi: 10.1073/pnas.1006340107 PubMedPubMedCentralGoogle Scholar
  8. Belanger AE, Hatfull GF (1999) Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis. J Bacteriol 181:6670–6678PubMedPubMedCentralGoogle Scholar
  9. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS (1997) Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–1422PubMedGoogle Scholar
  10. Berg S, Kaur D, Jackson M, Brennan PJ (2007) The glycosyltransferases of Mycobacterium tuberculosis – roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 17:35R–56R. doi: 10.1093/glycob/cwm010 Google Scholar
  11. Besra GS, Khoo KH, McNeil MR, Dell A, Morris HR, Brennan PJ (1995) A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry (Mosc) 34:4257–4266Google Scholar
  12. Bittencourt VCB, Figueiredo RT, da Silva RB, Mourão-Sá DS, Fernandez PL, Sassaki GL, Mulloy B, Bozza MT, Barreto-Bergter E (2006) An alpha-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and Toll-like receptor activation. J Biol Chem 281:22614–22623. doi: 10.1074/jbc.M511417200 PubMedGoogle Scholar
  13. Bolat I (2008) The importance of trehalose in brewing yeast survival. Innov Romanian Food Biotechnol 2:1–10Google Scholar
  14. Bourassa L, Camilli A (2009) Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol Microbiol 72:124–138. doi: 10.1111/j.1365-2958.2009.06629 PubMedPubMedCentralGoogle Scholar
  15. Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R–37R. doi: 10.1093/glycob/cwj016 PubMedGoogle Scholar
  16. Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM (2004) Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J 23:3196–3205. doi: 10.1038/sj.emboj.7600324 PubMedPubMedCentralGoogle Scholar
  17. Calder PC (1991) Glycogen structure and biogenesis. Int J Biochem 23:1335–1352. doi: 10.1016/0020-711X(91)90274-Q PubMedGoogle Scholar
  18. Campbell NA, Williamson B, Heyden RJ (2006) Biology: Exploring Life. Pearson Prentice Hall, Upper Saddle River, NJ, 492 p. ISBN 0-13-250882-6Google Scholar
  19. Carroll JD, Pastuszak I, Edavana VK, Pan YT, Elbein AD (2007) A novel trehalase from Mycobacterium smegmatis – purification, properties, requirements. FEBS J 274:1701–1714. doi: 10.1111/j.1742-4658.2007.05715 PubMedGoogle Scholar
  20. Chandra G, Chater KF, Bornemann S (2011) Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157:1565–1572. doi: 10.1099/mic.0.044263-0 PubMedGoogle Scholar
  21. Chauhan DS, Chandra S, Gupta A, Singh TR (2012) Molecular modelling, docking and interaction studies of human-plasmogen and salmonella enolase with enolase inhibitors. Bioinformation 8:185–188. doi: 10.6026/97320630008185 PubMedPubMedCentralGoogle Scholar
  22. Chen Q, Haddad GG (2004) Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. J Exp Biol 207:3125–3129. doi: 10.1242/jeb.01133 PubMedGoogle Scholar
  23. Cheng C, Mu J, Farkas I, Huang D, Goebl MG, Roach PJ (1995) Requirement of the self-glucosylating initiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol 15:6632–6640. doi: 10.1128/MCB.15.12.6632 PubMedPubMedCentralGoogle Scholar
  24. Cid E, Geremia RA, Guinovart JJ, Ferrer JC (2002) Glycogen synthase: towards a minimum catalytic unit? FEBS Lett 528:5–11. doi: 10.1016/S0014-5793(02)03313-6 PubMedGoogle Scholar
  25. Crick DC, Mahapatra S, Brennan PJ (2001) Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology 11:107R–118R. doi: 10.1093/glycob/11.9.107R PubMedGoogle Scholar
  26. Cywes C, Hoppe HC, Daffé M, Ehlers MR (1997) Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent. Infect Immun 65:4258–4266PubMedPubMedCentralGoogle Scholar
  27. Daffé M, Etienne G (1999) The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuberc Lung Dis 79:153–169Google Scholar
  28. Dauvillée D, Kinderf IS, Li Z, Kosar-Hashemi B, Samuel MS, Rampling L, Ball S, Morell MK (2005) Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol 187:1465–1473. doi: 10.1128/JB.187.4.1465-1473.2005 PubMedPubMedCentralGoogle Scholar
  29. De Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146(Pt 1):199–208. doi: 10.1099/00221287-146-1-199 PubMedGoogle Scholar
  30. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031. doi: 10.1128/MMBR.00024-06 PubMedPubMedCentralGoogle Scholar
  31. Dinadayala P, Sambou T, Daffé M, Lemassu A (2008) Comparative structural analyses of the alpha-glucan and glycogen from Mycobacterium bovis. Glycobiology 18:502–508. doi: 10.1093/glycob/cwn031 PubMedGoogle Scholar
  32. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R. doi: 10.1093/glycob/cwg047 PubMedGoogle Scholar
  33. Farkas I, Hardy TA, Goebl MG, Roach PJ (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J Biol Chem 266:15602–15607PubMedGoogle Scholar
  34. François J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145. doi: 10.1111/j.1574-6976.2001.tb00574.x PubMedGoogle Scholar
  35. Gagliardi MC, Lemassu A, Teloni R, Mariotti S, Sargentini V, Pardini M, Daffé M, Nisini R (2007) Cell wall-associated alpha-glucan is instrumental for Mycobacterium tuberculosis to block CD1 molecule expression and disable the function of dendritic cell derived from infected monocyte. Cell Microbiol 9:2081–2092. doi: 10.1111/j.1462-5822.2007.00940.x PubMedGoogle Scholar
  36. Geurtsen J, Chedammi S, Mesters J, Cot M, Driessen NN, Sambou T, Kakutani R, Ummels R, Maaskant J, Takata H, Baba O, Terashima T, Bovin N, Vandenbroucke-Grauls CMJE, Nigou J, Puzo G, Lemassu A, Daffé M, Appelmelk BJ (2009) Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J Immunol 183:5221–5231. doi: 10.4049/jimmunol.0900768 PubMedGoogle Scholar
  37. Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ (2002) Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem Biol 9:1337–1346. doi: 10.1016/S1074-5521(02)00292-2 PubMedGoogle Scholar
  38. Gupta AK, Singh A, Singh S (2014) Glycogenomics of Mycobacterium tuberculosis. Mycobact Dis 4:175. doi: 10.4172/2161-1068.1000175 Google Scholar
  39. Hengge-Aronis R, Fischer D (1992) Identification and molecular analysis of glgS, a novel growth-phase-regulated and rpoS-dependent gene involved in glycogen synthesis in Escherichia coli. Mol Microbiol 6:1877–1886. doi: 10.1111/j.1365-2958.1992.tb01360.x PubMedGoogle Scholar
  40. Henrissat B, Deleury E, Coutinho PM (2002) Glycogen metabolism loss: a common marker of parasitic behaviour in bacteria? Trends Genet TIG 18:437–440. doi: 10.1016/S0168-9525(02)02734-8 PubMedGoogle Scholar
  41. Ingermann RL, Virgin GL (1987) Glycogen content and release of glucose from red blood cells of the sipunculan worm themiste dyscrita. J Exp Biol 129:141–149Google Scholar
  42. Kalscheuer R, Syson K, Veeraraghavan U, Weinrick B, Biermann KE, Liu Z, Sacchettini JC, Besra G, Bornemann S, Jacobs WR (2010) Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway. Nat Chem Biol 6:376–384. doi: 10.1038/nchembio.340 PubMedPubMedCentralGoogle Scholar
  43. Koch A, Mizrahi V, Warner DF (2014) The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes Infect 3, e17. doi: 10.1038/emi.2014.17 PubMedPubMedCentralGoogle Scholar
  44. Korf J, Stoltz A, Verschoor J, De Baetselier P, Grooten J (2005) The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur J Immunol 35:890–900. doi: 10.1002/eji.200425332 PubMedGoogle Scholar
  45. Kumar S, Jena L (2014) Understanding rifampicin resistance in tuberculosis through a computational approach. Genom Inform 12:276–282. doi: 10.5808/GI.2014.12.4.276 Google Scholar
  46. Leiba J, Syson K, Baronian G, Zanella-Cléon I, Kalscheuer R, Kremer L, Bornemann S, Molle V (2013) Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation. J Biol Chem 288:16546–16556. doi: 10.1074/jbc.M112.398503 PubMedPubMedCentralGoogle Scholar
  47. Lemassu A, Daffé M (1994) Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis. Biochem J 297(Pt 2):351–357. doi: 10.1042/bj2970351 PubMedPubMedCentralGoogle Scholar
  48. Leung P, Lee YM, Greenberg E, Esch K, Boylan S, Preiss J (1986) Cloning and expression of the Escherichia coli glgC gene from a mutant containing an ADPglucose pyrophosphorylase with altered allosteric properties. J Bacteriol 167:82–88PubMedPubMedCentralGoogle Scholar
  49. Lin K, Hwang PK, Fletterick RJ (1995) Mechanism of regulation in yeast glycogen phosphorylase. J Biol Chem 270:26833–26839. doi: 10.1074/jbc.270.45.26833 PubMedGoogle Scholar
  50. McMeechan A, Lovell MA, Cogan TA, Marston KL, Humphrey TJ, Barrow PA (2005) Glycogen production by different Salmonella enterica serotypes: contribution of functional glgC to virulence, intestinal colonization and environmental survival. Microbiology 151:3969–3977. doi: 10.1099/mic.0.28292-0 PubMedGoogle Scholar
  51. Mendes V, Maranha A, Alarico S, da Costa MS, Empadinhas N (2011) Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis. Sci Rep 1:177. doi: 10.1038/srep00177 PubMedPubMedCentralGoogle Scholar
  52. Montero M, Eydallin G, Viale AM, Almagro G, Muñoz FJ, Rahimpour M, Sesma MT, Baroja-Fernández E, Pozueta-Romero J (2009) Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. Biochem J 424:129–141. doi: 10.1042/BJ20090980 PubMedGoogle Scholar
  53. Morán-Zorzano MT, Alonso-Casajús N, Muñoz FJ, Viale AM, Baroja-Fernández E, Eydallin G, Pozueta-Romero J (2007) Occurrence of more than one important source of ADPglucose linked to glycogen biosynthesis in Escherichia coli and Salmonella. FEBS Lett 581:4423–4429. doi: 10.1016/j.febslet.2007.08.017 PubMedGoogle Scholar
  54. Morán-Zorzano MT, Montero M, Muñoz FJ, Alonso-Casajús N, Viale AM, Eydallin G, Sesma MT, Baroja-Fernández E, Pozueta-Romero J (2008) Cytoplasmic Escherichia coli ADP sugar pyrophosphatase binds to cell membranes in response to extracellular signals as the cell population density increases. FEMS Microbiol Lett 288:25–32. doi: 10.1016/j.febslet.2007.08.017 PubMedGoogle Scholar
  55. Moses SW, Bashan N, Gutman A (1972) Glycogen metabolism in the normal red blood cell. Blood 40:836–843PubMedGoogle Scholar
  56. Ortalo-Magné A, Dupont MA, Lemassu A, Andersen AB, Gounon P, Daffé M (1995) Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141(Pt 7):1609–1620. doi: 10.1099/13500872-141-7-1609 PubMedGoogle Scholar
  57. Pal K, Kumar S, Sharma S, Garg SK, Alam MS, Xu HE, Agrawal P, Swaminathan K (2010) Crystal structure of full-length Mycobacterium tuberculosis H37Rv glycogen branching enzyme: insights of N-terminal beta-sandwich in substrate specificity and enzymatic activity. J Biol Chem 285:20897–20903. doi: 10.1074/jbc.M110.121707 PubMedPubMedCentralGoogle Scholar
  58. Palomino JC, Martin A (2014) Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiot Basel Switz 3:317–340. doi: 10.3390/antibiotics3030317 Google Scholar
  59. Palomo M, Kralj S, van der Maarel MJEC, Dijkhuizen L (2009) The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains. Appl Environ Microbiol 75:1355–1362. doi: 10.1128/AEM.02141-08 PubMedPubMedCentralGoogle Scholar
  60. Pan YT, Koroth Edavana V, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I, Elbein AD (2004) Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Eur J Biochem FEBS 271:4259–4269. doi: 10.1111/j.1432-1033.2004.04365.x Google Scholar
  61. Pedersen LC, Dong J, Taniguchi F, Kitagawa H, Krahn JM, Pedersen LG, Sugahara K, Negishi M (2003) Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J Biol Chem 278:14420–14428. doi: 10.1074/jbc.M210532200 PubMedGoogle Scholar
  62. Pederson BA, Cheng C, Wilson WA, Roach PJ (2000) Regulation of glycogen synthase. Identification of residues involved in regulation by the allosteric ligand glucose-6-P and by phosphorylation. J Biol Chem 275:27753–27761. doi: 10.1074/jbc.M003342200 PubMedGoogle Scholar
  63. Possner DDD, Claesson M, Guy JE (2015) Structure of the glycosyl transferase Ktr4p from Saccharomyces cerevisiae. PLoS One 10, e0136239. doi: 10.1371/journal.pone.0136239 PubMedPubMedCentralGoogle Scholar
  64. Preiss J (2006) Bacterial glycogen inclusions: enzymology and regulation of synthesis. In: Shively DJM (ed) Inclusions in prokaryotes. Springer, Berlin, pp 71–108. doi: 10.1007/7171_004 Google Scholar
  65. Preiss J, Romeo T (1994) Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol 47:299–329. doi: 10.1016/S0079-6603(08)60255-X PubMedGoogle Scholar
  66. Ramaswamy NT, Li L, Khalil M, Cannon JF (1998) Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. Genetics 149:57–72PubMedPubMedCentralGoogle Scholar
  67. Rini J, Esko J, Varki A (2009) Glycosyltransferases and glycan-processing enzymes. In: Varki A (ed) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. ISBN 978-1-621821-32-8Google Scholar
  68. Roach PJ, Cheng C, Huang D, Lin A, Mu J, Skurat AV, Wilson W, Zhai L (1998) Novel aspects of the regulation of glycogen storage. J Basic Clin Physiol Pharmacol 9:139–151. doi: 10.1515/JBCPP.1998.9.2-4.139 PubMedGoogle Scholar
  69. Rose AH, Tempest DW (1989) Advances in microbial physiology. Academic Press, London. ISBN 0-12-0277730-1Google Scholar
  70. Schwebach JR, Glatman-Freedman A, Gunther-Cummins L, Dai Z, Robbins JB, Schneerson R, Casadevall A (2002) Glucan is a component of the Mycobacterium tuberculosis surface that is expressed in-vitro and in-vivo. Infect Immun 70:2566–2575. doi: 10.1128/IAI.70.5.2566-2575.2002 PubMedPubMedCentralGoogle Scholar
  71. Seibold GM, Breitinger KJ, Kempkes R, Both L, Krämer M, Dempf S, Eikmanns BJ (2011) The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum. Microbiology 157:3243–3251. doi: 10.1099/mic.0.051565-0 PubMedGoogle Scholar
  72. Seok YJ, Koo BM, Sondej M, Peterkofsky A (2001) Regulation of E. coli glycogen phosphorylase activity by HPr. J Mol Microbiol Biotechnol 3:385–393PubMedGoogle Scholar
  73. Shively JM (1974) Inclusion bodies of prokaryotes. Annu Rev Microbiol 28:167–187. doi: 10.1146/annurev.mi.28.100174.001123 PubMedGoogle Scholar
  74. Shriver Z, Raguram S, Sasisekharan R (2004) Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 3:863–873. doi: 10.1038/nrd1521 PubMedGoogle Scholar
  75. Silljé HH, Paalman JW, ter Schure EG, Olsthoorn SQ, Verkleij AJ, Boonstra J, Verrips CT (1999) Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol 181:396–400PubMedPubMedCentralGoogle Scholar
  76. Singh A, Gopinath K, Singh N, Singh S (2014) Deciphering the sequential events during in-vivo acquisition of drug resistance in Mycobacterium tuberculosis. Int J Mycobacteriol 3:36–40. doi: 10.1016/j.ijmyco.2013.10.006 PubMedGoogle Scholar
  77. Singh A, Gopinath K, Sharma P, Bisht D, Sharma P, Singh N, Singh S (2015) Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis from a patient pulmonary tuberculosis turning from drug sensitive to multidrug resistant. Indian J Med Res 141:27–45. doi: 10.4103/0971-5916.154492 PubMedPubMedCentralGoogle Scholar
  78. Slock JA, Stahly DP (1974) Polysaccharide that may serve as a carbon and energy storage compound for sporulation in Bacillus cereus. J Bacteriol 120:399–406PubMedPubMedCentralGoogle Scholar
  79. Stadthagen G, Sambou T, Guerin M et al (2007) Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J Biol Chem 282:27270–27276. doi: 10.1074/jbc.M702676200 PubMedGoogle Scholar
  80. Stokes RW, Norris-Jones R, Brooks DE, Beveridge TJ, Doxsee D, Thorson LM (2004) The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. Infect Immun 72:5676–5686. doi: 10.1128/IAI.72.10.5676-5686.2004 PubMedPubMedCentralGoogle Scholar
  81. Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101. doi: 10.1128/CMR.18.1.81-101.2005 PubMedPubMedCentralGoogle Scholar
  82. Unligil UM, Rini JM (2000) Glycosyltransferase structure and mechanism. Curr Opin Struct Biol 10:510–517. doi: 10.1016/S0959-440X(00)00124-X PubMedGoogle Scholar
  83. Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985. doi: 10.1111/j.1574-6976.2010.00220 PubMedPubMedCentralGoogle Scholar
  84. Zmasek CM, Godzik A (2014) Phylogenomic analysis of glycogen branching and debranching enzymatic duo. BMC Evol Biol 14:183. doi: 10.1186/s12862-014-0183-2 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Division of Clinical Microbiology and Molecular MedicineAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations