Advertisement

Open Abdomen pp 165-185 | Cite as

Management of the Open Abdomen in PICU

  • Torsten Kaussen
Chapter
Part of the Hot Topics in Acute Care Surgery and Trauma book series (HTACST)

Abstract

From a historical perspective, the open abdomen (OA; syn. abdomen apertum, laparostoma, temporary abdominal closure [TAC]) is a form of treatment in pediatric surgery that emerged with the development of methods to temporarily expand as well as reconstruct the abdominal wall within the framework of operative care for inborn abdominal wall defects [1–3]. It is in the context of abdominal wall approximation and adaptation that gastroschisis and omphalocele are still considered prototypes for diseases often leading to a predisposition for intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) [4–6].

References

  1. 1.
    Mortellaro VE, St Peter SD, Fike FB, Islam S. Review of the evidence on the closure of abdominal wall defects. Pediatr Surg Int. 2011;27(4):391–7.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Christison-Lagay ER, Kelleher CM, Langer JC. Neonatal abdominal wall defects. Semin Fetal Neonatal Med. 2011;16(3):164–72.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Van Hee R. Historical highlights in concept and treatment of abdominal compartment syndrome. Acta Clin Belg. 2007;62(Suppl 1):9–15.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Divarci E, Karapinar B, Yalaz M, Ergun O, Celik A. Incidence and prognosis of intraabdominal hypertension and abdominal compartment syndrome in children. J Pediatr Surg. 2016;51(3):503–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    De Waele JJ, Ejike JC, Leppaniemi A, et al. Intra-abdominal hypertension and abdominal compartment syndrome in pancreatitis, paediatrics, and trauma. Anaesthesiol Intensive Ther. 2015;47(3):219–27.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Jernigan TW, Fabian TC, Croce MA, et al. Staged management of giant abdominal wall defects: acute and long-term results. Ann Surg. 2003;238(3):349–55.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Kirkpatrick AW, Roberts DJ, De Waele J, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013;39(7):1190–206.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kron IL. A simple technique to accurately determine intra-abdominal pressure [letter]. Crit Care Med. 1989;17(7):714–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Davis PJ, Koottayi S, Taylor A, Butt WW. Comparison of indirect methods of measuring intra-abdominal pressure in children. Intensive Care Med. 2005;31(3):471–5.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    De Keulenaer BL, Regli A, Dabrowski W, et al. Does femoral venous pressure measurement correlate well with intrabladder pressure measurement? A multicenter observational trial. Intensive Care Med. 2011;37(10):1620–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    De Keulenaer BL, Regli A, Malbrain ML. Intra-abdominal measurement techniques: is there anything new? Am Surg. 2011;77(Suppl 1):S17–22.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Desie N, Willems A, De Laet I, et al. Intra-abdominal pressure measurement using the FoleyManometer does not increase the risk for urinary tract infection in critically ill patients. Ann Intensive Care. 2012;2(Suppl 1):S10.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Malbrain ML. Different techniques to measure intra-abdominal pressure (IAP): time for a critical re-appraisal. Intensive Care Med. 2004;30(3):357–71.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Otto J, Binnebosel M, Junge K, et al. Harrahill’s technique: a simple screening test for intra-abdominal pressure measurement. Hernia. 2010;14(4):415–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sfez M. Cardiorespiratory changes in children during laparoscopy. J Pediatr Surg. 1996;31(10):1465–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sfez M, Guerard A, Desruelle P. Cardiorespiratory changes during laparoscopic fundoplication in children. Paediatr Anaesth. 1995;5(2):89–95.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kaussen T, Steinau G, Srinivasan PK, et al. Recognition and management of abdominal compartment syndrome among German pediatric intensivists: results of a national survey. Ann Intensive Care. 2012;2(Suppl 1):S8.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Goldstein B, Giroir B, Randolph A. International consensus conference on pediatric S. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Beck R. Abdominal compartment syndrome in children. Pediatr Crit Care Med. 22001:51–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Akhobadze GR, Chkhaidze MG, Kanjaradze DV, Tsirkvadze I, Ukleba V. Identification, management and complications of intra-abdominal hypertension and abdominal compartment syndrome in neonatal intensive care unit (a single centre retrospective analysis). Georgian Med News. 2011;192:58–64.Google Scholar
  21. 21.
    Thabet FC, Bougmiza IM, Chehab MS, Bafaqih HA, AlMohaimeed SA, Malbrain ML. Incidence, risk factors, and prognosis of intra-abdominal hypertension in critically ill children: a prospective epidemiological study. J Intensive Care Med. 2016;31(6):403–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Pearson EG, Rollins MD, Vogler SA, et al. Decompressive laparotomy for abdominal compartment syndrome in children: before it is too late. J Pediatr Surg. 2010;45(6):1324–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ejike JC, Humbert S, Bahjri K, Mathur M. Outcomes of children with abdominal compartment syndrome. Acta Clin Belg Suppl. 2007;1:141–8.CrossRefGoogle Scholar
  24. 24.
    Dmytriiev DV. Intra-abdominal hypertension in children with acute pancreatitis. Acta Clin Belg Suppl. 622007:292–M225.Google Scholar
  25. 25.
    Krastins J, Straume Z, Auzins J. Intraabdominal pressure in children after cardiothoracic surgery. Acta Chirurgica Latviensis. 2009;9:28–32.CrossRefGoogle Scholar
  26. 26.
    Greenhalgh DG, Warden GD. The importance of intra-abdominal pressure measurements in burned children. J Trauma. 1994;36(5):685–90.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ejike JC, Mathur M, Moores DC. Abdominal compartment syndrome: focus on the children. Am Surg. 2011;77(Suppl 1):S72–7.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Boele van Hensbroek P, Wind J, Dijkgraaf MG, Busch OR, Goslings JC. Temporary closure of the open abdomen: a systematic review on delayed primary fascial closure in patients with an open abdomen. World J Surg. 2009;33(2):199–207.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    De Waele JJ, Hoste EA, Malbrain ML. Decompressive laparotomy for abdominal compartment syndrome - a critical analysis. Crit Care. 2006;10(2):R51.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Rezende-Neto JB, Moore EE, Masuno T, et al. The abdominal compartment syndrome as a second insult during systemic neutrophil priming provokes multiple organ injury. Shock. 2003;20(4):303–8.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Rezende-Neto JB, Moore EE, Melo de Andrade MV, et al. Systemic inflammatory response secondary to abdominal compartment syndrome: stage for multiple organ failure. J Trauma. 2002;53(6):1121–8.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Oda J, Ivatury RR, Blocher CR, Malhotra AJ, Sugerman HJ. Amplified cytokine response and lung injury by sequential hemorrhagic shock and abdominal compartment syndrome in a laboratory model of ischemia-reperfusion. J Trauma. 2002;52(4):625–31.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Xiao Z, Wilson C, Robertson HL, et al. Inflammatory mediators in intra-abdominal sepsis or injury - a scoping review. Crit Care. 2015;19:373.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gross RE. A new method for surgical treatment of large omphaloceles. 19481201 DCOM- 20081016 (0039-6060 (Print)).Google Scholar
  35. 35.
    Schuster SR. A new method for the staged repair of large omphaloceles. Surg Gynecol Obstet. 1967;125(4):837–50.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Bellon JM, Garcia-Honduvilla N, Carnicer E, Serrano N, Rodriguez M, Bujan J. Temporary closure of the abdomen using a new composite prosthesis (PL-PU99). Am J Surg. 2004;188(3):314–20.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Brock WB, Barker DE, Burns RP. Temporary closure of open abdominal wounds: the vacuum pack. Am Surg. 1995;61(1):30–5.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Cuesta MA, Doblas M, Castaneda L, Bengoechea E. Sequential abdominal reexploration with the zipper technique. World J Surg. 1991;15(1):74–80.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Fansler RF, Taheri P, Cullinane C, Sabates B, Flint LM. Polypropylene mesh closure of the complicated abdominal wound. Am J Surg. 1995;170(1):15–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Greene MA, Mullins RJ, Malangoni MA, Feliciano PD, Richardson JD, Polk HC Jr. Laparotomy wound closure with absorbable polyglycolic acid mesh. Surg Gynecol Obstet. 1993;176(3):213–8.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Losanoff JE, Kjossev KT. Mesh-foil laparostomy. J Am Coll Surg. 1997;185(1):89–92.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Quyn AJ, Johnston C, Hall D, et al. The open abdomen and temporary abdominal closure systems--historical evolution and systematic review. Color Dis. 2012;14(8):e429–38.CrossRefGoogle Scholar
  43. 43.
    Ramirez OM, Ruas E, Dellon AL. “Components separation” method for closure of abdominal-wall defects: an anatomic and clinical study. Plast Reconstr Surg. 1990;86(3):519–26.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Schachtrupp A, Fackeldey V, Klinge U, et al. Temporary closure of the abdominal wall (laparostomy). Hernia. 2002;6(4):155–62.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Tremblay LN, Feliciano DV, Schmidt J, et al. Skin only or silo closure in the critically ill patient with an open abdomen. Am J Surg. 2001;182(6):670–5.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Walsh GL, Chiasson P, Hedderich G, Wexler MJ, Meakins JL. The open abdomen. The Marlex mesh and zipper technique: a method of managing intraperitoneal infection. Surg Clin North Am. 1988;68(1):25–40.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ross AR, Hall NJ. Outcome reporting in randomized controlled trials and systematic reviews of gastroschisis treatment: a systematic review. J Pediatr Surg. 2016;51(8):1385–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Joffe A, Anton N, Lequier L, et al. Nutritional support for critically ill children. Cochrane Database Syst Rev. 2016;5:CD005144.Google Scholar
  49. 49.
    Briassoulis G, Ilia S, Meyer R. Enteral nutrition in PICUs: mission not impossible! Pediatr Crit Care Med. 2016;17(1):85–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ackerman AD. Morbidity and mortality conference: making it better. Pediatr Crit Care Med. 2016;17(1):94–5.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kukreti V, Daoud H, Bola SS, Singh RN, Atkison P, Kornecki A. Early critical care course in children after liver transplant. Crit Care Res Prac. 2014;2014:725748.Google Scholar
  52. 52.
    Yan JQ, Becker T, Peng CH, Li HW, Klempnauer J. Split liver transplantation: a reliable approach to expand donor pool. Hepatobiliary Pancreat Dis Int. 2005;4(3):339–44.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Schulze M, Dresske B, Deinzer J, et al. Implications for the usage of the left lateral liver graft for infants </=10 kg, irrespective of a large-for-size situation--are monosegmental grafts redundant? Transpl Int. 2011;24(8):797–804.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Shibasaki S, Taniguchi M, Shimamura T, et al. Risk factors for portal vein complications in pediatric living donor liver transplantation. Clin Transpl. 2010;24(4):550–6.CrossRefGoogle Scholar
  55. 55.
    Venick RS, Farmer DG, McDiarmid SV, et al. Predictors of survival following liver transplantation in infants: a single-center analysis of more than 200 cases. Transplantation. 2010;89(5):600–5.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bjorck M Fau - Bruhin A, Bruhin A Fau - Cheatham M, Cheatham M Fau - Hinck D, et al. Classification--important step to improve management of patients with an open abdomen. 2009 0511 DCOM- 20091020 (1432-2323 (Electronic)).Google Scholar
  57. 57.
    Bjorck M Fau - D’Amours SK, D’Amours Sk Fau - Hamilton AER, Hamilton AE. Closure of the open abdomen. 20110928 (1555-9823 (Electronic)).Google Scholar
  58. 58.
    Steinau G, Kaussen T, Bolten B, et al. Abdominal compartment syndrome in childhood: diagnostics, therapy and survival rate. Pediatr Surg Int. 2011;27(4):399–405.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Diaz FJ, Fernandez Sein A, Gotay F. Identification and management of abdominal compartment syndrome in the pediatric intensive care unit. P R Health Sci J. 2006;25(1):17–22.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Neville HL, Lally KP, Cox CS Jr. Emergent abdominal decompression with patch abdominoplasty in the pediatric patient. J Pediatr Surg. 2000;35(5):705–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Knight H, Petroll WM, Rochester DF. Relationships between abdominal and diaphragmatic volume displacements. J Appl Physiol. 1991;71(2):565–72.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Malbrain M, Nieuwendijk R, Verbrugghe W, et al. Effect of intra-abdominal pressure on pleural and filling pressures. Intensive Care Med. 2004;29(Suppl):S73.Google Scholar
  63. 63.
    Mutoh T, Lamm WJ, Embree LJ, Hildebrandt J, Albert RK. Abdominal distension alters regional pleural pressures and chest wall mechanics in pigs in vivo. J Appl Physiol. 1991;70(6):2611–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Pelosi P, Quintel M, Malbrain ML. Effect of intra-abdominal pressure on respiratory mechanics. Acta Clin Belg. 2007;62(Suppl 1):78–88.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Braun J, Schumpelick V. Das ileoanale Reservoir als Rektumersatz bei Colitis ulcerosa. Spatkomplikationen und funktionelle Langzeitergebnisse. Dtsch Med Wochenschr. 1992;117:570–5.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Wauters J, Wilmer A, Valenza F. Abdomino-thoracic transmission during ACS: facts and figures. Acta Clin Belg Suppl. 2007;62:200–5.CrossRefGoogle Scholar
  67. 67.
    Deitch EA. Role of the gut lymphatic system in multiple organ failure. Curr Opin Crit Care. 2001;7(2):92–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Malbrain ML, Pelosi P, De Laet I, Lattuada M, Hedenstierna G. Lymphatic drainage between thorax and abdomen: please take good care of this well-performing machinery. Acta Clin Belg. 2007;62(Suppl 1):152–61.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Pugin J, Chevrolet JC. The intestine-liver-lung axis in septic syndrome. Schweiz Med Wochenschr. 1991;121(42):1538–44.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Diebel LN, Dulchavsky SA, Brown WJ. Splanchnic ischemia and bacterial translocation in the abdominal compartment syndrome. J Trauma. 1997;43(5):852–5.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Eleftheriadis E, Kotzampassi K, Papanotas K, Heliadis N, Sarris K. Gut ischemia, oxidative stress, and bacterial translocation in elevated abdominal pressure in rats. World J Surg. 1996;20:11–6.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Gautreaux MD, Deitch EA, Berg RD. Bacterial translocation from the gastrointestinal tract to various segments of the mesenteric lymph node complex. Infect Immun. 1994;62(5):2132–4.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Gong G, Wang P, Ding W, Zhao Y, Li J. The role of oxygen-free radical in the apoptosis of enterocytes and bacterial translocation in abdominal compartment syndrome. Free Radic Res. 2009;43(5):470–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Grotz MR, Deitch EA, Ding J, Xu D, Huang Q, Regel G. Intestinal cytokine response after gut ischemia: role of gut barrier failure. Ann Surg. 1999;229(4):478–86.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Jacobi CA, Ordemann J, Bohm B, et al. Does laparoscopy increase bacteremia and endotoxemia in a peritonitis model? Surg Endosc. 1997;11:235–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Kaussen T, Srinivasan PK, Afify M, et al. Influence of two different levels of intra-abdominal hypertension on bacterial translocation in a porcine model. Ann Intensive Care. 2012;2(Suppl 1):S17.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Sugerman HJ, Bloomfield GL, Saggi BW. Multisystem organ failure secondary to increased intraabdominal pressure. Infection. 1999;27(1):61–6.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Sukhotnik I, Bejar J, Srugo I, et al. Adverse effects of increased intra-abdominal pressure on small bowel structure and bacterial translocation in the rat. J Laparoendosc Adv Surg Tech A. 2006;16(4):404–10.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Swank GM, Deitch EA. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg. 1996;20(4):411–7.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Berg RD. Bacterial translocation from the gastrointestinal tract. Trends Microbiol. 1995;3(4):149–54.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Deitch EA. Multiple organ failure. Adv Surg. 1993;26:333–56.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Schachtrupp A, Toens C, Afify M, Lawong AG, Schumpelick V. Influence of decompression and reperfusion on organ damage in porcine model of the ACS. Intensive Care Med. 2005;31(Suppl 1):124. Nr 474Google Scholar
  83. 83.
    Benninger E, Labler L, Seifert B, Trentz O, Menger MD, Meier C. In vitro comparison of intra-abdominal hypertension development after different temporary abdominal closure techniques. J Surg Res. 2008;144(1):102–6.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Benninger E, Laschke MW, Cardell M, et al. Intra-abdominal pressure development after different temporary abdominal closure techniques in a porcine model. J Trauma. 2009;66(4):1118–24.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Alvarez F. Portal vein complications after pediatric liver transplantation. Curr Gastroenterol Rep. 2012;14(3):270–4.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Schachtrupp A, Afify M, Lawong AG, Schwab R, Henzler D, Schumpelick V. Organ impairment results as early as 6 h after the onset of intraabdominal hypertension. Intensive Care Med. 2004;30(Suppl. 1):570.Google Scholar
  87. 87.
    Schachtrupp A, Töns C, Lorken M, Hoer J, Schumpelick V. Organ damage induced by Pneumoperitoneum : a 24 h study in the pig. Langenbecks Arch Chir. 2000;385:547.Google Scholar
  88. 88.
    Blobner M, Bogdanski R, Kochs E, Henke J, Findeis A, Jelen-Esselborn S. Effects of intraabdominally insufflated carbon dioxide and elevated intraabdominal pressure on splanchnic circulation: an experimental study in pigs [see comments]. Anesthesiology. 1998;89(2):475–82.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Barnes GE, Laine GA, Giam PY, Smith EE, Granger HJ. Cardiovascular responses to elevation of intra-abdominal hydrostatic pressure. Am J Phys. 1985;248(2 Pt 2):R208–13.Google Scholar
  90. 90.
    Schachtrupp A, Graf J, Tons C, Hoer J, Fackeldey V, Schumpelick V. Intravascular volume depletion in a 24-hour porcine model of intra-abdominal hypertension. J Trauma. 2003;55(4):734–40.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Schachtrupp A, Toens C, Afify M, Lawong AG, Schumpelick V. Volume resuscitation preserves cardiac output but cannot prevent organ damage in a model of ACS. Intensive Care Med. 2004;30(Suppl. 1):567.Google Scholar
  92. 92.
    Wauters J, Claus P, Brosens N, et al. Relationship between abdominal pressure, pulmonary compliance, and cardiac preload in a porcine model. Crit Care Res Prac. 2012;2012:763181.Google Scholar
  93. 93.
    Vivier E, Metton O, Piriou V, et al. Effects of increased intra-abdominal pressure on central circulation. Br J Anaesth. 2006;96(6):701–7.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Cheatham ML, Malbrain ML. Cardiovascular implications of abdominal compartment syndrome. Acta Clin Belg. 2007;62(Suppl 1):98–112.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Branche PE, Duperret SL, Sagnard PE, Boulez JL, Petit PL, Viale JP. Left ventricular loading modifications induced by pneumoperitoneum: a time course echocardiographic study. Anesth Analg. 1998;86(3):482–7.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Gentili A, Iannettone CM, Pigna A, Landuzzi V, Lima M, Baroncini S. Cardiocirculatory changes during videolaparoscopy in children: an echocardiographic study. Paediatr Anaesth. 2000;10(4):399–406.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Samel ST, Neufang T, Mueller A, Leister I, Becker H, Post S. A new abdominal cavity chamber to study the impact of increased intra-abdominal pressure on microcirculation of gut mucosa by using video microscopy in rats. Crit Care Med. 2002;30(8):1854–8.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Schilling MK, Redaelli C, Krahenbuhl L, Signer C, Buchler MW. Splanchnic microcirculatory changes during CO2 laparoscopy. J Am Coll Surg. 1997;184(4):378–82.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Skoog P, Horer TM, Nilsson KF, Norgren L, Larzon T, Jansson K. Abdominal hypertension and decompression: the effect on peritoneal metabolism in an experimental porcine study. Eur J Vasc Endovasc Surg. 2014;47(4):402–10.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Lichtwarck Aschoff M, Beale R, Pfeiffer UJ. Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit Care. 1996;11(4):180–8.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ. Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med. 1992;18(3):142–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Hachenberg T, Ebel C, Czorny M, Thomas H, Wendt M. Intrathoracic and pulmonary blood volume during CO2- pneumoperitoneum in humans. Acta Anaesthesiol Scand. 1998;42(7):794–8.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Malbrain ML, Ameloot K, Gillebert C, Cheatham ML. Cardiopulmonary monitoring in intra-abdominal hypertension. Am Surg. 2011;77(Suppl 1):S23–30.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Tomaske M, Knirsch W, Kretschmar O, et al. Cardiac output measurement in children: comparison of Aesculon cardiac output monitor and thermodilution. Br J Anaesth. 2008;100(4):517–20.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Varela JE, Cohn SM, Giannotti GD, et al. Near-infrared spectroscopy reflects changes in mesenteric and systemic perfusion during abdominal compartment syndrome. Surgery. 2001;129(3):363–70.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Widder S, Ranson MK, Zygun D, et al. Use of near-infrared spectroscopy as a physiologic monitor for intra-abdominal hypertension. J Trauma. 2008;64(5):1165–8.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Di Nardo M, Cecchetti C, Stoppa F, Pirozzi N, Picardo S. Abdominal compartment syndrome in childhood: the role of near infrared spectroscopy for the early detection of the organ dysfunction. Pediatr Surg Int. 2012;28(1):111–2.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    WH D, Xiang W, Liu DC, et al. Usefulness of speckle tracking imaging to assess myocardial contractility in intra-abdominal hypertension: study in a mini-pig model. Cell Biochem Biophys. 2012;64(2):123–9.CrossRefGoogle Scholar
  109. 109.
    Cain BS, Meldrum DR, Dinarello CA, et al. Tumor necrosis factor-alpha and interleukin-1beta synergistically depress human myocardial function. Crit Care Med. 1999;27(7):1309–18.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Muller-Werdan U, Engelmann H, Werdan K. Cardiodepression by tumor necrosis factor-alpha. Eur Cytokine Netw. 1998;9(4):689–91.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Malbrain ML, Vidts W, Ravyts M, De Laet I, De Waele J. Acute intestinal distress syndrome: the importance of intra-abdominal pressure. Minerva Anestesiol. 2008;74(11):657–73.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Mahjoub Y, Plantefeve G. Cardiac ultrasound and abdominal compartment syndrome. Acta Clin Belg. 2007;62(Suppl 1):183–9.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Cheatham ML, White MW, Sagraves SG, Johnson JL, Block EF. Abdominal perfusion pressure: a superior parameter in the assessment of intra-abdominal hypertension. J Trauma. 2000;49(4):621–6.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    McGuigan RM, Azarow KS. Is splanchnic perfusion pressure more predictive of outcome than intragastric pressure in neonates with gastroschisis? Am J Surg. 2004;187(5):609–11.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    McGuigan RM, Mullenix PS, Vegunta R, Pearl RH, Sawin R, Azarow KS. Splanchnic perfusion pressure: a better predictor of safe primary closure than intraabdominal pressure in neonatal gastroschisis. J Pediatr Surg. 2006;41(5):901–4.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Agusti M, Elizalde JI, Adalia R, Cifuentes A, Fontanals J, Taura P. Dobutamine restores intestinal mucosal blood flow in a porcine model of intra-abdominal hyperpressure. Crit Care Med. 2000;28(2):467–72.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    De Keulenaer B, Regli A, De Laet I, Roberts D, Malbrain ML. What’s new in medical management strategies for raised intra-abdominal pressure: evacuating intra-abdominal contents, improving abdominal wall compliance, pharmacotherapy, and continuous negative extra-abdominal pressure. Anaesthesiol Intensive Ther. 2015;47(1):54–62.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Bendjelid K. Systemic arterial pressure and fluid responsiveness: not only a swing story. Crit Care Med. 2011;39(6):1579–80.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Bailey AG, McNaull PP, Jooste E, Tuchman JB. Perioperative crystalloid and colloid fluid management in children: where are we and how did we get here? Anesth Analg. 2010;110(2):375–90.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Steurer MA, Berger TM. Infusion therapy for neonates, infants and children. Anaesthesist. 2011;60(1):10–22.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Malbrain ML, Marik PE, Witters I, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: a systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46(5):361–80.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Bishara B, Abu-Saleh N, Awad H, et al. Phosphodiesterase 5 inhibition protects against increased intra-abdominal pressure-induced renal dysfunction in experimental congestive heart failure. Eur J Heart Fail. 2012;14(10):1104–11.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Hedenstierna G, Larsson A. Influence of abdominal pressure on respiratory and abdominal organ function. Curr Opin Crit Care. 2012;18(1):80–5.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Villa G, Samoni S, De Rosa S, Ronco C. The pathophysiological hypothesis of kidney damage during intra-abdominal hypertension. Front Physiol. 2016;7:55.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Harman PK, Kron IL, McLachlan HD, Freedlender AE, Nolan SP. Elevated intra-abdominal pressure and renal function. Ann Surg. 1982;196:594–7.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    De Laet I, Malbrain ML, Jadoul JL, Rogiers P, Sugrue M. Renal implications of increased intra-abdominal pressure: are the kidneys the canary for abdominal hypertension? Acta Clin Belg. 2007;62(Suppl 1):119–30.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Lingegowda V, Ejaz AA, Sood P. Normotensive ischemic acute kidney injury as a manifestation of intra-abdominal hypertension. Int Urol Nephrol. 2009;41(4):1043–5.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Wauters J, Claus P, Brosens N, McLaughlin M, Malbrain M, Wilmer A. Pathophysiology of renal hemodynamics and renal cortical microcirculation in a porcine model of elevated intra-abdominal pressure. J Trauma. 2009;66(3):713–9.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Wiebe S, Kellenberger CJ, Khoury A, Miller SF. Early Doppler changes in a renal transplant patient secondary to abdominal compartment syndrome. Pediatr Radiol. 2004;34(5):432–4.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Sui F, Zheng Y, Li WX, Zhou JL. Renal circulation and microcirculation during intra-abdominal hypertension in a porcine model. Eur Rev Med Pharmacol Sci. 2016;20(3):452–61.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Smith LS, Zimmerman JJ, Martin TR. Mechanisms of acute respiratory distress syndrome in children and adults: a review and suggestions for future research. Pediatr Crit Care Med. 2013;14(6):631–43.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.Google Scholar
  133. 133.
    De Keulenaer BL, De Waele JJ, Powell B, Malbrain ML. What is normal intra-abdominal pressure and how is it affected by positioning, body mass and positive end-expiratory pressure? Intensive Care Med. 2009;35(6):969–76.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Cortes-Puentes GA, Cortes-Puentes LA, Adams AB, Anderson CP, Marini JJ, Dries DJ. Experimental intra-abdominal hypertension influences airway pressure limits for lung protective mechanical ventilation. J Trauma Acute Care Surg. 2013;74(6):1468–73.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Larsson A. Clinical significance of elevated intraabdominal pressure during common conditions and procedures. Acta Clin Belg. 2007;62(Suppl 1):74–7.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Malbrain ML, De Laet IE, De Waele JJ, Kirkpatrick AW. Intra-abdominal hypertension: definitions, monitoring, interpretation and management. Best Pract Res Clin Anaesthesiol. 2013;27(2):249–70.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Regli A, Mahendran R, Fysh ET, et al. Matching positive end-expiratory pressure to intra-abdominal pressure improves oxygenation in a porcine sick lung model of intra-abdominal hypertension. Crit Care. 2012;16(5):R208.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Runck H, Schumann S, Tacke S, Haberstroh J, Guttmann J. Effects of intra-abdominal pressure on respiratory system mechanics in mechanically ventilated rats. Respir Physiol Neurobiol. 2012;180(2–3):204–10.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Haddam M, Zieleskiewicz L, Perbet S, et al. Lung ultrasonography for assessment of oxygenation response to prone position ventilation in ARDS. Intensive Care Med. 2016;42(10):1546–56.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Robotham JL, Takata M. Mechanical abdomino/heart/lung interaction. J Sleep Res. 1995;4(S1):50–2.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Rodriguez-Moya VS, Gallo-Borrero CM, Santos-Areas D, Prince-Martinez IA, Diaz-Casanas E, Lopez-Herce Cid J. Exogenous surfactant and alveolar recruitment in the treatment of the acute respiratory distress syndrome. Clin Respir J. 2016, doi:10.1111/crj.12462.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Rotta AT, Steinhorn DM. Is permissive hypercapnia a beneficial strategy for pediatric acute lung injury? Respir Care Clin N Am. 2006;12(3):371–87.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Chao CS, Chang YP, Chin HK, Chin J. A patient with abdominal compartment syndrome and perforated transverse colon successfully managed with ECMO. Ann Acad Med Singap. 2011;40(12):554–5.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Datin-Dorriere V, Walter-Nicolet E, Rousseau V, et al. Experience in the management of eighty-two newborns with congenital diaphragmatic hernia treated with high-frequency oscillatory ventilation and delayed surgery without the use of extracorporeal membrane oxygenation. J Intensive Care Med. 2008;23(2):128–35.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Wieczorek B, Burke C, Al-Harbi A, Kudchadkar SR. Early mobilization in the pediatric intensive care unit: a systematic review. J Pediatr Intensive Care. 2015;2015:129–70.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Playfor S, Jenkins I, Boyles C, et al. Consensus guidelines on sedation and analgesia in critically ill children. Intensive Care Med. 2006;32(8):1125–36.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Eifinger F, Hunseler C, Roth B, et al. Observations on the effects of inhaled isoflurane in long-term sedation of critically ill children using a modified AnaConDa(c)-system. Klin Padiatr. 2013;225(4):206–11.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Sackey PV, Martling CR, Radell PJ. Three cases of PICU sedation with isoflurane delivered by the ‘AnaConDa’. Paediatr Anaesth. 2005;15(10):879–85.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Khlevner J, Antino J, Panesar R, Chawla A. Establishing early enteral nutrition with the use of self-advancing postpyloric feeding tube in critically ill children. J Parenter Enter Nutr. 2012;36(6):750–2.CrossRefGoogle Scholar
  151. 151.
    Braun J, Bein T, Wiese CH, Graf BM, Zausig YA. Enteral feeding tubes for critically ill patients. Anaesthesist. 2011;60(4):352–65.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Cothren CC, Moore EE, Ciesla DJ, et al. Postinjury abdominal compartment syndrome does not preclude early enteral feeding after definitive closure. Am J Surg. 2004;188(6):653–8.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Reynolds JV, O’Farrelly C, Feighery C, et al. Impaired gut barrier function in malnourished patients. Br J Surg. 1996;83(9):1288–91.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Ng E, Shah VS. Erythromycin for the prevention and treatment of feeding intolerance in preterm infants. Cochrane Database Syst Rev. 2008;(3):CD001815.Google Scholar
  155. 155.
    Stanger JD, Oliveira C, Blackmore C, Avitzur Y, Wales PW. The impact of multi-disciplinary intestinal rehabilitation programs on the outcome of pediatric patients with intestinal failure: a systematic review and meta-analysis. J Pediatr Surg. 2013;48(5):983–92.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    van der Linden J, Casimir Ahn H. When do cerebral emboli appear during open heart operations? A transcranial Doppler study. Ann Thorac Surg. 1991;51:237–41.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatric Cardiology and Intensive Care MedicineHannover Medical SchoolHannoverGermany

Personalised recommendations