Robotic Eye Surgery

  • Charles W. MangoEmail author
  • Angelo Tsirbas
  • Jean-Pierre Hubschman


Ophthalmology is a field at the forefront of innovation. Improvements in surgical instrumentation and refinements in surgical techniques have resulted in improved outcomes while decreasing operating time. Digital ultrahigh definition microscope utilization, real-time overlays of intraoperative OCT data, and automated laser assisted cataract surgery have been recent major contributions to our field. We believe the next revolution in ophthalmology will be the further development and acceptance of robotics.


Robotic Surgery Surgical System Vitreous Cavity Ocular Surgery Vinci Surgical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Video 14.1

Robotic vitrectomy (WMV 14411 kb)


  1. 1.
    [Robot]. In Merriam Webster Online, Retrieved May 9, 2016, from
  2. 2.
    Medical Post 23: 1985 (PDF). Google Scholar
  3. 3.
    Kwoh YS, Hou J, Jonckheere EA, Hayall S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Lanfranco AR, Castellanos AE, Desai JP, Meyers WC. Robotic surgery. Ann Surg. 2004;239(1):14–21.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pransky J. ROBODOC – a surgical robot success story. Indust Robot Int J. 1997;24(3):231–3.CrossRefGoogle Scholar
  6. 6.
    Meadows, Michelle. Computer-assisted surgery: an update. FDA Consumer magazine. Food and Drug Administration. Archived from the original on 9 May 2016. Google Scholar
  7. 7.
    Labontiu A. The da Vinci surgical system performing computer-enhanced surgery. Osp Ital Chir. 2001;7:367–72.Google Scholar
  8. 8.
    Ruurda JP, Broeders IAMJ, Simmermacher RPM, et al. Feasibility of robot-assisted laparoscopic surgery. Surg Laparosc Endosc Percutan Tech. 2002;12(2002):41–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Kumar R, Hemal AK. Emerging role of robotics in urology. J Min Access Surg. 2005;1:202–10.Google Scholar
  10. 10.
    Dasgupta P, Challacombe B, Murphy D, et al. (2006) Coming full circle in robotic urology. BJU Int. 2006;98:4–5.CrossRefPubMedGoogle Scholar
  11. 11.
    Kaul S, Laungani R, Sarle R, et al. Da Vinci-assisted robotic partial nephrectomy: technique and results at a mean of 15 months of follow-up. Eur Urol. 2007;51:186–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Diaz-Arrastia C, Jurnalov C, Gomez G, Townsend Jr C. Laparoscopic hysterectomy using a computer-enhanced surgical robot. Surg Endosc. 2002;16(2002):1271–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Beste TM, Nelson KH, JA D. Total laparoscopic hysterectomy utilizing a robotic surgical system. J Soc Laparoendosc Surg. 2005;9:13–5.Google Scholar
  14. 14.
    Katz MR, Van Praet F, de Canniere D, et al. Integrated coronary revascularization: percutaneous coronary intervention plus robotic totally endoscopic coronary artery bypass. Circulation. 2006;114:473–6.CrossRefGoogle Scholar
  15. 15.
    McClure RS, Kiaii B, Novick RJ, et al. Computer-enhanced telemanipulation in mitral valve repair: preliminary experience in Canada with the da Vinci robotic system. Can J Surg. 2006;49:193–6.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Kypson AP, Chitwood WR. Robotic cardiovascular surgery. Expert Rev Med Devices. 2006;3:335–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Hashizume M, Konishi K, Tsutsumi N, et al. A new era of robotic surgery assisted by a computer-enhanced surgical system. Surgery. 2002;131(2002):S330–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Prasad SM, Prasad SM, Maniar HS, et al. Surgical robotics: impact of motion scaling on task performance. J Am Coll Surg. 2004;199:863–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Hernandez JD, Bann SD, Munz Y, et al. Qualitative and quantitative analysis of the learning curve of a simulated surgical task on the da Vinci system. Surg Endosc. 2004;18:372–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Moorthy K, Munz Y, Dosis A, et al. Dexterity enhancement with robotic surgery. Surg Endosc. 2004;18:790–5.PubMedGoogle Scholar
  21. 21.
    Gomez-Blanco M, Riviere CN, Khosla PK. Intraoperative tremor monitoring for vitreoretinal microsurgery. Stud Health Technol Inform. 2000;70:99–101.PubMedGoogle Scholar
  22. 22.
    Guerrouad A, Vidal P (1989) SMOS: stereotaxical microtelemanipulator for ocular surgery. In: Engineering in Medicine and Biology Society, 1989. Images of the Twenty-First Century, Proceedings of the Annual International Conference of the IEEE Engineering in 1989 Nov 9 (pp. 879–880). IEEE.Google Scholar
  23. 23.
    Charles S, Das H, Ohm T, et al. Dexterity-enhanced telerobotic microsurgery. Adv Robotics. 1997;1997:5–10.Google Scholar
  24. 24.
    Jensen PS, Grace KW, et al. Toward robot-assisted vascular microsurgery in the retina. Graefes Arch Clin Exp Ophthalmol. 1997;235(11):696–701.CrossRefPubMedGoogle Scholar
  25. 25.
    Yu DY, Cringle SJ, IJ C. Robotic ocular ultramicrosurgery. Sust N Z J Ophthalmol. 1998;26(Suppl 1):S6–8.CrossRefGoogle Scholar
  26. 26.
    Uneri A, Balicki MA, Handa J, Gehlbach P, Taylor RH, et al. (2010) New steady-hand eye robot with micro-force sensing for vitreoretinal surgery. Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron.Google Scholar
  27. 27.
    Mitchell B, Koo J, Iordachita I, Kazanzides P, Kapoor A, et al. Development and application of a new steady-hand manipulator for retinal surgery. IEEE ICRA. 2007;2007:623–9.Google Scholar
  28. 28.
    Fleming IN, Voros S, Vagvolgyi B, Pezzementi Z, Handa J, et al. Intraoperative visualization of anatomical targets in retinal surgery. Applications of Computer Vision, IEEE Workshop. 2008:1–6.Google Scholar
  29. 29.
    MacLachlan RA, Becker BC, Tabarés JC, Podnar GW, Lobes LA, et al. Micron: An actively stabilized handheld tool for microsurgery. IEEE Trans Robotics. 2012;28:195–212.CrossRefPubMedGoogle Scholar
  30. 30.
    Tsirbas A, Mango C, Dutson E. Robotic ocular surgery. Br J Ophthalmol. 2007;91:18–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Bourla DH, Hubschman JP, Culjat M, Tsirbas A, Gupta A, et al. Feasibility study of intraocular robotic surgery with the da Vinci Surgical System. Retina. 2008;28:154–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Riviere CN, Jensen PS (2000) A study of instrument motion in retinal microsurgery. Abstract presented at 21st Annual Conference of IEEE Eng Med Biol Soc, 26 Jun 2000, Chicago.Google Scholar
  33. 33.
    Bourges JL, Hubschman JP, Wilson J, Prince S, Tsao TC, et al. Assessment of a Hexapod Surgical System for robotic micro-macro manipulations in ocular surgery. Ophthalmic Res. 2011;46:25–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Hubschman JP, Bourges JL, Choi W, Mozayan A, Tsirbas A, et al. ‘The Microhand:’ a new concept of micro-forceps for the ocular robotic surgery. Eye. 2010;24:364–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Bergeles C, Kummer MP, Kratochvil BE, Framme C, Nelson BJ (2011) Steerable intravitreal inserts for drug delivery: In vitro and ex vivo mobility experiments. Proc of the 14th Int Conf on Medical Image Computing and Computer Assisted Intervention.Google Scholar
  36. 36.
    Gijbels A, Vander Poorten EB, Gorissen B, Devreker A, Stalmans P, Reynaerts D (2014) Experimental validation of a robotic comanipulation and telemanipulation system for retinal surgery.Google Scholar
  37. 37.
    Caers P, Gijbels A, De Volder M, Gorissen B, Stalmans P, Reynaers D, Vander Poorten EB. Precision experiments on a comanipulated robotic system for use in retinal surgery. Proceedings of the 2011 SCATh Joint Workshop on New Technologies for Computer/Robot Assisted Surgery, 11–13 July 2011, Graz.Google Scholar
  38. 38.
    He X, van Geirt V, Gehlbach P, Taylor R. Iordachita I (2015) IRIS: Integrated Robotic Intraocular Snake. IEEE Int Conf Robot Autom. 2015;2015:1764–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Rahimy E, Wilson J, Tsao TC, Schwartz S, JP H. Robot-assisted intraocular surgery: development of the IRISS and feasibility studies in an animal model. Eye (Lond). 2013;27(8):972–8.CrossRefGoogle Scholar
  40. 40.
    Eye, Robot, the Ophthalmologist. 2015: 19–25Google Scholar
  41. 41.
    Preceyes enters into collaborations with Nighstar and the University of Oxford to develop subretinal drug delivery technology. Press Release. Accessed 9 May 2016.Google Scholar
  42. 42.
    Bourcier T, Chammas J, Becmeur PH, Danan J, Sauer A, Gaucher D, Liverneaux P, Mutter D. Robotically Assisted Pterygium Surgery: First Human Case. Cornea. 2015;34(10):1329–30.CrossRefPubMedGoogle Scholar
  43. 43.
    Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesrugery. Nature. 2001;413:379–80.CrossRefPubMedGoogle Scholar
  44. 44.
    Marescaux J, Leroy J, Rubino F, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235:487–92.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Marescaux J, Rubino F. Robot-assisted remote surgery: technological advances, potential complications, and solutions. Surg Technol Int. 2004;12:23–6.PubMedGoogle Scholar
  46. 46.
    Shademan A, Decker R, Opfermann J, Leonard S, Krieger A, Kim P. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;4:337.Google Scholar
  47. 47.
    Rosser JC, Wood M, Payne JH, Fullum TM, Lisehorn GB, Rosser LE, Barcia PJ, Savalgi RS. Telementoring: a practical option in surgical training. Surg Endosc. 1997;11:852–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Lee BR, Caddedu JA, Janetschek G, Schulman P, Docimo SG, Moore RG, Partin AW, Kavoussi LR. International surgical telementoring: our initial experience. Stud Health Technol Inform. 1998;50:41–7.PubMedGoogle Scholar
  49. 49.
    Lee BR, Png DJ, Liew L, Fabrizio M, Li MK, Jarrett JW, Kavoussi LR. Laparoscopic telesurgery between the United States and Singapore. Ann Acad Med Singapore. 2000;29:655–68.Google Scholar
  50. 50.
    Lee BR, Bishoff JT, Janetschek G, Bunyaratevej P, Kamolpronwijit W, Cadeddu JA, Ratchanon S, O’Kelley S, Kavoussi LR. A novel method of surgical instruction: international telementoring. World J Urol. 1998;16:367–70.CrossRefPubMedGoogle Scholar
  51. 51.
    Micali S, Virgili G, Vannozzi E, Grassi N, Jarrett TW, Bauer JJ, Vespasiani G, JAvoussi JR. Feasibility of telementoring between Baltimore (USA) and Rome, Italy. J Endourol. 2000;14:493–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Taniguchi E, Ohashi S. Construction of a regional telementoring network for endoscopic surgery in Japan. IEEE Trans Inf Technol Biomed. 2000;4:195–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Cubano M, Poulouse BK, Talamini MA, Stewart R, Antosek LE, Lentz R, Nibe R, Nutka M, Mendoza-Sagaon M. Long disgtance telementoring: a novel tool for laparpscopy aboard the USS Abraham Lincoln. Surg Endosc. 1999;13:673–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Charles W. Mango
    • 1
    Email author
  • Angelo Tsirbas
    • 2
  • Jean-Pierre Hubschman
    • 2
  1. 1.Department of OphthalmologyWeill Cornell Medical College AngeloNew YorkUSA
  2. 2.Department of Ophthalmology at the David Geffen School of MedicineUniversity of California Los Angeles (UCLA)Los AngelesUSA

Personalised recommendations